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Abstract: Most previous studies on lossless image compression have focused on improving prepro-
cessing functions to reduce the redundancy of pixel values in real images. However, we assumed
stochastic generative models directly on pixel values and focused on achieving the theoretical limit of
the assumed models. In this study, we proposed a stochastic model based on improper quadtrees. We
theoretically derive the optimal code for the proposed model under the Bayes criterion. In general,
Bayes-optimal codes require an exponential order of calculation with respect to the data lengths.
However, we propose an algorithm that takes a polynomial order of calculation without losing
optimality by assuming a novel prior distribution.

Keywords: stochastic generative model; quadtree; Bayes code; lossless image compression

1. Introduction

There are two approaches to lossless image compression. (These two approaches are
detailed in Section 1 of our previous study [1].) Most previous studies (e.g., [2–4]) adopted
an approach in which they constructed a preprocessing function f : vt−1 7→ p that outputs
a code length assignment vector p from past pixel values vt−1. p determines the code length
of the next pixel value vt, or typically, a value v′t equivalent to vt in the meaning that there
exists a one-to-one mapping (v′1, v′2, . . . v′t) = g(v1, v2, . . . vt) computable for both encoder
and decoder. Then, v′t and p are passed to the following entropy coding process such
as [5,6]. In this approach, the elements pi of the code length assignment vector p satisfy
∑i pi = 1. Therefore, it appears superficially as a probability distribution. However, it does
not directly govern the stochastic generation of original pixel value vt. Hence, we cannot
define the entropy of the source of pixel value vt, and we cannot discuss the theoretical
optimality of the preprocessing function f (vt−1) and one-to-one mapping g(v1, v2, . . . vt).

In contrast, we adopted an approach in which we estimated a stochastic generative
model p(vt|vt−1, θm, m) with an unknown parameter θm and a model variable m, which
is directly and explicitly assumed on the original pixel value vt [1,7–9]. Therefore, we can
discuss the theoretical optimality of the entire algorithm to the entropy defined from the
assumed stochastic model p(vt|vt−1, θm, m). In particular, we can achieve the theoretically
optimal coding under the Bayes criterion in statistical decision theory (see, e.g., [10])
by assuming prior distributions p(θm|m) and p(m) on the unknown parameter θm and
model variable m. Such codes are known as Bayes codes [11] in information theory. It
is known that the Bayes code asymptotically achieves the entropy of the true stochastic
model, and its convergence speed achieves the theoretical limit [12]. The Bayes codes have
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shown remarkable performance in text compression (e.g., [13]). Therefore, we consider
this approach.

We assume that the target image herein has non-stationarity, that is, the properties of
pixel values are different among the positions in the image. For such an image, researchers
have performed quadtree block segmentation as a component of preprocessing f (vt−1) and
one-to-one mapping g(v1, v2, . . . vt) in the former approach, and its practical efficiency has
been reported in many previous studies (e.g., [4,14]). In the latter approach, we proposed a
stochastic generative model p(vt|vt−1, θm, m) that contains a quadtree as a model variable m.
By assuming a prior distribution p(m) on it, we derived the optimal code under the Bayes
criterion, and we constructed a polynomial order algorithm to calculate it without loss of
optimality [1]. However, in all these studies [1,4,14], the class of quadtrees is restricted to
that of proper trees, whose inner nodes have exactly four children.

In this paper, we propose a stochastic generative model p(vt|vt−1, θm, m) based on an
improper quadtree m and derive the code optimal under the Bayes criterion. In general,
the codes optimal under the Bayes criterion require a summation that takes an exponential
order calculation for the data length. However, we herein construct an algorithm that only
requires a polynomial order calculation without losing optimality by applying a theory of
probability distribution for general rooted trees [15] to the improper quadtree representing
the block segmentation.

2. Proposed Stochastic Generative Model

Let V denote a set of possible values of a pixel. For example, we have V = {0, 1} for
binary images and V = {0, 1, . . . , 255} for grayscale images. Let h ∈ N and w ∈ N denote a
height and a width of an image, respectively. Although our model is able to represent any
rectangular images, we assume that h = w = 2dmax for dmax ∈ N in the following for the
simplicity of the notation. Then, let Vt denote the random variable of the t-th pixel value in
order of the raster scan, and let vt ∈ V denote its realization. Note that Vt is at the x(t)-th
row and y(t)-th column, where t divided by w is x(t) with a reminder of y(t). In addition,
let Vt denote the sequence of pixel values V0, V1, . . . , Vt. Note that all the indices start from
zero herein.

We assume Vt is generated from a probability distribution p(vt|vt−1, θm, m) depending
on an unknown model m ∈ M and unknown parameters θm ∈ Θm. (For t = 0, we assume
V0 follows p(v0|θm, m).) We define m and θm in the following.

Definition 1 ([1]). Let s(x1y1)(x2y2)···(xdyd)
denote the following index set called “block.”

s(x1y1)(x2y2)···(xdyd)
:=

{
(i, j) ∈ Z2

∣∣∣∣∣ d

∑
d′=1

xd′

2d′ ≤
i

2dmax
<

(
d

∑
d′=1

xd′

2d′ +
1
2d

)
,

d

∑
d′=1

yd′

2d′ ≤
j

2dmax
<

(
d

∑
d′=1

yd′

2d′ +
1
2d

)}
, (1)

where (xd′yd′) ∈ {0, 1}2 for d′ ∈ {1, 2, . . . , d} and d ≤ dmax. In addition, let sλ be the set of whole
indices sλ := {0, 1, . . . h− 1} × {0, 1, . . . , w− 1}. Then, let S denote the set that consists of all
the above index sets, that is, S := {sλ, s(00), . . . , s(11), s(00)(00), . . . , s(11)(11), . . . , s(11)(11)···(11)}.

Example 1 ([1]). For dmax = 2,

s(01) = {(i, j) ∈ Z2 | 0 ≤ i < 2, 2 ≤ j < 4} = {(0, 2), (0, 3), (1, 2), (1, 3)}. (2)

Therefore, it represents the indices of the upper right region. In a similar manner, s(01)(11) =

{(i, j) ∈ Z2 | 1 ≤ i < 2, 3 ≤ j < 4} = {(1, 3)}. It should be noted that the cardinality |s| for
each s ∈ S represents the number of pixels in the block.
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Definition 2. We define the model m as a quadtree whose nodes are elements of S . LetM denote
the set of the models. Let Sm ⊂ S , Lm ⊂ S and Im ⊂ S denote the set of the nodes, the leaf nodes
and the inner nodes of m ∈ M, respectively. Let Um ⊂ Sm denote the set of nodes that have less
than four children. Then, Um corresponds to a pattern of variable block size segmentation, as shown
in Figure 1.

Figure 1. An example of node set S and models m. The set of blocks with gray region corresponds to
Um, which covers the whole region of the image and represents a block segmentation pattern.

Definition 3. Each node s ∈ Um of the model m has a parameter θm
s whose parameter space is Θm

s .
We define θm as a tuple of parameters {θm

s }s∈Um , and let Θm denote its space.

Notably, we can reduce the number of parameters from an equivalent model repre-
sented by a proper tree with added dummy child nodes. See the following example.

Example 2. For dmax = 2, consider a model represented by the left-hand side image in Figure 2.
It has three parameters: θsλ

, θs(00) , and θs(10) . An equivalent model can be represented by a proper
quadtree shown in the right-hand side of Figure 2, if assuming θs(01) = θs(11) by chance. However, it
requires four parameters: θs(00) , θs(01) , θs(10) , and θs(11) . Therefore, it causes inefficient learning.

Figure 2. A model with three parameters (left) and a model with four parameters (right).

Under the model m ∈ M and the parameters θm ∈ Θm, we assume that the t-th pixel
value Vt is generated as follows.

Assumption 1. We assume that

p(vt|vt−1, θm, m) = p(vt|vt−1, θm
s ), (3)

where s is the minimal block that satisfies (x(t), y(t)) ∈ s ∈ Um (in other words, s is the
the deepest node that contains (x(t), y(t)) in m). For t = 0, we assume a similar condition
p(v0|θm, m) = p(v0|θm

s ).

Thus, the pixel value Vt given the past sequence Vt−1 depends only on the parameter
of the minimal block s that contains Vt. Note that we do not assume a specific form of
p(vt|vt−1, θm

s ) at this point. For example, we can assume the Bernoulli distribution for
V = {0, 1} and also the Gaussian distribution (with an appropriate normalization and
quantization) for V = {0, 1, . . . , 255}.

3. The Bayes Code for Proposed Model

Since the true m and θm are unknown, we assume prior distributions p(m) and
p(θm|m). Then, we estimate the true generative probability p(vt|vt−1, θm, m) by q(vt|vt−1)
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under the Bayes criterion in statistical decision theory (see, e.g., [10]). Subsequently, we
use q(vt|vt−1) as a coding probability of the entropy code such as [16]. Such a code is
known as Bayes codes [11] in information theory. The expected code length of the Bayes
code converges to the entropy of p(vt|vt−1, θm, m) for sufficiently large data length, and its
convergence speed achieves the theoretical limit [12]. The Bayes code has shown remarkable
performances in text compression (e.g., [13]).

The optimal coding probability of the Bayes code for vt is derived as follows, according
to the general formula in [11].

Proposition 1. The optimal coding probability q∗(vt|vt−1) under the Bayes criterion is given by

q∗(vt|vt−1) = ∑
m∈M

p(m|vt−1)
∫

p(vt|vt−1, θm, m)p(θm|vt−1, m)dθm. (4)

We call q∗(vt|vt−1) the Bayes-optimal coding probability.

Proposition 1 implies that we should use the coding probability that is a weighted
mixture of p(vt|vt−1, θm, m) for every block segmentation pattern m and parameters θm

according to the posteriors p(m|vt−1) and p(θm|vt−1, m). (For t = 0, p(v0|θm, m) is mixed
with weights according to the priors p(m) and p(θm|m), which corresponds to the initial-
ization of the algorithm.) Notably,M is generalized to the set of improper quadtrees from
the set of proper quadtrees although (4) has a similar form to Formula (5) in [1].

4. Polynomial Order Algorithm to Calculate Bayes-Optimal Coding Probability

Unfortunately, the Bayes-optimal coding probability (4) contains a computationally
hard calculation. (Herein, we assume that

∫
p(vt|vt−1, θm, m)p(θm|vt−1, m)dθm is feasible.

Examples of feasible settings will be described in the next section.) The summation cost for
m exponentially increases with respect to dmax. Therefore, we propose a polynomial order
algorithm to calculate (4) without loss of optimality by applying a theory of probability
distribution for general rooted trees [15] to the improper quadtree m. In this section, we
focus on the procedure of the constructed algorithm. Its validity is described in Appendix A.

Definition 4. Let Ch(s) := {s(00), s(01), s(10), s(11)} be the set of child nodes of s. We define a
vector zm

s ∈ {0, 1}4 representing the block division pattern of s in Sm as zm
s := (zm

ss′)s′∈Ch(s) :=
(I{s(00) ∈ Sm}, I{s(01) ∈ Sm}, I{s(10) ∈ Sm}, I{s(11) ∈ Sm}), where I{·} denotes the indica-
tor function. Examples of zm

s are shown in Figure 3. For leaf nodes, zm
s = 0.

Figure 3. Examples of block division patterns and corresponding zm
s .

First, we assume the following prior distributions as p(m) and p(θm|m).

Assumption 2. Let ηs(z) ∈ [0, 1] be a given hyper parameter of a block s ∈ S , which satisfies
∑z∈{0,1}4 ηs(z) = 1. Then, we assume that the prior onM is represented as follows.

p(m) = ∏
s∈Sm

ηs(zm
s ), (5)

where ηs(0) = 1 for s whose cardinality |s| is equal to 1.
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Intuitively, ηs(zm
s ) represents the conditional probability that s has the block division

pattern zm
s under the condition that s ∈ Sm. The above prior actually satisfies the condition

∑m∈M p(m) = 1. Although this is proved for any rooted tree in [15], we briefly describe a
proof restricted for our model in the Appendix A to make this paper self-contained. Note
that the above assumption does not restrict the expressive capability of the general prior
in the meaning that each model m still has possibly to be assigned a non-zero probability
p(m) > 0.

Assumption 3. For each model m ∈ M, we assume that

p(θm|m) = ∏
s∈Um

p(θm
s |m). (6)

Moreover, for any m, m′ ∈ M, s ∈ Um ∩ Um′ , and θs ∈ Θs, we assume that

p(θs|m) = p(θs|m′) =: ps(θs). (7)

Therefore, each element θm
s of the parameters θm depends only on s and they are

independent from both of the other elements and the model m.
From Assumptions 1 and 3, the following lemma holds.

Lemma 1. For any m, m′ ∈ M, let st ∈ Um and s′t ∈ Um′ denote the minimal node that
satisfies (x(t), y(t)) ∈ st ∈ Um and (x(t), y(t)) ∈ s′t ∈ Um′ , respectively. If st = s′t =: s and
zm

st = zm′
s′t

=: zs, that is, they are the same block and their division patterns are also the same, then

p(vt|vt−1, m) = p(vt|vt−1, m′). (8)

Hence, we represent it by q̃(vt|vt−1, s, zs) because it does not depend on m but (s, zs). Let
q̃(vt|vt−1, s) = p(vt|m) = p(vt|m′) for t = 0.

Lemma 1 means that the optimal coding probability for vt depends on the minimal
block s that contains vt and its division pattern zs. Therefore, it could be calculated as
q̃(vt|vt−1, s, zs) if (s, zs) was known.

At last, the Bayes-optimal coding probability q∗(vt|vt−1) can be calculated by a recur-
sive function for nodes on a path of the perfect quadtree on S . The definition of the path is
the same as [1].

Definition 5 ([1]). Let St denote the set of nodes which contain (x(t), y(t)). They construct a
path from the leaf node s(x1y1)(x2y2)···(xdmax ydmax )

= {(x(t), y(t))} to the root node sλ on the perfect
quadtree whose depth is dmax on S , as shown in Figure 4. In addition, let sch ∈ St denote the child
node of s ∈ St on that path.

Figure 4. An example of a path constructed from St.
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Definition 6. We define the following recursive function q(vt|vt−1, s) for s ∈ St.

q(vt|vt−1, s) :=


q̃(vt|vt−1, s, 0), |s| = 1,

∑zs :zssch=0 ηs(zs|vt−1)q̃(vt|vt−1, s, zs)

+
(

∑zs :zssch=1 ηs(zs|vt−1)
)

q(vt|vt−1, sch), otherwise,

(9)

where ηs(zs|vt) is also recursively updated for s ∈ St as follows:

ηs(zs|vt) :=


ηs(zs), t = −1,
ηs(zs |vt−1)q̃(vt |vt−1,s,zs)

q(vt |vt−1,s) , t ≥ 0∧ zssch = 0,
ηs(zs |vt−1)q(vt |vt−1,sch)

q(vt |vt−1,s) , t ≥ 0∧ zssch = 1.

(10)

Consequently, the following theorem holds.

Theorem 1. The Bayes-optimal coding probability q∗(vt|vt−1) for the proposed model is calcu-
lated by

q∗(vt|vt−1) = q(vt|vt−1, sλ). (11)

Although Theorem 1 is proved by applying Corollary 2 of Theorem 7 in [15], we
briefly describe a proof restricted to our model in the Appendix A to make this paper
self-contained. Theorem 1 means that the summation with respect to m ∈ M in (4) is able
to be replaced by the summation with respect to s ∈ St and zs ∈ {0, 1}4, which costs only
O(24dmax). The proposed algorithm recursively calculates a weighted mixture of coding
probabilities q̃(vt|vt−1, s, zs) for the case where block s is not divided at sch (i.e., zssch = 0)
and the coding probability q(vt|vt−1, sch) for the case where block s is divided at sch (i.e.,
zssch = 1).

5. Experiments

In this section, we perform four experiments. Three of them are similar to the ex-
periments in [1]. The fourth one is newly added. In Experiments 1, 2, and 3, we assume
V = {0, 1}, which is the simplest setting, to focus on the effect of the improper quadtrees.
In Experiment 4, we assume V = {0, 1, . . . , 255} to show our method is also applicable to
grayscale images. The purpose of the first experiment is to confirm the Bayes optimality of
q(vt|vt−1, sλ) for synthetic images generated from the proposed model. The purpose of the
second experiment is to show an example image suitable to our model. The purpose of
the third experiment is to compare average coding rates of our proposed algorithm with a
current image coding procedure on real images. The purpose of the fourth experiment is to
show our method is applicable to grayscale images.

In Experiments 1 and 2, p(vt|vt−1, θm, m) is Bernoulli distribution Bern(vt|θm
s ) for the

minimal s that satisfies (x(t), y(t)) ∈ s ∈ Um. Each element of θm is i.i.d. distributed with
the beta distribution Beta(θ|α, β), which is the conjugate prior distribution of Bernoulli
distribution. Therefore, the integral in (4) has a closed form. The hyperparameter ηs(z) of
the model prior is ηs(z) = 1/24 for every s ∈ S and z ∈ {0, 1}4, and the hyperparameters
of the beta distribution are α = β = 1/2. For comparison, we used the previous method
based on proper quadtrees, whose hyperparameters are the same as the experiments in [1],
and the standard methods known as JBIG [17] and JBIG2 [18].

5.1. Experiment 1

The setting of Experiment 1 is as follows. The width and height of images are w = h =
2dmax = 64. We generate 1000 images according to the following procedure.

1. Generate m according to (5).
2. Generate θm

s according to p(θm
s |m) for s ∈ Um.
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3. Generate pixel value vt according to p(vt|vt−1, θm, m) for t ∈ {0, 1, . . . , hw− 1}.
4. Repeat Steps 1 to 3 for 1000 times.

Examples of the generated images are shown in Figure 5. Subsequently, we compress
these 1000 images. The size of the image is saved in the header of the compressed file using
4 bytes. The coding probability calculated by the proposed algorithm is quantized in 216

levels and substituted into the range coder [16]. Table 1 shows the coding rates (bit/pel)
averaged over all the images. Our proposed code has the minimum coding rate as expected
by the Bayes optimality.

Figure 5. Examples of the generated images in Experiment 1.

Table 1. The average coding rates (bit/pel).

Improper Quadtree
(Proposal) Proper Quadtree [1] JBIG [17] JBIG2 [18]

0.619 0.624 1.811 0.962

5.2. Experiment 2

In Experiment 2, we compress camera.tif in [19], which is binarized with the thresh-
old of 128. The setting of the header and the range coder is the same as those of Ex-
periment 1. Figure 6 visualizes the maximum a posteriori (MAP) estimation mMAP =
arg maxm p(m|vhw−1) based on the improper quadtree model and the proper quadtree
model [1], which are by-products of the compression. They are obtained by applying
Theorem 3 in [15] and the algorithm in Appendix B in the preprint of the full version of
[15], which is uploaded on arXiv. The improper quadtree represents the non-stationarity
by a fewer number of regions (i.e., fewer parameters) than that of the proper quadtree [1].
Table 2 shows that the coding rate of our proposed model for camera.tif is lower than the
previous one based on the proper quadtree [1] and JBIG [17] without any special tuning.
However, JBIG2 [18] showed the lowest coding rate. The improvement of our method for
real images will be described in the next experiment.

Figure 6. The original image (left), the MAP estimated model mMAP based on the proper quadtree [1]
(middle), and that based on the improper quadtree (right).



Entropy 2022, 24, 1152 8 of 13

Table 2. The coding rates for the camera.tif in [19] (bit/pel).

Improper Quadtree
(Proposal) Proper Quadtree [1] JBIG [17] JBIG2 [18]

0.318 0.323 0.348 0.293

5.3. Experiment 3

In Experiment 3, we compare the proposed algorithm with the proper-quadtree-based
algorithm [1], JBIG [17], and JBIG2 [18] on real images from [19]. They are binarized in a
similar manner to Experiment 2. The setting of the header and the range coder is the same
as those of Experiments 1 and 2. A difference from Experiments 1 and 2 is in the stochastic
generative model p(vt|vt−1, θm, m) assumed on each block s. We assume another model
p(vt|vt−1, θm, m) represented as the Bernoulli distribution Bern(vt|θm

s;vt−w−1vt−wvt−w+1vt−1
)

that depends on the neighboring four pixels. (If the indices go out of the image, we use the
nearest past pixel in Manhattan distance.) Therefore, p(vt|vt−1, θm, m) has a kind of Markov
property. In other words, there are 16 parameters θm

s;0000, θm
s;0001, . . . , θm

s;1111 for each block s of
model m, and one of them is chosen by the observed values vt−w−1, vt−w, vt−w+1, and vt−1
in the past. Each parameter is i.i.d. distributed with the beta distribution whose parameters
are α = β = 1/2. The results are shown in Table 3. The algorithms labeled as Improper-i.i.d.
and Proper-i.i.d. are the same as those in Experiments 1 and 2. The algorithms labeled as
Improper-Markov and Proper-Markov are the aforementioned ones.

Table 3. The coding rates for the binarized images from [19] (bit/pel).

Images Proper-
i.i.d

Improper-
i.i.d. JBIG [17] Proper-

Markov JBIG2 [18] Improper-
Markov

bird 0.121 0.113 0.149 0.099 0.090 0.067
bridge 0.390 0.382 0.386 0.373 0.353 0.300
camera 0.323 0.318 0.348 0.310 0.293 0.255
circles 0.100 0.090 0.102 0.060 0.045 0.030
crosses 0.140 0.132 0.083 0.110 0.027 0.027
goldhill1 0.371 0.364 0.359 0.353 0.321 0.280
horiz 0.075 0.070 0.078 0.022 0.018 0.004
lena1 0.254 0.243 0.217 0.216 0.169 0.141
montage 0.176 0.165 0.164 0.163 0.114 0.087
slope 0.091 0.083 0.096 0.056 0.038 0.021
squares 0.005 0.004 0.076 0.010 0.016 0.003
text 0.468 0.465 0.301 0.468 0.229 0.280

avg. 0.209 0.202 0.197 0.187 0.143 0.125

Improper-Markov outperforms the other methods from the perspective of average
coding rates. The effect of the improper quadtree is probably amplified because the number
of parameters for each block is increased. However, JBIG2 [18] still outperforms our
algorithms only for text. We consider it is because JBIG2 [18] is designed for text images
such as faxes in contrast to our general-purpose algorithm. Note that our algorithm has
room for improvement by tuning the hyperparameters α and β of the beta distribution for
each of θm

s;0000, θm
s;0001, . . . , θm

s;1111.

5.4. Experiment 4

Through Experiment 4, we show our method is applicable to grayscale images. Herein,
we assume two types of stochastic generative models p(vt|vt−1, θm, m) for the block of the
proper quadtree and the improper quadtree. The first one is the i.i.d. Gaussian distribution
N (vt|µm

s , (λm
s )
−1). In this case, θm

s can be regarded as {µm
s , λm

s } ∈ R×R>0. The second
one is the two-dimensional autoregressive (AR) model [7] of the neighboring four pixels,
i.e., N (vt|ṽ>t−1wm

s , (τm
s )−1), where ṽt−1 = (vt−w−1, vt−w, vt−w+1, vt−1)

>. (If the indices go
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out of the image, we use the nearest past pixel in Manhattan distance.) In this case, θm
s can

be regarded as {wm
s , τm

s } ∈ R4 ×R>0. For both models, vt is normalized and quantized
into V = {0, 1, . . . , 255} in a similar manner to [7]. The prior distributions for each model
are assumed to be the Gauss–gamma distributions N (µm

s |µ0, (κ0λs)−1)Gam(λm
s |α0, β0)

and N (wm
s |µ0, (τm

s Λ0)
−1)Gam(τm

s |α0, β0), where µ0 = 0, µ0 = 0, κ0 = 0.01, Λ0 = 0.01I,
α0 = 1.0, β0 = 0.0001. Here, I is the identity matrix. The results are shown in Table 4. (The
values for previous studies [2,4,20,21] are cited from [21].)

Table 4. The coding rates for the grayscale images from [19] (bit/pel).

Images JPEG2000 [20] JPEG-
LS [2] MRP [4] Vanilc [21] Proper-

Gaussian
Improper-
Gaussian Proper-AR Improper-

AR

bird 3.630 3.471 3.238 2.749 4.086 4.055 3.461 3.422
bridge 6.012 5.790 5.584 5.596 6.353 6.294 5.696 5.678
camera 4.570 4.314 3.998 3.995 4.651 4.589 4.163 4.121
circles 0.928 0.153 0.132 0.043 1.190 0.915 1.030 0.826
crosses 1.066 0.386 0.051 0.016 1.603 1.240 0.898 0.625
goldhill1 5.516 5.281 5.098 5.090 5.796 5.738 5.220 5.196
horiz 0.231 0.094 0.016 0.015 1.091 0.922 0.279 0.216
lena1 4.755 4.581 4.189 4.123 5.312 5.259 4.433 4.394
montage 2.983 2.723 2.353 2.363 3.818 3.734 2.940 2.850
slope 1.342 1.571 0.859 0.960 3.721 3.683 1.728 1.602
squares 0.163 0.077 0.013 0.007 0.335 0.205 0.323 0.202
text 4.215 1.632 3.175 0.621 4.310 3.691 4.176 3.732

Whole avg. 2.951 2.506 2.392 2.132 3.522 3.360 2.862 2.739

Natural
avg. 4.897 4.687 4.421 4.311 5.240 5.187 4.595 4.562

Artificial
avg. 1.561 0.948 0.943 0.575 2.295 2.056 1.625 1.436

The coding rates of the proper-quadtree-based algorithm are improved by our pro-
posed method for all the images in this data set and for both settings of the stochastic genera-
tive model assumed within blocks. This indicates the superiority of the improper-quadtree-
based model to the proper-quadtree-based model. The method labeled by Improper-AR
showed an average coding rate lower than JPEG2000, averaging for the whole images. It
also showed an average coding rate lower than JPEG-LS, averaging for the natural images.
Although it does not outperform recent methods such as MRP and Vanilc, we consider this
is because of the suitability of the stochastic generative model within blocks, which is out
of the scope of this paper.

6. Conclusions

We proposed a novel stochastic model based on the improper quadtree, so that our
model effectively represents the variable block size segmentation of images. Then, we
constructed a Bayes code for the proposed stochastic model. Moreover, we introduced
an algorithm to implement it in polynomial order of data size without loss of optimality.
Some experiments both on synthetic and real images demonstrated the flexibility of our
stochastic model and the efficiency of our algorithm. As a result, the derived algorithm
showed a better average coding rate than that of JBIG2 [18].
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Appendix A. Validity of Proposed Algorithm

Validity of Prior Distribution for Models
Although a general proof for any rooted trees is described in [15] (please see also a

preprint for the full version of [15] uploaded on arXiv.), in the following, we briefly describe
a proof restricted for our model to make this paper self-contained.

∑
m∈M

p(m) = ∑
m∈M

∏
s∈Sm

ηs(zm
s )︸ ︷︷ ︸

(a)

= ∑
zsλ
∈{0,1}4

∑
m∈M:zm

sλ
=zsλ

∏
s∈Sm

ηs(zm
s ) (A1)

= ∑
zsλ
∈{0,1}4

ηsλ (zsλ ) ∑
m∈M:zm

sλ
=zsλ

∏
s∈Sm\{sλ}

ηs(zm
s ) (A2)

= ∑
zsλ
∈{0,1}4

ηsλ (zsλ ) ∏
s′∈Ch(sλ)

(
∑

m∈Ms′
∏

s∈Sm

ηs(zm
s )︸ ︷︷ ︸

(b)

)zsλ s′

(A3)

In (A3),Ms′ denotes the set of subtrees whose root node is s′. The factorization from (A2)
to (A3) is because m in (A2) is determined by the subtrees m′ whose root nodes are in
Ch(sλ). The same idea is also detailed in Figure 4 in the preprint of the full version of [15],
which is uploaded on arXiv. The underbraced parts (a) and (b) have the same structure
except for the depth of the root node. We represent them by φ(s), which is a function of the
root node s of the subtree.

Subsequently, we have

φ(s) =

{
∑z∈{0,1}4 ηs(z) = 1, |s| = 1,

∑z∈{0,1}4 ηs(z)∏s′∈Ch(s)(φ(s′))
zss′ , otherwise.

(A4)

Therefore, the following holds by recursively substituting φ(s) from the leaf nodes.

∑
m∈M

p(m) = φ(sλ) = 1 (A5)

Proof of Lemma 1. Let R(s, zs) denote
⋃

s′∈Ch(s):zss′=0 s′, which is a region where vt is gen-
erated according to ηs(zs) when (x(t), y(t)) ∈ s. Then,

p(vt|vt−1, m) ∝
∫

p(vt|vt−1, θm
s )
∫

p(θm|m)p(vt−1|θm, m)dθm
\sdθm

s (A6)

∝
∫

p(vt|vt−1, θm
s )ps(θ

m
s ) ∏

i∈{i′≤t|(x(i′),y(i′))∈R(s,zs)}
p(vi|vi−1, θm

s )dθm
s , (A7)

http://links.uwaterloo.ca/Repository.html
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where ∝ means that the left-hand side is proportional to the right-hand side, regarding
the variables except for vt as constant, and θm

\s denotes the parameters θm except for θm
s .

Formula (A7) does not depend on m but (s, zs).

Proof of Theorem 1. Although Theorem 1 is proved by applying Corollary 2 of Theorem 7
in [15] (please see also the preprint for the full version of [15] uploaded on arXiv), in the
following, we briefly describe a proof restricted to our model to make this paper self-
contained.

Theorem 1 will be proved by induction. First, we assume

p(m|vt−1) = ∏
s∈Sm

ηs(zm
s |vt−1), (A8)

which is true for t = 0 because of Assumption 2 and will be proved later for t > 0.
In addition, we define the following function to simplify the notation.

f (vt|vt−1, s, zs) :=


q̃(vt|vt−1, s, 0), s = {(x(t), y(t))},
q̃(vt|vt−1, s, zs), ∃s′ ∈ Ch(s) s.t. (s′ 3 (x(t), y(t))) ∧ (zss′ = 0),

1, otherwise.

(A9)

Using this notation, we can represent p(vt|vt−1, m) as follows.

p(vt|vt−1, m) = ∏
s∈Sm

f (vt|vt−1, s, zm
s ). (A10)

(Equations (A9) and (A10) correspond to Conditions 4 and 3 in [15] , respectively. If we
accept this fact, Theorem 1 is immediately proved by applying Corollary 2 in [15].) By
using (A10), we have

p(vt|vt−1) = ∑
m∈M

p(m|vt−1)p(vt|vt−1, m) = ∑
m∈M

∏
s∈Sm

ηs(zm
s |vt−1) f (vt|vt−1, s, zm

s ). (A11)

Since the right-hand side of (A11) has a similar form to the underbraced part (a)
in (A2), we can define a recursive function q(vt|vt−1, s) that satisfies

p(vt|vt−1) = q(vt|vt−1, sλ), (A12)

where

q(vt|vt−1, s) :=


f (vt|vt−1, s, 0), |s| = 1

∑zs∈{0,1}4 ηs(zs|vt−1) f (vt|vt−1, s, zs)

×∏s′∈Ch(s) q(vt|vt−1, s′)zss′ , otherwise

(A13)

By substituting (A9), q(vt|vt−1, s) = 1 holds for s 63 (x(t), y(t)) (or equivalently for s 6∈ St).
Therefore, we need not calculate (A13) for s 6∈ St and (9) will be derived by substituting (A9)
again for s ∈ St.

Lastly, we will prove (A8). Using (A9), the updating Formula (10) can be generally
represented as follows.

ηs(zs|vt) =


ηs(zs), t = −1,
ηs(zs|vt−1), t ≥ 0∧ |s| = 1,
ηs(zs |vt−1) f (vt |vt−1,s,zs)∏s′∈Ch(s) q(vt |vt−1,s′)zss′

q(vt |vt−1,s) , otherwise.

(A14)
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By substituting the above general updating formula,

∏
s∈Sm

ηs(zs|vt) = ∏
s∈Im

ηs(zs|vt−1) f (vt|vt−1, s, zs)∏s′∈Ch(s) q(vt|vt−1, s′)zss′

q(vt|vt−1, s)

× ∏
s∈Lm

ηs(zs|vt−1) f (vt|vt−1, s, zs)∏s′∈Ch(s) q(vt|vt−1, s′)0

q(vt|vt−1, s)
(A15)

=
1

q(vt|vt−1, sλ)
∏

s∈Sm
ηs(zs|vt−1) ∏

s∈Sm
f (vt|vt−1, s, zs) (A16)

=
p(m|vt−1)p(vt|vt−1, m)

p(vt|vt−1)
= p(m|vt) (A17)

In the above operation, (A15) was a telescoping product, i.e., q(vt|vt−1, s) appeared at once
in each of the denominator and the numerator. Therefore, we canceled them except for
q(vt|vt−1, sλ). (A16) is because of (A8), (A10) and (A11), where (A8) and (A11) are the
induction hypotheses.
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