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Abstract: This study addresses the problem of learning a summary causal graph on time series
with potentially different sampling rates. To do so, we first propose a new causal temporal mutual
information measure for time series. We then show how this measure relates to an entropy reduction
principle that can be seen as a special case of the probability raising principle. We finally combine
these two ingredients in PC-like and FCI-like algorithms to construct the summary causal graph.
There algorithm are evaluated on several datasets, which shows both their efficacy and efficiency.
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1. Introduction

Time series arise as soon as observations, from sensors or experiments, for example,
are collected over time. They are present in various forms in many different domains, such
as healthcare (through, e.g., monitoring systems), Industry 4.0 (through, e.g., predictive
maintenance and industrial monitoring systems), surveillance systems (from images, acous-
tic signals, seismic waves, etc.), or energy management (through, e.g., energy consumption
data), to name but a few. We are interested in this study in analyzing quantitative discrete-
time series to detect the causal relations that exist between them under the assumption of
consistency throughout time [1] which states that causal relationships remain constant in
direction throughout time. Under this assumption, one can replace the infinite full-time
causal graph (Figure 1a) by a window causal graph (Figure 1b) defined as follows:

Definition 1 (Window causal graph [1]). Let X be a multivariate discrete-time series and
G = (V, E) the associated window causal graph for a window of size τ. The set of vertices in that
graph consists of the set of components X 1, . . . ,X d at each time t, . . . , t + τ. The edges E of the
graph are defined as follows: variables X p

t−i and X q
t are connected by a lag-specific directed link

X p
t−i → X

q
t in G pointing forward in time if and only if X p causes X q at time t with a time lag of

0 ≤ i ≤ τ for p 6= q and with a time lag of 0 < i ≤ τ for p = q.

The window causal graph only covers a fixed number of time instants, which are
sufficient to understand the dynamics of the system given the largest time gap between
causes and effects. This said, it is difficult for an expert to provide or validate a window
causal graph because it is difficult to determine which exact time instant is the cause of
another. In contrast, there exists another type of causal graph where a node corresponds
to a time series, as illustrated in Figure 1c, which usually can be analyzed or validated by
an expert easily [2–4]. Such graphs are referred to as summary causal graphs [1] and are
defined as follows:
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Definition 2 (Summary causal graph [1]). Let X be a multivariate discrete-time series and
G = (V, E) the associated summary causal graph. The set of vertices in that graph consists of the
set of time series X 1, . . . ,X d. The edges E of the graph are defined as follows: variables X p and X q

are connected if and only if there exist some time t and some time lag i such that X p
t−i causes X q

t at
time t with a time lag of 0 ≤ i for p 6= q and with a time lag of 0 < i for p = q.

Note that a summary causal graph can be deduced from a window causal graph, but
the reverse is not true. We focus in this study on the summary causal graph, as it provides a
simple and efficient view on the causal relations that exist between time series. In particular,
we are interested in inferring a summary causal graph without passing by a window causal
graph to avoid unnecessary computations.

X1
t−2 X1

t−1 X1
t X1

t+1

X2
t−2 X2

t−1 X2
t X2

t+1

(a)

X1
t−2 X1

t−1 X1
t

X2
t−2 X2

t−1 X2
t

(b)

X1X2

(c)

Figure 1. Example of a full-time causal graph (a), a window causal graph (b), and a summary causal
graph (c).

An important aspect of real-world time series is that different time series, as they mea-
sure different elements, usually have different sampling rates. Despite this, the algorithms
that have been developed so far to discover causal structures [5–8] rely on the idealized
assumptions that all time series have the same sampling rates with identical timestamps
(assuming identical timestamps in the case of identical sampling rates seems reasonable as
one can shift time series so that they coincide in time).

We introduce in this paper a constraint-based strategy to infer a summary causal graph
from discrete-time series with continuous values with equal or different sampling rates
under the two classical assumptions of causal discovery (causal Markov condition, faithful-
ness), in addition to acyclicity in summary causal graphs. In summary, our contribution
is four-fold:

• First of all, we propose a new causal temporal mutual information measure defined
on a window-based representation of time series;

• We then show how this measure relates to an entropy reduction principle, which can
be seen as a special case of the probability raising principle;

• We also show how this measure can be used for time series with different sam-
pling rates;

• We finally combine these three ingredients in PC-like and FCI-like algorithms [9] to
construct the summary causal graph from time series with equal or different sam-
pling rates.

The remainder of the paper is organized as follows: Section 2 describes the related
work. Section 3 introduces the (conditional) mutual information measures we propose for
time series and the entropy reduction principle that our method is based on. Section 4
presents two causal discovery algorithms we developed on top of these measures. The
causal discovery algorithms we propose are illustrated and evaluated on datasets, including
time series with equal and different sampling rates and a real dataset in Section 5. Finally,
Section 6 concludes the paper.

2. Related Work

Granger Causality is one of the oldest methods proposed to detect causal relations
between time series. However, in its standard form [5], it is known to handle a restricted
version of causality that focuses on linear relations and causal priorities, as it assumes
that the past of a cause is necessary and sufficient for optimally forecasting its effect. This
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approach has nevertheless been improved since then in MVGC [10] and has recently been
extended to handle nonlinearities through an attention mechanism within convolutional
networks [8]. This last extension is referred to as TCDF. Score-based approaches [11] search
over the space of possible graphs, trying to maximize a score that reflects how well the graph
fits the data. Recently, a new score-based method called Dynotears [12] was presented to
infer a window causal graph from time series. In a different line, approaches based on
the noise assume that the causal system can be defined by a set of equations that explains
each variable by its direct causes and an additional noise. Causal relations are in this
case discovered using footprints produced by the causal asymmetry in the data. For time
series, the most popular nonlinear algorithm in this family is TiMINo [6], which discovers
a causal relationship by looking at independence between the noise and the potential
causes. The most popular approaches for inferring causal graphs are certainly constraint-
based approaches, based on the PC and FCI algorithms [9], which turn knowledge about
(conditional) independencies into causal knowledge assuming the causal Markov condition
and faithfulness. Several algorithms, adapted from non-temporal causal graph discovery
algorithms, have been proposed in this family for time series, namely oCSE by [13], which
is limited to one time lag between causal relations, PCMCI [7], and tsFCI [14]. Our work is
thus more closely related to that of [7,14], which use constraint-based strategies to infer
a window causal graph. However, we focus here on the summary causal graph, and
we introduce a new causal temporal mutual information measure and entropy reduction
principle on which we ground our causal discovery algorithms. Constraint-based methods
have been also used jointly with other approaches (e.g., with a score-based method [15]
and with a noise-based method [16]), but we consider such hybrid methods as beyond the
scope of this paper.

At the core of constraint-based approaches lie (in)dependence measures, to detect
relevant dependencies, which are based here on an information theoretic approach. Since
their introduction [17], information theoretic measures have become very popular due to
their non-parametric nature, their robustness against strictly monotonic transformations,
which makes them capable of handling nonlinear distortions in the system, and their
good behavior in previous studies on causal discovery [18]. However, their application
to temporal data raises several problems related to the fact that time series may have
different sampling rates, be shifted in time, and have strong internal dependencies. Many
studies have attempted to re-formalize mutual information for time series. Reference [19]
considered each value of each time series as different random variables and proceeded by
whitening the data, such that time-dependent data will be transformed into independent
residuals through a parametric model. However, whitening the data can have severe
consequences on causal relations. Reference [20] proposed a reformulation of mutual
information, called the transfer entropy, which represents the information flow from one
state to another and, thus, is asymmetric. Later, Ref. [13] generalized transfer entropy to
handle conditioning. However, their approach, called causation entropy, can only handle
causal relations with lags equal to 1. Closely related, the directed information [21,22]
allows the computation of the mutual information between two instantaneous time series
conditioned on the past of a third time series with a lag of 1. One of our goals in this
paper is to extend these approaches to handle any lag equal to or greater than 0. Another
related approach is the time-delayed mutual information proposed in [23], which aims
at addressing the problem of non-uniform sampling rates. The computation of the time-
delayed mutual information relates single points from a single time series (shifted in time),
but does not consider potentially complex relations between time stamps in different time
series, as we do through the use of window-based representations and compatible time
lags. The measure we propose is more suited to discovering summary causal graphs as
it can consider potentially complex relations between timestamps in different time series
through the use of window-based representations and compatible time lags and is more
general as it can consider different sampling rates.
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3. Information Measures for Causal Discovery in Time Series

We present in this section a new mutual information measure that operates on a
window-based representation of time series to assess whether time series are (conditionally)
dependent or not. We then show how this measure is related to an entropy reduction
principle that is a special case of the probability raising principle [24].

We first assume that all time series are aligned in time, with the same sampling
rate, prior to showing how our development can be applied to time series with different
sampling rates. Without loss of generality, time instants are assumed to be integers. Lastly,
as performed in previous studies [20], we assume that all time series are first-order Markov
self-causal (any time instant is caused by its previous instant within the same time series).

3.1. Causal Temporal Mutual Information

Let us consider d univariate time series X1, · · · , Xd and their observations (Xp
t )1≤t≤Np,1≤p≤d.

Throughout this section, we will make use of the following Example 1, illustrated in
Figure 1, to discuss the notions we introduce.

Example 1. Let us consider the following two time series defined by, for all t,

X1
t = X1

t−1 + ξ1
t ,

X2
t = X2

t−1 + X1
t−2 + X1

t−1 + ξ2
t ,

with (ξ1
t , ξ2

t ) ∼ N (0, 1).

One can see in Example 1 that, in order to capture the dependencies between the
two time series, one needs to take into account a lag between them, as the true causal
relations are not instantaneous. Several studies have recognized the importance of taking
into account lags to measure (conditional) dependencies between time series; for example,
in [7], a pointwise mutual information between time series with lags was used to assess
whether they are dependent or not.

In addition to lags, Example 1 also reveals that a window-based representation may
be necessary to fully capture the dependencies between the two time series. Indeed, as
X2

t−1 and X2
t are the effects of the same cause (X1

t−2), it may be convenient to consider
them together when assessing whether the time series are dependent or not. For example,
defining (overlapping) windows of size two for X2 and one for X1 with a lag of 1 from X1

to X2, as in Figure 2, allows one to fully represent the causal dependencies between the
two time series.

X1
t−2 X1

t−1 X1
t X1

t+1

X2
t−2 X2

t−1 X2
t X2

t+1

Figure 2. Why do we need windows and lags? An illustration with two time series where X1 causes
X2 in two steps (circles correspond to observed points and rectangles to windows). The arrows in
black are discussed in the text.

Definition 3. Let γmax denote the maximum lag between two time series Xp and Xq, and let the
maximum window size λmax = γmax + 1. The window-based representation, of size 0 < λpq ≤
λmax < Np, of the time series Xp with respect to Xq, which will be denoted X(p;λpq), simply amounts
to considering (Np − λpq + 1) windows: (Xp

t , · · · , Xp
t+λpq−1), 1 ≤ t ≤ Np − λpq + 1. The window-

based representation, of size 0 < λqp ≤ λmax < Nq, of the time series Xq with respect to Xp is defined
in the same way. A temporal lag γpq ∈ Z compatible with λpq and λqp relates windows in X(p;λpq)

and X(q;λqp) with starting time points separated by γpq. We denote by C(p,q) the set of window sizes
and compatible temporal lags.
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Based on the above elements, we define the causal temporal mutual information between
two time series Xp and Xq as the maximum of the standard mutual information over all
possible compatible temporal lags and windows C(p,q), conditioned by the past of the two
time series. Indeed, as we are interested in obtaining a summary causal graph, we do not
have to consider all the potential dependencies between two time series (which would
be necessary for inferring a window causal graph). Using the maximum over all possible
associations is a way to summarize all temporal dependencies, which ensures that one
does not miss a dependency between the two time series. Furthermore, conditioning on
the past allows one to eliminate spurious dependencies in the form of auto-correlation,
as in transfer entropy [20]. We follow this idea here and, as in transfer entropy, consider
windows of size 1 and a temporal lag of 1 for conditioning on the past, which is in line with
the first-order Markov self-causal assumption mentioned above.

Definition 4. Consider two time series Xp and Xq. We define the causal temporal mutual
information between Xp and Xq as:

CTMI(Xp; Xq) = max
(λpq ,λqp ,γpq)∈C(p,q)

I(X(p;λpq)
t ; X(q;λqp)

t+γpq
|X(p;1)

t−1 , X(q;1)
t+γpq−1) (1)

=∆ I(X(p;λ̄pq)
t ; X(q;λ̄qp)

t+γ̄pq
|X(p;1)

t−1 ; X(q;1)
t+γ̄pq−1),

where I represents the mutual information. In case the maximum can be obtained with different
values in C(p,q), we first set γ̄pq to its largest possible value. We then set λ̄pq to its smallest possible
value and, finally, λ̄qp to its smallest possible value. γ̄pq, λ̄pq, and λ̄qp, respectively, correspond to
the optimal lag and optimal windows.

In the context we have retained, in which dependencies are constant over time, CTMI
satisfies the standard properties of mutual information, namely it is nonnegative, symmet-
ric, and equals 0 iff time series are independent. Thus, two time series Xp and Xq such that
CTMI(Xp; Xq) > 0 are dependent. Setting γ̄pq to its largest possible value allows one to
get rid of instants that are not crucial in determining the mutual information between two
time series. The choice for the window sizes, even though arbitrary on the choice of treating
one window size before the other, is based on the same ground, as the mutual information
defined above cannot decrease when one increases the size of the windows. Indeed:

I(X
(p;λpq)
t ; X

(q;λqp)
t+γpq

| X(p;1)
t−1 , X(q;1)

t+γpq−1)

= I((X
(p;λpq−1)
t , X(p;1)

t+λpq−1); X
(q;λqp)
t+γpq

| X(p;1)
t−1 , X(q;1)

t+γpq−1)

= I(X
(p;λpq−1)
t ; X

(q;λqp)
t+γpq

| X(p;1)
t−1 , X(q;1)

t+γpq−1) + I(X(p;1)
t+λpq−1; X

(q;λqp)
t+γpq

| X(p;1)
t−1 , X(q;1)

t+γpq−1, X
(p;λpq−1)
t ) (2)

≥ I(X
(p;λpq−1)
t ; X

(q;λqp)
t+γpq

| X(p;1)
t−1 , X(q;1)

t+γpq−1).

The last inequality is due to the fact that mutual information is positive.

Example 2. Consider the structure described in Example 1, and assume that λmax = 3. First, we
have, for the standard mutual information,

I(X(1;1)
t ; X(2;1)

t | X(1;1)
t−1 , X(2;1)

t−1 ) = 0.

We also have that any γ12 < 0 has zero mutual information because conditioning on the past of
X(1;1)

t ; X(2;1)
t (namely X(1;1)

t−1 ; X(2;1)
t−1 ) is closing all paths from X(2;1)

t−i to X(1;1)
t for all i > 0. For

γ12 > 0, starting by γ12 = 1,

I(X(1;1)
t ; X(2;1)

t+1 | X(1;1)
t−1 , X(2;1)

t ) > 0.
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This is similar for γ12 > 2. Now, any increase of λ21 alone or of λ12 and λ21 will generate an
increase in the mutual information as long as the difference between the last time point of the window
of X1 (the cause) and the last time point of the window of X2 is less than or equal to γ12 as

I(X(1;λ12−1)
t ; X(2;λ12−1−γ12)

t+γ12
| X(1;1)

t−1 , X(2;1)
t+γ12−1) = I(X(1;λ12)

t ; X(2;λ12−1−γ12)
t+γ12

| X(1;1)
t−1 , X(2;1)

t+γ12−1)

because
I(X(1;1)

t+λ12−1; X(2;λ12−1−γ12)
t+γ12

| X(1;1)
t−1 , X(2;1)

t+γ12−1, X(1;λ12−1)
t ) = 0,

where γ12 ≥ 1 (1 is the minimal lag that generates a correlation that cannot be removed by
conditioning on the past of X1 and X2). For λmax = 3, the optimal window size λ̄12 is equal to 2 as
X1 has no other cause than itself; λ̄21 is equal to 2 as X1 causes only (except itself) X2

t+1 and X2
t .

Furthermore, γ̄12 = 1 and

CTMI(X1; X2) = I((X1
t , X1

t+1); (X2
t+1, X2

t+2) | X1
t−1, X2

t )

= I(X1
t ; (X2

t+1, X2
t+2) | X1

t−1, X2
t ) + I(X1

t+1; (X2
t+1, X2

t+2) | X1
t−1, X2

t , X1
t )

= I(X1
t ; X2

t+1 | X1
t−1, X2

t ) + I(X1
t ; X2

t+2 | X1
t−1, X2

t , X2
t+1)

+ I(X1
t+1; X2

t+1 | X1
t−1, X2

t , X1
t ) + I(X1

t+1; X2
t+2 | X1

t−1, X2
t , X1

t , X2
t+1)

= 2I(X1
t ; X2

t+1 | X1
t−1, X2

t ) + I(X1
t ; X2

t+2 | X1
t−1, X2

t , X2
t+1) = 3 log(3)/4.

3.2. Entropy Reduction Principle

Interestingly, CTMI can be related to a version of the probability raising principle [24],
which states that a cause, here a time series, raises the probability of any of its effects, here
another time series, even when the past of the two time series is taken into account, meaning
that the relation between the two time series is not negligible compared to the internal
dependencies of the time series. In this context, the following definition generalizes to
window-based representations of time series the standard definition of prima facie causes
for discrete variables.

Definition 5 (Prima facie cause for window-based time series). Let Xp and Xq be two time
series with window sizes λpq and λqp, and let Pt,t′ = (X(p;1)

t−1 , X(q;1)
t′−1 ) represent the past of Xp and

Xq for any two instants (t, t′). We say that Xp is a prima facie cause of Xq with delay γpq > 0

iff there exist Borel sets Bp, Bq, and BP such that one has: P(X(q;λqp)
t+γpq

∈ Bq|X
(p;λpq)
t ∈ Bp, Pt,t+γpq ∈

BP) > P(X(q;λqp)
t+γpq

∈ Bq|Pt,t+γpq ∈ BP).

We now introduce a slightly different principle based on the causal temporal mutual
information, which we refer to as the entropy reduction principle.

Definition 6 (Entropic prima facie cause). Using the same notations as in Definition 5, we say that

Xp is an entropic prima facie cause of Xq with delay γpq > 0 iff I(X
(p;λpq)
t ; X

(q;λqp)
t+γpq

|Pt,t+γpq) > 0.

Note that considering that the above mutual information is positive is equivalent to
considering that the entropy of Xq when conditioned on the past reduces when one further
conditions on Xp. One has the following relation between the entropy reduction and the
probability raising principles.

Property 1. With the same notations, if Xp is an entropic prima facie cause of Xq with de-
lay γpq > 0, then Xp is a prima facie cause of Xq with delay γpq > 0. Furthermore, if
CTMI(Xp; Xq) > 0 with γ̄pq > 0, then Xp is an entropic prima facie cause of Xq with de-
lay γ̄pq.
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Proof. Let us assume that Xp is not a prima facie cause of Xq for the delay γpq. Then,

for all Borel sets Bp, Bq, and BP, one has P(X
(q;λqp)
t+γpq

∈ Bq|X
(p;λpq)
t ∈ Bp, Pt,t+γpq ∈ BP) ≤

P(X
(q;λqp)
t+γpq

∈ Bq|Pt,t+γpq ∈ BP). This translates, in terms of density functions denoted f , as:

∀(xp
t , xq

t+γpq
, pt,t+γpq), f (xq

t+γpq
|xp

t , pt,t+γpq) ≤ f (xq
t+γpq

|pt,t+γpq),

which implies that H(X
(q;λqp)
t+γpq

∈ Bq|X
(p;λpq)
t ∈ Bp, Pt,t+γpq ∈ BP) is greater than H(X

(q;λqp)
t+γpq

∈
Bq|Pt,t+γpq ∈ BP), so that Xp is not an entropic prima facie cause of Xp with delay γpq. By
contraposition, we conclude the proof of the first statement. The second statement directly
derives from the definition of CTMI.

It is also interesting to note that, given two time series Xp and Xq such that Xp causes
Xq with γpq = 0, CTMI does not necessarily increase symmetrically with respect to the
increase of λpq and λqp. For an illustration on a simple model, see Figure 3. In Figure 3a,
the mutual information conditioned on the past between Xp and Xq with γpq = 0 is
positive since Xp causes Xq instantaneously. In Figure 3b the same mutual information
does not increase when increasing only the window size of the cause. However, the mutual
information increases when increasing only the window size of the effect, as in Figure 3c,
or when increasing simultaneously the window sizes of the effect and the cause, as in
Figure 3d.

Xp
t−1 Xp

t Xp
t+1

Xq
t−1 Xq

t Xq
t+1

(a)

Xp
t−1 Xp

t Xp
t+1

Xq
t−1 Xq

t Xq
t+1

(b)

Xp
t−1 Xp

t Xp
t+1

Xq
t−1 Xq

t Xq
t+1

(c)

Xp
t−1 Xp

t Xp
t+1

Xq
t−1 Xq

t Xq
t+1

(d)
Figure 3. Illustration of the asymmetric increase of CTMI with the increase of the window sizes. The
mutual information conditioned on the past in (a) is I(Xp

t , Xq
t | Xp

t−1, Xq
t−1) > 0. It increases when

increasing only the window size of the effect, as in (c), i.e, I(Xp
t , X(q;2)

t | Xp
t−1, Xq

t−1) > I(Xp
t , Xq

t |
Xp

t−1, Xq
t−1), or when increasing simultaneously the window sizes of the effect and the cause, as in

(d), i.e, I(X(p;2)
t , X(q;2)

t | Xp
t−1, Xq

t−1) > I(Xp
t , X(q;2)

t | Xp
t−1, Xq

t−1). However, it does not increase when

increasing only the window size of the cause, as in (b), i.e, I(X(p;2)
t , Xq

t | Xp
t−1, Xq

t−1) = I(Xp
t , Xq

t |
Xp

t−1, Xq
t−1). Dashed lines are for correlations that are not causations, and bold arrows correspond to

causal relations between the window representations of time series.

3.3. Conditional Causal Temporal Mutual Information

We now extend the causal temporal mutual information by conditioning on a set
of variables. In a causal discovery setting, conditioning is used to assess whether two
dependent time series can be made independent by conditioning on connected time series,
i.e., time series that are dependent with at least one of the two times series under consid-
eration. Figure 4 illustrates the case where the dependence between X1 and X2 is due to
spurious correlations originating from common causes. Conditioning on these common
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causes should lead to the conditional independence of the two time series. Of course, the
conditional variables cannot succeed simultaneously in time the two time series under
consideration. This leads us to the following definition of the conditional causal temporal
mutual information.

X1
t−2 X1

t−1 X1
t

X3
t−2 X3

t−1 X3
t

X2
t−2 X2

t−1 X2
t

(a)
X1

t−2 X1
t−1 X1

t

X4
t−2 X4

t−1 X4
t

X3
t−2 X3

t−1 X3
t

X2
t−2 X2

t−1 X2
t

(b)
Figure 4. Example of conditional independence between dependent time series. In (a) the condi-
tioning set contains one time series X3 in addition to the past of X1 and X2. In (b) the conditioning
set contains one time series X3 and X4 in addition to the past of X1 and X2. Dashed lines are for
correlations that are not causations, and bold arrows correspond to conditioning variables.

Definition 7. The conditional causal temporal mutual information between two time series
Xp and Xq such that γ̄pq ≥ 0, conditioned on a set XR = {Xr1 , · · · , XrK}, is given by:

CTMI(Xp; Xq | XR) = I(X(p;λ̄pq)
t ; X(q;λ̄qp)

t+γ̄pq
|(X(rk ;λ̄k)

t−Γ̄k
)1≤k≤K , X(p;1)

t−1 , X(q;1)
t+γ̄pq−1). (3)

In case the minimum can be obtained with different values, we first set Γ̄k to its largest possible
value. We then set λ̄k to its smallest possible value. (Γ̄1, . . . , Γ̄K) and (λ̄1, · · · , λ̄K) correspond to
the optimal conditional lags and window sizes, which minimize, for Γ1, . . . , ΓK ≥ −γ̄pq:

I
(

X(p;λ̄pq)
t ; X(q;λ̄qp)

t+γ̄pq
|(X(rk ;λk)

t−Γk
)1≤k≤K , X(p;1)

t−1 , X(q;1)
t+γ̄pq−1

)
.

By considering the minimum over compatible lags and window sizes, one guarantees
that, if there exist conditioning variables that make the two time series independent, they
will be found. Note that the case in which γ̄qp < 0 corresponds to CTMI(Xp; Xq | XR),
where γ̄pq > 0.

Figure 4 illustrates the above on two different examples. On the left, X1
t−1 is correlated

to X2
t as X3

t−2 is a common cause with a lag of 1 for X1 and a lag of 2 for X2. Conditioning
on X3

t−2 removes the dependency between X1 and X2. Note that all time series have here a
window of size 1. On the right, X3 and X4 are common causes of X1 and X2: X3 causes X1

and X2 with a temporal lag of 1, which renders X1 and X2 correlated at the same time point,
while X4 causes X1 and X2 with a temporal lag of 1 and 2, respectively, which renders
X1 and X2 correlated at lagged time points. The overall correlation between X1 and X2 is
captured by considering a window size of 2 in X2. All other time series have a window
size of 1. By conditioning on both X3 and X4, Xp and Xq become independent, assuming
we also condition on the past of X1 and X2 to remove the autocorrelation.

3.4. Estimation and Testing

In practice, the success of the CTMI approach (and in fact, any entropy-based ap-
proaches) depends crucially on the reliable estimation of the relevant entropies in question
from data. This leads to two practical challenges. The first one is based on the fact that
entropies must be estimated from finite-time series data. The second is that to detect
independence, we need a statistical test to check if the temporal causation entropy is equal
to zero.
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Here, we rely on the k-nearest neighbor method [25,26] for the estimation of CTMI.
The distance between two windows considered here is the supremum distance, i.e., the
maximum of the absolute difference between any two values in the two windows.

d((X
(p;λ̄pq)
t , X

(q;λ̄pq)
t+γ̄pq

)i, (X
(p;λ̄pq)
t , X

(q;λ̄pq)
t+γ̄pq

)j) = max
0≤`<λp , 0≤`′<λq

(|(X
(p;λ̄pq)
t )i+` − (X

(p;λ̄pq)
t )j+`′ |,

|(X
(q;λ̄qp)
t )i+`′ − (X

(q;λ̄qp)
t )j+`′ |).

In the case of the causal temporal mutual information, we denote by εik/2 the distance from

(X
(p;λ̄pq)
t , X

(q;λ̄pq)
t+γ̄pq

, Xp
t−1, Xq

t+γ̄pq−1)

to its k-th neighbor, n1,3
i , n2,3

i , and n3
i being the numbers of points with a distance strictly

smaller than εik/2 in the subspace

(X
(p;λ̄pq)
t , Xp

t−1, Xq
t+γ̄pq−1), (X

(q;λ̄pq)
t+γ̄pq

, Xp
t−1, Xq

t+γ̄pq−1), and (Xp
t−1, Xq

t+γ̄pq−1)

respectively, and nγpq ,γqp the number of observations. The estimate of the causal temporal
mutual information is then given by:

ĈTMI(Xp; Xq) = ψ(k) +
1

nγpq ,γqp

nγpq ,γqp

∑
i=1

ψ(n3
i )− ψ(n1,3

i )− ψ(n2,3
i )

where ψ denotes the digamma function.
Similarly, for the estimation of the conditional causal temporal mutual information,

we denote by εik/2 the distance from

(X
(p;λ̄pq)
t , X

(q;λ̄pq)
t+γ̄pq

, Xp
t−1, Xq

t+γ̄pq−1, (X(rk ;λ̄k)
t−Γ̄k

)1≤k≤K)

to its k-th neighbor, n1,3
i , n2,3

i , and n3
i being the numbers of points with a distance strictly

smaller than εik/2 in the subspace

(X
(p;λ̄pq)
t , Xp

t−1, Xq
t+γ̄pq−1, (X(rk ;λ̄k)

t−Γ̄k
)1≤k≤K), (X

(q;λ̄pq)
t+γ̄pq

, Xp
t−1, Xq

t+γ̄pq−1, (X(rk ;λ̄k)
t−Γ̄k

)1≤k≤K),

and (Xp
t−1, Xq

t+γ̄pq−1, (X(rk ;λ̄k)
t−Γ̄k

)1≤k≤K)

respectively, and nγrp ,γrq the number of observations. The estimate of the conditional causal
temporal mutual information is then given by:

ĈTMI(Xp; Xq | XR) = ψ(k) +
1

nγrp ,γrq

nγrp ,γrq

∑
i=1

ψ(n3
i )− ψ(n1,3

i )− ψ(n2,3
i )

where ψ denotes the digamma function.
To detect independencies through CTMI, we rely on the following permutation test:

Definition 8 (Permutation test of CTMI). Given Xp, Xq, and XR, the p-value associated with
the permutation test of CTMI is given by:

p =
1
B

B

∑
b=1

1
ĈTMI((Xp)b ;Xq |XR)≥ĈTMI(Xp ;Xq |XR)

, (4)

where (Xp)b is a permuted version of Xp and follows the local permutation scheme presented in [27].
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The advantage of the scheme presented in [27] is that it preserves marginals by drawing
as much as possible without replacement and it performs local permutation, which ensures
that by permuting Xp, the dependence between Xp and Xr is not destroyed.

Note that Definition 8 is applicable to the causal temporal mutual information (when
R is empty) and to the conditional causal temporal mutual information.

3.5. Extension to Time Series with Different Sampling Rates

The above development readily applies to time series with different sampling rates, as
one can define window-based representations of the two time series, as well as a sequence
of joint observations.

Indeed, as one can note, Definition 3 does not rely on the fact that the time series
have the same sampling rates. Figure 5 displays two time series Xp and Xq with different
sampling rates, where, while λpq = 2 and λqp = 3, the time spanned by each window is
the same. The joint sequence of observations, relating pairs of windows from Xp and Xq in
the form S = {(X(p;λpq)

1p
, X(q;λqp)

1q
), · · · , (X(p;λpq)

np , X(q;λqp)
nq )}, should, however, be such that, for all

indices i of the sequence, one has: s(X(q;λqp)
iq

) = s(X(p;λpq)
ip

) + γpq, where s(X) represents the
starting time of the window X, and γpq is constant over time. This is not the case for the
first example, but is true for the second one, which is a relevant sequence of observations.

X(p;3)
tp

X(p;3)
tp+1X(q;2)

tq

X(q;2)
tq+1Incompatible lags

(a)

X(p;3)
tp

X(p;3)
(t+1)pX(q;2)

tq

X(q;2)
(t+1)qCompatible lags

(b)

Figure 5. Illustration for constructing sequences of windows for two time series with different
sampling rates. In (a) the construction represents incompatible lags and in (b) the construction
represents compatible lags.

If the two time series are sufficiently long, there always exists a correct sequence of
joint observations. Indeed, if the window sizes λpq and λqp are known, let γpq = s(X(q;λqp)

1 )−
s(X(p;λpq)

1 ). Furthermore, let Np and Nq denote the number of observations per time unit (the
time unit corresponds to the largest (integer) time interval according to the sampling rates
of the different time series. For example, if a time series has a sampling rate of 10 per second
and another a sampling rate of 3 per 10 min, then the time unit is equal to 10 min). Then,
λpq, λqp, and γpq are compatible through the set of joint observations S with s(X(p;λpq)

ip
) =

s(X(p;λpq)
1 ) + (ip − 1)LCM(Np, Nq) and s(X(q;λqp)

iq
) = s(X(q;λqp)

1 ) + (iq − 1)LCM(Np, Nq), such that
LCM is the lowest common multiple.

Note that this methodology for handling different sampling rates is not unique to our
proposal and can be used as soon as lags and windows are defined.

4. Causal Discovery Based on Causal Temporal Mutual Information

We present in this section two new methods for causal discovery in time series based
on the causal temporal mutual information introduced above to construct the skeleton
of the causal graph. The first method assumes causal sufficiency (there exists no hidden
common cause of two observable time series), while the second method is an extension of
the first for the case where causal sufficiency is not satisfied. In both methods, the skeleton
is oriented on the basis of the entropy reduction principle in addition to classical constraint-
based orientation rules (the rules used in the PC algorithm or the rules used in the FCI
algorithm). Our methods assume both the causal Markov condition and faithfulness of the
data distribution, which are classical assumptions for causal discovery within constraint-
based methods in addition to acyclicity in the summary causal graph.
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4.1. Without Hidden Common Causes

We present here our main method, which assumes causal sufficiency. We start by
describing how we infer the skeleton of the summary graph, then we show how we orient
edges using classical PC-rules in addition to rules based on the entropy reduction principle.

4.1.1. Skeleton Construction

We follow the same steps as the ones of the PC algorithm [9], which assumes that
all variables are observed. It aims at building causal graphs by orienting a skeleton
obtained, from a complete graph, by removing edges connecting independent variables.
The summary causal graphs considered are directed acyclic graphs (DAGs) in which
self-loops are allowed to represent temporal dependencies within a time series.

Starting with a complete graph that relates all time series, the first step consists of
computing CTMI for all pairs of time series and removing edges if the two time series are
considered independent. Once this is done, one checks, for the remaining edges, whether
the two time series are conditionally independent (the edge is removed) or not (the edge is
kept). Starting from a single time series connected to Xp or Xq, the set of conditioning time
series is gradually increased until either the edge between Xp and Xq is removed or all time
series connected to Xp and Xq have been considered. We will denote by Sepset(p, q) the
separation set of Xp and Xq, which corresponds to the smallest set of time series connected
to Xp and Xq such that Xp and Xq are conditionally independent given this set. Note that
we make use of the same strategy as the one used in PC-stable [28], which consists of
sorting time series according to their CTMI scores and, when an independence is detected,
removing all other occurrences of the time series. This leads to an order-independent
procedure. The following theorem states that the skeleton obtained by the above procedure
is the true one.

Theorem 1. Let G = (V, E) be a summary causal graph, and assume that we are given perfect
conditional independence information about all pairs of variables (Xp, Xq) in V given subsets
S ⊆ V\{Xp, Xq}. Then, the skeleton previously constructed is the skeleton of G.

Proof. Let us consider two time series Xp and Xq. If they are independent given XR, then
CTMI(Xp; Xq|XR) = 0, as otherwise, the conditional mutual information between Xp and
Xq would be non-null and the two time series would not be conditionally independent
as we are given perfect information. By the causal Markov and faithfulness conditions,
there is no edge in this case between Xp and Xq in the corresponding skeleton, as in the
true one. Conversely, if CTMI(Xp; Xq|XR) = 0 for any XR, then the two time series cannot
be dependent conditioned on XR. Indeed, if this were the case, as we are given perfect
conditional information, there would exist a lag γ and two window sizes λpq and λpq such

that I(X
(p;λpq)
t ; X

(q;λqp)
t+γ |XR) > 0 with 0 < λpq, λqp ≤ γ. In this case, the two windows of

size λmax centered on time point t in both Xp and Xq contain the windows of sizes λpq
and λpq separated by a lag γ in Xp and Xq as λmax = 2γmax + 1. Thus, CTMI(Xp; Xq|XR)

would be positive as this quantity cannot be less than I(X
(p;λpq)
t ; X

(q;λqp)
t+γ |XR), which leads

to a contradiction. Finally, as we tested all necessary conditioning sets in the construction
of the skeleton, we have the guarantee of removing all unnecessary edges.

4.1.2. Orientation

Once the skeleton has been constructed, one tries to orient as many edges as possible
using the standard PC-rules [9], which yields a completed partially directed acyclic graph
(CPDAG).

PC-rule 0 (Origin of causality). In an unshielded triple Xp − Xr − Xq, if Xr /∈ sepset(p, q),
then Xr is an unshielded collider: Xp → Xr ← Xq.
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PC-rule 1 (Propagation of causality). In an unshielded triple Xp → Xr − Xq, if Xr ∈
sepset(p, q), then orient the unshielded triple as Xp → Xr → Xq.

PC-rule 2. If there exist a direct path from Xp to Xq and an edge between Xp and Xq, then orient
Xp → Xq.

PC-rule 3. If there exists an unshielded triple Xp → Xr ← Xq and an unshielded triple Xp −
Xs − Xq, then orient Xs → Xr.

As we are using here the standard PC-rules, we have the following theorem, the proof
of which directly derives from the results on PC [9].

Theorem 2 (Theorem 5.1 of [9]). Let the distribution of V be faithful to a DAG G = (V, E), and
assume that we are given perfect conditional independence information about all pairs of variables
(Xp, Xq) in V given subsets XR ⊆ V\{Xp, Xq}. Then, the skeleton constructed previously
followed by PC-rules 0, 1, 2, and 3 represents the CPDAG of G.

In addition to the PC orientation rules, we introduce two new rules, which are based on
the notion of possible spurious correlations and the mutual information we have introduced.
The notion of possible spurious correlations captures the fact that two variables may be
correlated through relations that do not only correspond to direct causal relations between
them. It is formalized as follows:

Definition 9 (Possible spurious correlations). We say that two nodes Xp − Xq have possible
spurious correlations if there exists a path between them that neither contains the edge Xp − Xq nor
any collider.

Interestingly, when two connected variables do not have possible spurious correlations,
one can conclude about their orientation using CTMI.

Property 2. Let us assume that we are given perfect conditional independence information about
all pairs of variables (Xp, Xq) in V given subsets S ⊆ V\{Xp, Xq}. Then, every non-oriented edge
in the CPDAG obtained by the above procedure corresponds to a prima facie cause and by, causal
sufficiency, to a true causal relation between the related time series. Furthermore, the orientation of
an unoriented edge between two nodes Xp and Xq that do not have possible spurious correlations is
given by the “direction” of the optimal lag in CTMI(Xp, Xq), assuming that the maximal window
size is larger than the longest lag γmax between causes and effects.

Proof. The first part of Property 2 directly derives from Property 1. As we assume that
we are given perfect conditional information, the skeleton is the true one from Theorem 1.
Thus, if two variables do not have possible spurious correlations, the only correlations
observed between them correspond to a causal relation. We now need to prove that the
optimal lag can be used to orient edges between any pair of variables Xp and Xq.

Without loss of generality, let us assume that Xp causes Xq
t , for any time t, via the K

time instants {t− γ, t− γ1, · · · , t− γK−1} with 0 < γK−1 < · · · < γ1 < γ. First, let us
consider a window of size 1 in Xq and a window of arbitrary size λ in Xp with a lag γpq set

to γ′ ≥ 0. As γ′ ≥ 0, there is no cause of Xq
t in the window X(p;λ)

t+γ′ . Furthermore, the only
observed correlations between Xp and Xq correspond to causal relations. We thus have:

I(X(q;1)
t ; X(p;λ)

t+γ′ |X
(q;1)
t−1 , X(p;1)

t+γ′−1) = 0,
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as Xq
t and all variables in X(p;λ)

t+γ′ are independent of each other. One the contrary, for the
same window size in Xp and a lag γpq set to −γ with γ > 0, one has:

I(X(q;1)
t ; X(p;γ)

t−γ |X
(q;1)
t−1 , X(p;1)

t−γ−1) ≥ I(X(q;1)
t ; X(p;1)

t−γ |X
(q;1)
t−1 , X(p;1)

t−γ−1) > 0.

The first inequality derives from Inequality 2. The second inequality is due to the fact that
Xp

t−γ is a true cause of Xq
t and the fact that we are given perfect information. Thus, when

considering a window of size 1 for Xq, the optimal lag given by CTMI will necessarily go
from Xp to Xq, which corresponds to the correct orientation.

We now consider the case where we have a window of arbitrary size λ′ in Xq. Let
us further consider a window of arbitrary size λ in Xp with a lag γpq set to γ′ ≥ 0. If

λ′ < γ′+γK−1, there is no causal relations between the elements in X(q;λ′)
t and the elements

in X(p;λ)
t+γ′ and the mutual information between these two windows is 0. Otherwise, one can

decompose this mutual information as:

I(X(q;λ′)
t ; X(p;λ)

t+γ′ |X
(q;1)
t−1 , X(p;1)

t+γ′−1)

= I(X(q;γ′+γK−1)
t ; X(p;λ)

t+γ′ |X
(q;1)
t−1 , X(p;1)

t+γ′−1) + I(X(q;λ′−γ′−γK−1)
t+γ′+γK−1

; X(p;λ)
t+γ′ |X

(q;1)
t+γ′+γK−1−1, X(p;1)

t+γ′−1),

as the conditioning on X(q;γ′+γK−1)
t and X(q;1)

t−1 amounts to conditioning on the instant

X(q;1)
t+γ′+γK−1−1 due to the first-order Markov self-causal assumption.

As there are no causal relations between the elements in X(q;γ′+γK−1)
t and the elements

in X(p;λ)
t+γ′ , the first term on the right-hand side is 0. Using a similar decomposition in

order to exclude elements at the end of X(p;λ)
t+γ′ , which do not cause any element in X(q;λ′)

t ,
one obtains:

I(X(q;λ′)
t ; X(p;λ)

t+γ′ |X
(q;1)
t−1 , X(p;1)

t+γ′−1)

= I(X(q;λ′−γ′−γK−1)
t+γ′+γK−1

; X(p;min(λ,λ′−γK−1−γ′))
t+γ′ |X(q;1)

t+γ′+γK−1−1, X(p;1)
t+γ′−1).

Let us now consider the window in Xp of size λ′ with a lag γpq set to −γK−1. Using the
same reasoning as before, one obtains:

I(X(q;λ′)
t ; X(p;λ′)

t−γK−1
|X(q;1)

t−1 , X(p;1)
t−γK−1−1) = I(X(q;γ′+γK−1)

t ; X(p;λ′)
t−γK−1

|X(q;1)
t−1 , X(p;1)

t−γK−1−1)

+ I(X(q;λ′−γ′−γK−1)
t+γ′+γK−1

; X(p;λ′)
t−γK−1

|X(q;1)
t+γ′+γK−1−1, X(p;1)

t−γK−1−1), (5)

with:

I(X(q;λ′−γ′−γK−1)
t+γ′+γK−1

; X(p;λ′)
t−γK−1

|X(q;1)
t+γ′+γK−1−1, X(p;1)

t−γK−1−1)

≥ I(X(q;λ′−γ′−γK−1)
t+γ′+γK−1

; X(p;min(λ,λ′−γK−1−γ′))
t+γ′ |X(q;1)

t+γ′+γK−1−1, X(p;1)
t+γ′−1),

as the window X(p;λ′)
t−γK−1

contains the window X(p;min(λ,λ′−γK−1−γ′))
t+γ′ . In addition, the first

term on the right-hand side of Equation (5) is strictly positive as all the elements in

X(q;γ′+γK−1)
t have causal relations in X(p;λ′)

t−γK−1
. Thus, the mutual information obtained

with the negative lag −γK−1 is better than the one obtained with any positive lag:

I(X(q;λ′)
t ; X(p;λ′)

t−γK−1
|X(q;1)

t−1 , X(p;1)
t−γK−1−1) > I(X(q;λ′)

t ; X(p;λ)
t+γ′ |X

(q;1)
t−1 , X(p;1)

t+γ′−1);

meaning that the optimal lag given by CTMI will necessarily go from Xp to Xq, which
corresponds to the correct orientation.
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The following orientation rule is a direct application of the above property.

ER-rule 0 (Entropy reduction—γ ). In a pair Xp − Xq, such Xp and Xq do not have a possible
spurious correlation, if γ̄pq > 0, then orient the edge as: Xp → Xq.

Furthermore, we make use of the following rule to orient additional edges when the
optimal lag γ̄pq is null based on the fact that CTMI increases asymmetrically with respect to
the increase of λpq and λqp (Figure 3). This rule infers the direction of the cause by checking
the difference in the window sizes as the window size of the cause cannot be greater than
the window size of the effect.

ER-rule 1 (Entropy reduction—λ). In a pair Xp − Xq, such Xp and Xq do not have a possible
spurious correlation, if γ̄pq = 0 and λ̄pq < λ̄qp, then orient the edge as: Xp → Xq.

In practice, we also apply the ER-rule 0 before PC-rules, because, experimentally, we
found that the ER-rule 0 is more reliable than the PC-rule 0 in detecting lagged unshielded
colliders, especially in the case of a low sample size.

We call our method PCTMI; the pseudo-code is available in Algorithm 1. Adj(Xq,G)
represents all adjacent nodes to Xq in the graph G, and sepset(p, q) is the separation set of
Xp and Xq. The output of the algorithm is a CPDAG version of the summary graph such
that all lagged relations are oriented, but instantaneous relations are partially oriented.

Algorithm 1 PCTMI.

X a d-dimensional time series of length T, γmax ∈ N the maximum number of lags, α a
significance threshold
Form a complete undirected graph G = (V, E) with d nodes
n = 0
while there exists Xq ∈ V such that card(Adj(Xq,G)) ≥ n + 1 do

D = list()
for Xq ∈ V s.t. card(Adj(Xq,G)) ≥ n + 1 do

for Xp ∈ Adj(Xq,G) do
for all subsets XR ⊂ Adj(Xq,G) \ {Xp} such that card(XR) = n and (Γrp ≥ 0 or
Γrq ≥ 0) for all r ∈ R do

yq,p,R = CTMI(Xp; Xq | XR)

append (D, {Xq, Xp, XR, yq,p,R}))
Sort D by increasing order of y
while D is not empty do
{Xq, Xp, XR, y} = pop(D)
if Xp ∈ Adj(Xq,G) and XR ⊂ Adj(Xq,G) then

Compute z the p-value of CTMI(Xp; Xq | XR) given by Equation (4)
if test z > α then

Remove edge Xp − Xq from G
Sepset(p, q) = Sepset(q, p) = XR

n=n+1
for each triple in G, do apply PC-rule 0
while no more edges can be oriented do

for each triple in G, do apply PC-rules 1, 2, and 3
for each connected pair in G do apply ER-rules 0 and 1
Return G

4.2. Extension to Hidden Common Causes

When unobserved variables are causing a variable of interest, the PC algorithm is
no longer appropriate and one needs to resort to the FCI algorithm introduced in [9],
which infers a partial ancestral graph (PAG). We extend here the version of this algorithm
presented in [29] without the selection bias.
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We recall the notations needed for FCI: a double arrow←→ indicates the presence of
hidden common causes, while the symbol ◦ represents an undetermined mark, and the
meta-symbol asterisk * is used as a wildcard, which can denote a tail, an arrow, or a circle.
Furthermore, we make use of the notion Possible-Dsep, which is defined as follows:

Definition 10 (Possible-Dsep [9]). Xr is in the Possible-Dsep set of Xp and Xq if and only if
Xr is different from Xp and Xq and there is an undirected path U between Xp and Xr such that,
for every subpath < Xw, Xs, Xv > of U, either Xs is a collider on the subpath or Xw and Xv are
adjacent in the PAG.

Lastly, we make use of the following types of paths. A discriminating path between Xp

and Xq is a path that includes at least three edges such that each non-endpoint vertex Xr on
the path is adjacent to Xq, and Xp is not adjacent to Xq, and every vertex between Xp and
Xr is a collider on the path and is a parent of Xq. An uncovered path is a path where every
consecutive triple on the path is unshielded. A potentially directed path is a path where the
edge between two consecutive vertices is not directed toward the first or against the second.

From the skeleton obtained in Section 4.1.1, unshielded colliders are detected using
the FCI-rule 0.

FCI-rule 0 (Origin of causality). For each unshielded triple Xp ∗−◦ Xr ◦−∗ Xq, if Xr /∈
Sepset(p, q), then orient the unshielded triple as a collider: Xp∗→ Xr ←∗Xq.

From this, Possible-Dsep sets can be constructed. As elements of Possible-Dsep sets in
a PAG play a role similar to the ones of parents in a DAG, additional edges are removed by
conditioning on the elements of the Possible-Dsep sets, using the same strategy as the one
given in Section 4.1.1. All edges are then unoriented, and the FCI-rule 0 is again applied as
some of the edges of the unshielded colliders originally detected may have been removed
by the previous step. Then, as in FCI, FCI-rules 1, 2, 3, 4, 8, 9, and 10 are applied.

FCI-rule 1. In an unshielded triple Xp∗→ Xr ◦−∗ Xq, if Xr ∈ Sepset(p, q), then orient the
unshielded triple as Xp∗→ Xr∗→ Xq.

FCI-rule 2. If there exists a triple Xp → Xr∗→ Xq or a triple Xp∗→ Xr → Xq with Xp ∗−◦ Xq,
then orient the pair as Xp∗→ Xq.

FCI-rule 3. If there exists an unshielded triple Xp∗→ Xr ←∗Xq and an unshielded triple Xp ∗−◦
Xs ◦−∗ Xq and Xs ∗−◦ Xr, then orient the pair as Xs → Xr.

FCI-rule 4. If there exists a discriminating path between Xp and Xq for Xr and Xr ◦−∗ Xq, then
orient Xr ◦−∗ Xq as Xr → Xq; otherwise, orient the triple as Xs ←→ Xr ←→ Xq.

FCI-rule 8. If Xp → Xr → Xq or Xp −◦Xr → Xq and Xp◦→ Xq, then orient Xp → Xq.

FCI-rule 9. If Xp◦→ Xq and U is an uncovered potentially directed path from Xp to Xq such that
Xq and Xr are not adjacent, then orient the pair as Xp → Xq.

FCI-rule 10. Suppose Xp◦→ Xq, Xr → Xq ← Xs, U1 is an uncovered potentially directed path
from Xp to Xr, and U2 is an uncovered potentially directed path from Xp to Xs. Let µ be the vertex
adjacent to Xp on U1 (µ could be Xr) and ω be the vertex adjacent to Xp on U2 (ω could be Xs). If
µ and ω are distinct and are not adjacent, then orient Xp◦→ Xq as Xp → Xq.

Note that we have not included FCI-rules 5, 6, and 7 from [29], as these rules deal with
selection bias, a phenomenon that is not present in the datasets we consider. Including
these rules in our framework is nevertheless straightforward.

Finally, as in PCTMI, we orient additional edges using an adapted version of the ER-rules.
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LER-rule 0 (Latent entropy reduction—γ ). In a pair Xp ∗−◦ Xq, such Xp and Xq do not have
a possible spurious correlation, if γ̄pq > 0, then orient the edge as: Xp∗→ Xq.

LER-rule 1 (Latent entropy reduction—λ). In a pair Xp ∗−◦ Xq, such Xp and Xq do not have a
possible spurious correlation, if γ̄pq = 0 and λ̄pq < λ̄qp, then orient the edge as: Xp∗→ Xq.

The overall process, referred to as FCITMI, is described in Algorithm 2.

Algorithm 2 FCITMI.
Require: X a d-dimensional time series of length T, γmax ∈ N the maximum number of lags, α a

significance threshold
Form a complete undirected graph G = (V, E) with d nodes
n = 0
while there exists Xq ∈ V such that card(Adj(Xq,G)) ≥ n + 1 do

D = list()
for Xq ∈ V s.t. card(Adj(Xq,G)) ≥ n + 1 do

for Xp ∈ Adj(Xq,G) do
for all subsets XR ⊂ Adj(Xq,G) \ {Xp} such that card(XR) = n and (γrp ≥ 0 or γrq ≥ 0)
for all r ∈ R do

yq,p,R = CTMI(Xp; Xq | XR)

append (D, {Xq, Xp, XR, yq,p,R}))
Sort D by increasing order of y
while D is not empty do
{Xq, Xp, XR, y} = pop(D)
if Xp ∈ Adj(Xq,G) and XR ⊂ Adj(Xq,G) then

Compute z the p-value of CTMI(Xp; Xq | XR) given by Equation (4)
if test z > α then

Remove edge Xp − Xq from G
Sepset(p, q) = Sepset(q, p) = XR

n=n+1
for each triple in G, do apply FCI-rule 0
using Possible-Dsep sets, remove edges using CTMI
Reorient all edges as ◦−◦ in G
for each triple in G, do apply FCI-rule 0
while edges can be oriented do

for each triple in G, apply FCI-rules 1, 2, 3, 4, 8, 9, and 10
for each connected pair in G, do apply ER-rules 0 and 1.

Return G

5. Experiments

In this section, we evaluate our method experimentally on several datasets. We
propose first an extensive analysis on simulated data with equal and different sampling
rates, generated from basic causal structures; then, we performed an analysis on real-world
datasets. To assess the quality of causal inference, we used the F1-score regarding directed
edges in the graph without considering self-loops.

In the following, we first describe the different settings of the methods we compare
with and the datasets, and then, we describe the results and provide a complexity analysis.

5.1. Methods and Their Use

We compared our method PCTMI, available at https://github.com/ckassaad/PCTM
I (accessed on 30 June 2022),with several methods. From the Granger family, we ran
MVGC through the implementation available at http://www.sussex.ac.uk/sackler/mvgc/
(accessed on 30 June 2022) and TCDF through the implementation available at https://gith
ub.com/M-Nauta/TCDF (accessed on 30 June 2022). For TCDF, some hyperparameters have
to be defined: we use da kernel of size 4, a dilation coefficient 4, one hidden layer, a learning
rate of 0.01, and 5000 epochs. From the score-based family, we retained Dynotears, which is
available at https://github.com/quantumblacklabs/causalnex (accessed on 30 June 2022),

https://github.com/ckassaad/PCTMI
https://github.com/ckassaad/PCTMI
http://www.sussex.ac.uk/sackler/mvgc/
https://github.com/M-Nauta/TCDF
https://github.com/M-Nauta/TCDF
https://github.com/quantumblacklabs/causalnex
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the hyperparameters of which were set to their recommended values (the regularization
constants λW = λA = 0.05). Among the noise-based approaches, we ran TiMINo, which
is available at http://web.math.ku.dk/~peters/code.html (accessed on 30 June 2022).
TiMINo uses a test based on the cross-correlation.From the constraint-based family, we
ran PCMCI using the mutual information to measure the dependence, both provided in
the implementation available at https://github.com/jakobrunge/tigramite (accessed on
30 June 2022).

We compared FCITMI with tsFCI, provided at https://sites.google.com/site/dorise
ntner/publications/tsfci (accessed on 30 June 2022), where independence or conditional
independence is tested, respectively, with tests of zero correlation or zero partial correlation.

For all methods using mutual information, we used the k-nearest neighbor estima-
tor [26], for which we fixed the number of nearest neighbor to k = 10. Since the output of
those measures are necessarily positive given a finite sample size and a finite numerical
precision, we used a significance permutation test introduced in [27]. For all methods, we
used γmax = 5, and when performing a statistical test, we used a significance level of 0.05.

5.2. Datasets

To illustrate the behavior of the causal inference algorithms, we relied on both artificial
and real-world datasets.

5.2.1. Simulated data

In the case of causal sufficiency, we simulated time series with equal and different
sampling rates of size 1000 generated from three different causal structures: fork, v structure,
and diamond represented in Table 1. In the case of non-causal sufficiency, we considered
the 7ts2h structure represented in Table 2.

For each structure, we generated 10 datasets using the following generating process:
for all q, Xq

0 = 0, and for all t > 0,

Xq
t = aqq

t−1Xq
t−1 + ∑

(p,γ)

Xp
t−γ∈Par(Xq

t )

apq
t−γ f (Xp

t−γ) + 0.1ξ
q
t ,

where γ ≥ 0, ajq
t are random coefficients chosen uniformly in U ([−1;−0.1] ∪ [0.1; 1]) for

all 1 ≤ j ≤ d, ξ
q
t ∼ N (0,

√
15) and f is a nonlinear function chosen at random uniformly

among the absolute value, tanh, sine, and cosine.

Table 1. Structures of simulated data without hidden common causes. A→ B means that A causes B.

V-Structure Fork Diamond

X1 X2

X3

X1

X2 X3

X1

X2 X3
X4

Table 2. Structures of simulated data with hidden common causes. A → B means that A causes B
and A←→ B represents the existence of a hidden common cause between A and B.

7ts2h

X1

X2 X3

X4

X5X6

X7

http://web.math.ku.dk/~peters/code.html
https://github.com/jakobrunge/tigramite
https://sites.google.com/site/dorisentner/ publications/tsfci
https://sites.google.com/site/dorisentner/ publications/tsfci
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5.2.2. Real Data

First, we considered the realistic functional magnetic resonance imaging (fMRI) bench-
mark, which contains blood-oxygen-level dependent (BOLD) datasets [30] for 28 different
underlying brain networks. It measures the neural activity of different regions of interest
in the brain based on the change of blood flow. There are 50 regions in total, each with
its own associated time series. Since not all existing methods can handle 50 time series,
datasets with more than 10 time series were excluded. In total, we were left with 26 datasets
containing between 5 and 10 brain regions.

Second, we considered time series collected from an IT monitoring system with a
one-minute sampling rate provided by EasyVista (https://www.easyvista.com/fr/produ
its/servicenav, accessed on 30 June 2022). In total, we considered 24 datasets with 1000
timestamps. Each dataset contains three time series: the metric extraction (M.E), which
represents the activity of the extraction of the metrics from the messages; the group history
insertion (G.H.I), which represents the activity of the insertion of the historical status in the
database; and the collector monitoring information (C.M.I), which represents the activity of
the updates in a given database. Lags between time series are unknown, as well as the
existence of self-causes. According to the domain experts, all these datasets follow a fork
structure such that metric extraction is a common cause of the other two time series.

5.3. Numerical Results
5.3.1. Simulated Data

We provide in Table 3 the performance of all methods on simulated data with an equal
sampling rate. PCTMI has better results than other methods for the v structure and the
fork structure For the diamond structure, PCTMI and PCMCI have the same performance;
however, PCTMI has a lower standard deviation. In general, we can say, that constraint-
based algorithms perform best.

Table 3. Results for simulated datasets with an equal sampling rate. We report the mean and the
standard deviation of the F1-score. The best results are in bold.

PCTMI PCMCI TiMINo VarLiNGAM Dynotears TCDF MVGC

V structure 0.78± 0.18 0.67± 0.37 0.65± 0.37 0.0± 0.0 0.07± 0.20 0.13± 0.26 0.37± 0.26
Fork 0.83± 0.31 0.78± 0.17 0.52± 0.44 0.0± 0.0 0.07± 0.20 0.26± 0.32 0.44± 0.38

Diamond 0.82± 0.11 0.82± 0.16 0.60± 0.25 0.03± 0.09 0.23± 0.24 0.16± 0.19 0.68± 0.26

We also assess the behavior of PCTMI when the time series have different sampling
rates in Table 4. We present here results only for PCTMI, because other methods are not
applicable to time series with different sampling rates. As one can see, the performance
obtained here is close to the ones obtained with equal sampling rates in the case of the v
structure, but significantly lower in the case if the fork structure and the diamond. The
degradation of the results is not really surprising as one has less data to rely on in a different
sampling rate scenario. By comparing the results of PCTMI on time series with different
sampling rates with the results of other methods obtained when time series have an equal
sampling rate, we can see that PCTMI still performs better than most methods.

Table 4. Results for simulated datasets with different sampling rates. We report the mean and the
standard deviation of the F1-score.

PCTMI

V structure 0.80± 0.31
Fork 0.56± 0.30

Diamond 0.66± 0.24

https://www.easyvista.com/fr/produits/servicenav
https://www.easyvista.com/fr/produits/servicenav
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In the case of causal non-sufficiency, our proposed algorithm FCITMI outperforms
tsFCI, as shown in Table 5.

Table 5. Results for simulated datasets with an equal sampling rate and with hidden common causes.
We report the mean and the standard deviation of the F1-score.

FCITMI tsFCI

7ts2h 0.44± 0.11 0.37± 0.09

5.3.2. Real Data

We provide in Table 6 the results on the fMRI benchmark and the IT benchmark for all
the methods. In the case of fMRI, VarLiNGAM performs best, followed by Dynotears and,
then, by PCTMI and TiMINo. The success of linear methods (VarLiNGAM and Dynotears) on
this benchmark might suggest that causal relations in fMRI are linear, especially as this
result was not replicated on other datasets considered in this paper. In the case of the
IT datasets, TiMINo performs best, followed by PCTMI; however, while investigating the
results, we noticed that for 6/10 datasets, TiMINo returns a fully connected summary graph
with arcs oriented from both sides. In both benchmarks, PCTMI clearly outperforms other
constraint-based methods.

Table 6. Results for real datasets. We report the mean and the standard deviation of the F1-score. The
best results are in bold.

PCTMI PCMCI TiMINo VarLiNGAM Dynotears TCDF MVGC

fMRI 0.32± 0.17 0.22± 0.18 0.32± 0.11 0.49± 0.28 0.34± 0.13 0.07± 0.13 0.24± 0.18
IT 0.40± 0.32 0.25± 0.31 0.62± 0.14 0.36± 0.19 0.0± 0.0 0.0± 0.0 0.38± 0.17

In the case of the IT datasets, we also provide in Table 7, for each dataset, the inferred
summary causal graphs by methods that have an F1-score > 0 in Table 6. Here, we can see
that in 5 out of 10 datasets, PCTMI was able to infer that M.E is a cause of G.H.I. On the other
hand, PCTMI was able to infer that M.E is a cause of C.M.I. in only one dataset. Interestingly,
in 9 out 10 datasets, PCTMI did not infer any false positive. As one can expect from Table 6,
PCMCI suffers on all datasets; however, one can notice that as PCTMI, PCMCI has a tendency
to yield sparse graphs. TiMINo, which has the best F1-score in Table 6, seems to have a
very low precision. In 7 out 10 datasets, TiMINo returned a complete bidirected graph. In
the other three datasets, TiMINo detects all true causal relations, in addition to one false
positive. VarLiNGAM has an even lower precision compared to TiMINo and a lower recall.
Finally, MVGC infers most of the time a complete bidirected graph.

Table 7. Summary causal graphs inferred by different methods using 10 different monitoring IT
datasets. A→ B means that A causes B and A � B means that A causes B and B causes A.

PCTMI PCMCI TiMINo VarLiNGAM MVGC

Dataset 1
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

Dataset 2
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

Dataset 3
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I
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Table 7. Cont.

PCTMI PCMCI TiMINo VarLiNGAM MVGC

Dataset 4
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

Dataset 5
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

Dataset 6
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

Dataset 7
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

Dataset 8
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

Dataset 9
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

Dataset 10
M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

M.E

G.H.I C.M.I

5.3.3. Complexity Analysis

Here, we provide a complexity analysis on different constraint-based algorithms
including our proposed method.

In the worst case, the complexity of PC in a window causal graph is bounded by
(dγmax)2(dγmax−1)k−1

(k−1)! , where k represents the maximal degree of any vertex and γmax is the
maximum number of lags. Each operation consists of conducting a significance test on a
conditional independence measure. Algorithms adapted to time series, as PCMCI [7], rely
on time information to reduce the number of tests. PCTMI reduces the number of tests even
more since it infers a summary graph. Indeed, PCTMI’s complexity in the worst case is

bounded by d2(d−1)k−1

(k−1)! .
Figure 6 provides an empirical illustration of the difference in the complexity of the

two approaches on the three structures (v structure, fork, diamond), sorted according to
their number of nodes, their maximal out-degree, and their maximal in-degree. The time is
given in seconds. As one can note, PCTMI is always faster than PCMCI, the difference being
more important when the structure to be inferred is complex.

V structure Fork Diamond
0

2000

4000

6000

8000

ti
m

e
(s

)

PCTMI
PCMCI

Figure 6. Time computation for PCTMI and PCMCI.
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5.3.4. Hyperparameters’ Analysis

Here, we provide a hyperparameter analysis on CTMI with respect to the maximum
lag γmax and the k-nearest neighbor k. Using the same 10 datasets that are compatible with
the fork structure in Table 1 and generated as described in Section 5.2.1, we performed two
experimentations.

First, we computed the average and the standard deviation of CTMI(X2; X3) and
CTMI(X2; X3 | X1) over the 10 datasets while varying γmax between 3 and 10. The results
given in Figure 7a show that CTMI is robust with respect to γmax in the case of dependency
and in the case of conditional independency: the mean of CTMI(X2; X3) remains the same
for γmax = 3, 4, 5 and slightly decreases for γmax = 10, and the standard deviation remains
the same for γmax = 3, 4 and slightly increases for γmax = 5, 10. On the other hand, the
mean and the standard deviation of CTMI(X2; X3 | X1) remain the same for all γmax.

Second, we again computed the average and the standard deviation of CTMI(X2; X3)
and CTMI(X2; X3 | X1) over the 10 datasets, but now, while varying k between 5 and 100.
The results given in Figure 7b show that CTMI is robust with respect to k in the case of
conditional independency, but suffers in the case of dependency when k increases: the mean
of CTMI(X2; X3) slightly decreases between k = 5 and k = 10, but drastically decreases for
k = 50.

3 4 5 10
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

γmax

CTMI(X2X3)
CTMI(X2X3 | X1)

(a)

5 10 50 100
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

k

CTMI(X2X3)
CTMI(X2X3 | X1)

(b)
Figure 7. CTMI with respect to the maximum lag γmax in (a) and the k-nearest neighbor k in (b) for
dependent time series (X2 and X3 in the fork structure in Table 1) and conditionally independent
time series (X2 and X3 conditioned on X1 in the fork structure in Table 1).

6. Discussion and Conclusions

We addressed in this paper the problem of learning a summary causal graph on time
series with equal or different sampling rates. To do so, we first proposed a new temporal
mutual information measure defined on a window-based representation of time series.
We then showed how this measure relates to an entropy reduction principle, which can
be seen as a special case of the probability raising principle. We finally combined these
two ingredients in PC-like and FCI-like algorithms to construct the summary causal graph.
Our method proved to work well with small time complexity in comparison with similar
approaches that use mutual information. The main limitations of our methods are that they
cannot orient causal relations that are not oriented by the classical PC-rules or FCI-rules and
have a possible spurious correlation, and they assume acyclicity in summary causal graphs.
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