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Abstract: The monitoring of nuclear safeguards measurements consists of verifying the coherence
between the operator declarations and the corresponding inspector measurements on the same
nuclear items. Significant deviations may be present in the data, as consequence of problems with
the operator and/or inspector measurement systems. However, they could also be the result of
data falsification. In both cases, quantitative analysis and statistical outcomes may be negatively
affected by their presence unless robust statistical methods are used. This article aims to investigate
the benefits deriving from the introduction of robust procedures in the nuclear safeguards context.
In particular, we will introduce a robust estimator for the estimation of the uncertainty components
of the measurement error model. The analysis will prove the capacity of robust procedures to limit
the bias in simulated and empirical contexts to provide more sounding statistical outcomes. For
these reasons, the introduction of robust procedures may represent a step forward in the still ongoing
development of reliable uncertainty quantification methods for error variance estimation.

Keywords: robust statistics; nuclear safeguards; one-way random effect model; ANOVA; Q-estimator

1. Introduction

Nuclear safeguards involve measures designed to deter and detect the diversion of
nuclear material from the fuel cycle for illicit purposes [1]. The monitoring for possible
data falsification by operators that could mask diversion is based on the statistical analysis
of paired (operator, inspector) verification measurements. Significant deviations between
the operator declarations and the corresponding inspector measurements may be the
consequence of problems with their measurement systems. However, they could also be
the result of the operator falsifying the data. In this context, the fundamental elements for
a trustworthy analysis are (i) a proper measurement error model and (ii) an efficient and
unbiased uncertainty quantification (UQ), i.e., the estimation of its uncertainty components.

Concerning this second point, two approaches are available: the bottom-up and the
empirical top-down approach [2]. The former consists on quantifying and then propagating
the uncertainty in all key steps of the assay, in order to derive the resulting uncertainty of
the measured values. The latter, instead, relies fundamentally on modeling measurement
data as a one-way random effect model with two variance components, one accounting for
the variation within and the other for that between groups. A group is typically defined
as an inspection period, within which the measurements are assumed to have the same
random error. Between inspection periods, instead, the systematic error captures the
changes that may occur in the metrological conditions, such as instrument calibration,
change of inspectors, change of background radiation, and so on [3]. The two variance
components with data from past inspections are estimated through the classical analysis
of variance ([ANOVA], [4]), or using the Grubbs estimator [5], depending on the scope of
the analysis.

In empirical application, the outcomes of the bottom-up and the empirical top-down
approach could significantly diverge. Specifically, bottom-up estimations are often larger
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than their top-down counterparts [6]. The need to increase consistency between these
two results has been stressed more than once (see, for example, [7,8]) and encouraged the
study of potential improvements for both methods [9,10]. The proposed developments
of top-down methods never took into consideration the possible presence of anomalous
data in the estimation sample even though, as previously mentioned, significant deviations
between operator and inspector measurements may occur due to multiple reasons.

The presence of outliers in the data may in fact seriously affect the reliability of the
estimations. In random effect models, even one single anomalous observation may greatly
influence the properties of the statistics [11]. The bias introduced by a single anomalous
value will also affect the result of the subsequent analyses based on the between and
within group standard deviations, as the setting of alarm thresholds in measurements
(see, for example, [12]) or the material balance evaluation [1]. Consider, for example,
the simulated case study in [12] (see Figure 1a). The 30 observations, equally split in
3 groups, are simulated using a random effect model with between and within group
standard deviations both equal to 0.010. They mimic 30 possible relative distances of the
measurements provided by the operator and the inspector in three different inspection
periods. Classical analysis-of-variance expressions provide respective estimates of 0.009
and 0.007. Suppose now to change only one single value and convert it in an outliers,
as we do with the observation highlighted in red in Figure 1b. This small change yields
a remarkable decrease of the sample average of the 10 observations of group 1, and the
classical ANOVA estimates for the between and within group standard deviations become
respectively 0.003 and 0.012. It is important to stress that the 30 simulated observations
cannot be considered as a time series, even if their plots may suggest it. This is because they
are mimicking a use case in the nuclear safeguards context, where the time lag between two
single inspections and even between two groups of inspection is not fixed and constant.
Therefore, methods coming from time series literature cannot be employed in this context.

The aim of this article is to propose an alternative approach for the UQ problem
through the introduction of robust estimation of the between and within group variance
estimators. The robust analysis is expected to limit the influence of outliers in past data
on the outcomes and to improve the quality and the reliability of the statistical outcomes.
For this purpose, we will compare in a simulation exercise the accuracy of the classical
estimator with respect to one of the many methods available for estimating the variance
components of a random effect model. In particular, we focus on the robust estimators
proposed by [13] and based on the Q-estimator for one-sample scale introduced by [14],
whose main strengths are:

• Suitable breakdown point: they have the capacity to handle a consistent proportion of
outliers in the data before returning an incorrect result;

• High efficiency: they provide estimates with desirable properties even when there are
no outliers in the data;

• Closed expression: they do not depend on optimization algorithms and are rather easy
to calculate.

Thanks to these properties, the proposed estimators are extremely flexible, and may rep-
resent a step forward in the still ongoing development of reliable UQ methods for error
variance estimation [9].

This paper proceeds as follows. In the next section, the measurement error model
and the classical estimation of its variance components are introduced. Then, in Section 3,
the alternative estimation method based on robust statistics is described. In Section 4, the
results of a simulation experiment that analyzes the behavior of the two estimators subject
to different contamination scenarios are presented. An empirical application of UQ in
nuclear safeguards measurements through classical and robust estimates is described in
Section 6. Finally, Section 6 concludes.
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(a)

(b)

Figure 1. Effect of the introduction of one single outlier (highlighted in red) on the simulated case
study of [12] (dashed lines represent the average of the 10 observations in each group). (a) Clean data;
(b) One outlier.

2. Measurement Error Model and the Classical Estimation of Its Variance Components

Given a set of data from past inspections and assuming the same number of mea-
surements in each inspection (i.e., balanced design), a typical model for representing
the inspector (I) and operator (O) measurements of the item k during inspection j is
the following:

Ijk = µjk + sI j + rI jk Ojk = µjk + sOj + rOjk j = 1, . . . , g k = 1, . . . , n

where µjk is the (unknown) true value of the measurand, s∗j ∼ N(0, σ2
s∗) are the short-term

systematic errors and r∗jk ∼ N(0, σ2
r∗) are the random errors. Therefore, the difference

between operator and inspector measurements is given by:

Ojk − Ijk = (sOj − sI j) + (rOjk − rI jk) = sj + rjk (1)

which is a random effect model with variance components equal to σ2
s = σ2

sO + σ2
sI and

σ2
r = σ2

rO + σ2
rI .
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If the error is expected to scale with the true value of the measurand, the starting
models become:

Ijk = µjk(1 + SI j + RI jk) Ojk = µjk(1 + SOj + ROjk)

where S∗j ∼ N(0, σ2
S∗) and R∗jk ∼ N(0, σ2

R∗). In this case, the next step is defining the
relative difference, given by:

Ojk − Ijk

µjk
=

µjk(1 + SOj + ROjk)− µjk(1 + SI j + RI jk)

µjk
= Sj + Rjk. (2)

This expression is again a random effect model, with variance components equal to
σ2

S = σ2
SO + σ2

SI and σ2
R = σ2

RO + σ2
RI . Since the measurand µjk is unknown, a reason-

able solution is to substitute it with Ojk, because the operator measurement is typically
more accurate and precise than the inspector’s measurements [7]. Ref. [12] shows that (i) as-
suming a truncated normal distribution for Ojk that guarantees finite moments for the ratio
Ojk−Ijk

Ojk
, and (ii) considering that typically

√
σ2

SO + σ2
RO ≤ 0.02 and

√
σ2

SI + σ2
RI ≤ 0.05, we

have that:

- the distribution of the ratio
Ojk−Ijk

Ojk
is extremely close to a normal distribution;

- it provides an accurate approximation of the target variable.

Expressions (1) and (2) represent both a balanced one-way random effect models.
The former assumes no relation between the magnitude of the measurand µjk and its
corresponding error, whereas in the later the error is proportional to the measurand. Since
nuclear measurements often have larger uncertainty at larger true values, a multiplicative
rather than an additive model is employed [9]. It is also possible to transform a multiplica-
tive model into an additive one through the well-known approximation log(1 + x) ≈ x.
However, this solution is not recommended due to the inaccuracies it could generate in
many situations [2].

The parameters that need to be estimated in both (1) and (2) are the two variance
components: the short-term systematic and the random one. In order to extend our focus
also to unbalanced cases, in what follows, we will refer to the general formulation of the
unbalanced one-way random effect model:

yjk = µ + ς j + ρjk k = 1, . . . , nj j = 1, . . . , g (3)

where ς j ∼ N(0, σ2
ς ) and ρjk ∼ N(0, σ2

ρ ). Therefore, we have that:

Cov(yjk, ylm) =


σ2

τ = σ2
ς + σ2

ρ if j = l and k = m
σ2

ς if j = l and k 6= m
0 if j 6= l

(4)

Classical estimators for σ2
ς and σ2

ρ are given by [15]:

σ̂2
ρ =

∑
g
j=1 ∑

nj
k=1(yjk − ȳj·)

N − g

σ̂2
ς =

∑
g
j=1(ȳj· − ȳ··)

g
− n̄σ̂2

ρ

(5)

where:

ȳj· =
∑

nj
k=1 yjk

nj
ȳ·· =

∑
g
j=1 ȳj·

g
N =

g

∑
j=1

nj n̄ =
∑

g
j=1 n−1

j

g
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when nj = n for all j = 1, . . . , g, expressions (5) simplify to the well-known ANOVA
estimators for balanced design.

Finally, it could happen that σ̂2
ς < 0. In this case, the usual practice is to put σ̂2

ς = 0,
that implies σ̂2

τ = σ̂2
ρ . In nuclear safeguards contexts, this case represents the situation

where there are no significant differences between groups of measurements, and all the
variability is due to the within groups component.

3. Robust Estimation of Unbalanced One-Way Random Effect Models

Classical estimation of model (3) through the expressions (5) yields results with
desirable statistical properties whenever no anomalous observations are present in the data.
When this assumption is not reliable, the use of robust statistical methods allows to avoid
the bias introduced by the contaminated observations. In particular, two different kinds of
outlier may affect one-way random effect models:

(a) Anomalous values of the group error ς j, also called outlying blocks;
(b) Anomalous values of the individual measurement error ρjk, also called outlying measure-

ments within blocks.

This double nature of contamination is reflected also in a double definition of breakdown
point, defined in general as the smallest proportion of outlying observations that can lead
to estimated values which tend to 0 or ∞. Following the definitions provided by [16], we
will define the block breakdown point for contamination (a) and measurement breakdown point
for contamination (b). Actually, [17] proposed the definition of a third outlier category, that
will be not considered in detail, represented by an extremely small or large variation within
one group.

In statistical terms, the price to pay when using robust estimators is a loss of efficiency,
given that they are in general less efficient than their classical counterparts. However, an
accurate choice of the robust method could sensibly mitigate this drawback, allowing to
select the robust estimator that offers the most convenient payoff between breakdown point
and efficiency. At this proposal, different choices are available for robustly estimating στ

and σρ: from the M-estimators described in [18–21] to the S-estimator proposed by [22] and
the GM estimator developed by [23]. Among all these options, we decided to consider the
estimators proposed by [13] and based on the Q-estimator for one-sample scale introduced
by [14]. The definition of the estimators requires the introduction of the following sets:

Dbetween ≡ {|yjk − ylm|, 1 ≤ j < l ≤ g, 1 ≤ k ≤ nj, 1 ≤ m ≤ nl}
Dwithin ≡ {|yjk − yjm|, 1 ≤ j ≤ g, 1 ≤ k < m ≤ nj}

D2
+ ≡ {|yjk − yjs + ylm − ylh|, 1 ≤ j < l ≤ g; 1 ≤ k < s ≤ nj; 1 ≤ m < h ≤ nl}

D2
− ≡ {|yjk − yjs − ylm + ylh|, 1 ≤ j < l ≤ g; 1 ≤ k < s ≤ nj; 1 ≤ m < h ≤ nl}

Dbetween and Dwithin are respectively the sets of the absolute intragroup and intergroup
differences, whereas the union of D2

+ and D2
− represents the set of the absolute second

order differences of each group pair. The calculation of the estimators is based on the first
or second quartile of these two numerical sets. The robust estimator for στ is given by:

σ̃τ = 2.2191{d : d ∈ Dbetween}(0.25) (6)

whereas the two alternative proposals for estimating σρ are:

σ̃ρ,1 = 1.0484{d : d ∈ Dwithin}(0.50)

σ̃ρ,2 = 1.5692{d : d ∈ D2
+ ∨ d ∈ D2

−}(0.25)
(7)

where the expression A(p) represents the p-percentile of set A. The constant factors 2.2191,
1.0484 and 1.5692 guarantee Fisher consistency of the estimators when the data are normally
distributed. Therefore, in applications with real data, a normality test for assessing the
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Gaussian assumption is recommended. Finally, as for the classical estimates, there is the
possibility to obtain incoherent estimates, that is,

σ̃ρ,∗ > σ̃τ . (8)

The solution in this case is again to put σ̃τ = σ̃ρ,∗.
The reasons that motivated the choice of these particular estimators are the following:

Suitable breakdown point: [16] proved that, in case of balanced model (i.e., nj = n for all
j = 1, . . . , g in expression (3)), the block breakdown points of σ̃τ , σ̃ρ,1 and σ̃ρ,2 are equal to
dg/2e/g, whereas their measurement breakdown points are asymptotically larger or equal
to 0.25.

High asymptotic efficiency: defining the asymptotic efficiency as the ratio between the vari-
ances of asymptotic distributions of the robust estimators and those of the classical esti-
mators, [16] proved that the asymptotic efficiency of σ̃τ and σ̃ρ,2 in a balanced experiment
is at least 82%, and can even exceed 90% depending on the values of n and σς/σρ. The
asymptotic efficiency of σ̃ρ,1, instead, starts at 37% for n = 2 and increase up to 86% when
n increases.
Closed expression: σ̃τ , σ̃ρ,1 and σ̃ρ,2 are the direct outcome of an explicit formula applied
on a set of data. This means that they are not the result of iterative procedures and/or
optimization algorithms that may be difficult to calculate and, more importantly, rather
time consuming. The only complication of the proposed estimators that might lead to a
sensible raise in the execution time of quartile calculation is the growth of the cardinality of
D2
+ and D2

− when N and g increase. However, for moderate values of N and g as the ones
considered in this article, this does not seem to be an issue. Moreover, σ̃τ , σ̃ρ,1 and σ̃ρ,2 do
not depend on the estimation of any location parameter.

4. Small Sample Comparison of Classical and Robust Estimates

In this section, we want to study and compare through a simulation exercise the
behavior of the classical and robust variance estimators defined in (5)–(7). At this proposal,
we will firstly simulate random effect models according to (3) without any kind of con-
tamination. The objective of this first experiment is twofold. From one side, we want to
compare the behavior of classical and robust estimates in an ideal empirical environment.
From the other, it represents a benchmark for a fair assessment of the effects of outliers on
both estimates in the second set of simulations that involves contaminated samples.

In order to have an exhaustive view on the main patterns that characterize the estima-
tors in a finite-sample environment, the contaminated and uncontaminated simulations
will consider different combinations of settings regarding:

(i) the total number of observations N = ∑
g
j=1 nj;

(ii) the number of groups g, that in nuclear safeguards context corresponds to the number
of calibration or inspection periods;

(iii) balanced and unbalanced samples. The values of nj that describe the unbalanced cases
are provided in Table 1;

(iv) the ratio between the systematic variance component and the total variance: ψ2 = σ2
ς /σ2

τ .
Actually, looking at expression (4), the value of ψ2 represents the correlation between
observations in the same group. Fixing the value of the total variance to 1 (that is,
σ2

τ = σ2
ρ + σ2

ς = 1), we will consider three different cases:

- ψ2 = 0.25, that implies σς = 0.500 and σρ = 0.866;
- ψ2 = 0.5, that implies σρ = σς = 0.707;
- ψ2 = 0.75, that implies σς = 0.866 and σρ = 0.500.

Similar to [23], in each simulated sample, we considered three different contamina-
tion schemes:

(A) contamination of 10% of the random errors ρjk in different groups replaced by 6σρ;
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(B) contamination of 10% of the short-term systematic errors ς j, replaced by 6σς. For this
scheme, we skip the case g = 3, and when g = 6, we contaminate one systematic error
in each simulation, so slightly more than 10%;

(C) 10% of the random errors ρjk in different groups replaced by 6σρ and at least 10%
of the short-term systematic errors ς j, whose random errors are not contaminated,
replaced by 6σς. Whenever possible, the two contamination schemes do not involve
the same group. As before, we skip the case g = 3, and when g = 6 we contaminate
one systematic error in each simulation, so slightly more than 10%;

The programming environment used for the simulation exercise is MATLAB (release R2021a).
The codes for running and replicating our experiment are available upon request. They are
described in the Appendix A, where we also provide all the implementation details.

Before presenting the results, it is important to notice that condition (8) may lead to
two set of estimates for σ̃τ , one connected to σ̃ρ,1, and a second connected to σ̃ρ,2. However,
the simulations outcomes did not highlight relevant differences in the average behavior of
the two sets. Therefore, only the results obtained on the first will be presented.

Table 1. List of the nj values in unbalanced samples.

N g nj
30 3 4,10,16
30 6 3,3,5,5,7,7
60 6 4,4,8,12,16,16
60 10 4,4,5,5,6,6,7,7,8,8

100 10 4,4,7,7,10,10,13,13,16,16
100 20 3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7
200 20 4,4,4,4,7,7,7,7,10,10,10,10,13,13,13,13,16,16,16,16
200 40 3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7

4.1. Simulation Results—No Contamination

Figure 2 presents the values of the Mean Absolute Bias (MAB) multiplied by 100 of
the classical and robust variance components estimates obtained in the 100,000 simulations.
As expected, in all cases, the absolute biases sensibly decrease on average when N and g
increase. Similar patterns characterize the values of both classical and robust estimates,
with the only difference that the classical estimates always offer better performances than
the robust ones. There are only marginal differences between the MAB in balanced and
unbalanced samples, with the former slightly outperforming the latter. The value of ψ2 has,
instead, a remarkable effect on the outcomes. Increasing the value of ψ2 yields always to
worst estimates of στ and a more accurate estimation of σρ. The pattern of MAB for σρ is
also affected by the values of N and g: increasing g (for a fixed N) worsens the accuracy
of classical and robust estimators, whereas the opposite happens if we increase N (for
a fixed g). The estimates of στ , instead, seem to be only marginally influenced by the
combination of N and g. Finally, it is worth pointing out that σ̃ρ,2 provides always more
accurate estimates on average than σ̃ρ,1.

Figure 3 shows the estimated efficiencies of σ̃τ , σ̃ρ,1 and σ̃ρ,2. Following [24], in order
to obtain a natural measure of accuracy of the estimator, the calculation of the efficiency is
based on the standardized variance that, for a generic estimator SM, can be calculated as:

η(SM) = M×Var(SM)/Mean(SM)2 (9)

where Mean(SM) and Var(SM) refer to the values obtained from the simulations. The ratio
η(σ̂∗)/η(σ̃∗) between the standardized variances of the classical and the robust estimator
will then provide an estimate of the efficiency. Coherently to what proved in [16], the panels
of Figure 3 confirm that σ̃ρ,1 is less efficient than σ̃ρ,2, and that the efficiencies of both do
not depend in general on the ratio ψ2, or on the values of N and g. Even in small samples,
the estimated efficiency of σ̃ρ,2 is about 95% in balanced samples and 90% in unbalanced
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samples, whereas that one of σ̃ρ,1 oscillates around 65% in both cases. The estimated
efficiency of σ̃τ , instead, varies from 30% (when N and g are small) to 85% (for larger
values of N and g). The value of ψ2 has a marginal effect, whereas remarkable differences
characterize the value of the estimated efficiency of σ̃τ in balanced and unbalanced samples.

Concluding, simulations results on noncontaminated data provided a comprehensive
description of the finite-sample properties of classical and robust estimators of variance
components. Even though classical estimates resulted more accurate on average, the gap
with respect to the respective robust counterparts is limited. Also in terms of efficiency, the
choice of the robust alternative does not imply a remarkable loss, especially for σρ.

(a)

(b)

Figure 2. 100×MAB of the variance components estimates obtained in the 100,000 simulations
without contamination*. (a) 100×MAB of σ̂τ (classical estimator, solid line) and σ̃τ (robust estimator,
dashed line); (b) 100×MAB of σ̂ρ (classical estimator, solid line), σ̃ρ,1 (robust estimator, dashed line)
and σ̃ρ,2 (robust estimator, dotted line). * In all simulations στ = 1. The labels on the x-axis are in the
form N–g.
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Figure 3. Estimated efficiency of the robust estimators σ̃τ (solid line), σ̃ρ,1 (dashed line) and σ̃ρ,2

(dotted line) calculated on the 100,000 simulations without contamination*. * In all simulations
στ = 1. The labels on the x-axis are in the form N–g.

4.2. Simulation Results—Contaminated Samples

Figure 4 shows the effects of contamination (A) in terms of MAB on the classical and
robust estimates, and give the possibility to compare these results with the benchmark
case of no contamination. As expected, both figures highlight a remarkable increase
of the estimated bias of all estimators. However, robust estimators have the capacity
to limit the distortion yielded by outlying observations, showing more accuracy than
classical estimators. This is particularly evident for the estimates of σρ independently
of the simulation settings. As expected, the bigger efficiency of σ̃ρ,2 with respect to σ̃ρ,1
highlighted in Figure 3 is counterbalanced by a smaller accuracy in contaminated contexts.
Concerning the estimates of στ , the robust estimator clearly show more accurate outcomes
when ψ2 < 0.75, whereas when ψ2 = 0.75, σ̃τ is slightly outperformed by σ̂τ only in small
samples (i.e., N = 30). However, in empirical application on nuclear measurement data,
usually ψ2 ≤ 0.5, given that σς tends to be smaller than σρ [10].

Results concerning contamination (B) are displayed in Figure 5. Since the contam-
ination involves only the systematic component of model (2), both classical and robust
estimates of σρ are not affected by anomalous data and confirm the same results previously
observed in Figure 2b. Their MAB values are almost the same, and this explains why
in panel Figure 5b the grey lines (representing the results on contaminated samples) are
indistinguishable from the black lines (representing the results on samples without contam-
ination). σ̂τ and σ̃τ , instead, worsen their performances due to contamination. However,
once again, the robust version of the estimator limits the negative effects of the outliers and
provides more accurate estimates. This is particularly true when the samples are balanced,
and when ψ2 ≥ 0.50 in unbalanced designs.

Finally, Figure 6 presents the simulation results obtained for contamination (C). The
best results in terms of MAB offered by the robust estimators are quite evident. The two
robust estimators of σρ always provide remarkably smaller values of MAB than the classical
one, with again σ̃ρ,1 outperforming σ̃ρ,2. The same can be said also for σ̃τ , with the only
exception of small unbalanced samples, where the two estimators yield approximately the
same outcome.

Figure 7 shows in detail the simulated observations for a balanced sample of N = 60
observations in g = 6 groups under contamination (A). These data may mimic the situation
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where an inspector has to assess the measurements obtained in the sixth inspection period.
The assessment is usually based on the outcomes obtained in the previous five inspections,
and on the 3σ rule for the declaration of the outliers. This common practice implicitly
assumes that previous measurements are free from anomalies. The plot clearly shows
that, if this assumption does not hold, the outlier in the period of interest could remain
undetected. Robust estimators, instead, are calculated using also the values of O−I

O that we
aim to assess and, being only partially affected by past anomalous values, allow a correct
identification of the outlier in the last inspection.

(a)

(b)

Figure 4. 100× MAB of the variance components estimates obtained in the 100,000 simulations
without contamination (gray lines) and under contamination (A) (black lines)*. (a) 100×MAB of σ̂τ

(classical estimator, solid line) and σ̃τ (robust estimator, dashed line); (b) 100×MAB of σ̂ρ (classical
estimator, solid line), σ̃ρ,1 (robust estimator, dashed line) and σ̃ρ,2 (robust estimator, dotted line). * In
all simulations στ = 1. The labels on the x-axis are in the form N–g.
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(a)

(b)

Figure 5. 100×MAB of the variance components estimates obtained in the 100,000 simulations
without contamination (gray lines) and under contamination (B) (black lines)*. In panel Figure 5b,
black and grey lines overlap. (a) 100×MAB of σ̂τ (classical estimator, solid line) and σ̃τ (robust
estimator, dashed line); (b) 100×MAB of σ̂ρ (classical estimator, solid line), σ̃ρ,1 (robust estimator,
dashed line) and σ̃ρ,2 (robust estimator, dotted line). * In all simulations στ = 1. The labels on the
x-axis are in the form N–g.
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(a)

(b)

Figure 6. 100×MAB of the variance components estimates obtained in the 100,000 simulations
without contamination (gray lines) and under contamination (C) (black lines)*. (a) 100×MAB of σ̂τ

(classical estimator, solid line) and σ̃τ (robust estimator, dashed line); (b) 100×MAB of σ̂ρ (classical
estimator, solid line), σ̃ρ,1 (robust estimator, dashed line) and σ̃ρ,2 (robust estimator, dotted line). * In
all simulations στ = 1. The labels on the x-axis are in the form N–g.
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Figure 7. Simulated observations of a balanced sample with N = 60 and g = 6 under contamination
(A). Solid line: 3σ threshold calculated with the real value of the mean and of the total standard error
στ . Dotted line: 3σ threshold based on the real value of the mean and on the classical estimation
σ̂τ calculated with the data of the first five inspections. Dashed line: 3σ threshold based on the real
value of the mean and on the robust estimation σ̃τ .

5. Empirical Application

Figure 8 presents the (Ojk − Ijk)/Ojk values effectively registered in 6 inspection pe-
riods where impure Plutonium items were measured in attended mode. The 52 values
form an unbalanced sample, since the number of measurements in each of the 6 inspection
periods is 12, 8, 10, 10, 7 and 5. There are 4 values (highlighted in red) that are clearly far
from the general pattern. Posterior cross check between the operator and inspection mea-
surements led to a confirmation that those 4 values were inconsistent with the declarations
and that the corresponding measurements were actually outliers.

Classical estimates obtained for στ, σρ and σς are given respectively by 0.1315, 0.1133 and
0.0667. The robust method, instead, leads to σ̃ρ,1 = 0.0894, σ̃ρ,2 = 0.0958 and σ̃τ = 0.0869.
Therefore, in both cases, robust estimates satisfy condition Figure 8, and then we need to
put σ̃τ = σ̃ρ,∗, that in turn implies σ̃ς = 0. Therefore, the presence of the 4 anomalous data
had a twofold effect on the outcomes:

• classical estimates for στ are always larger than robust ones;
• differently from classical one, robust estimation does not detect any relevant short-term

systematic error component.

Coherently to what we observed in the simulations, the presence of outliers in the sample
yields an overestimation in the variance components that the robust methods is capable
to limit. The 3σ thresholds represented in the figure provide a further confirmation. The
classical ones, based on the sample mean and on σ̂τ , include almost all the outliers. This is
due to the effect that the 4 anomalies has on the calculation of both the sample mean and
the variance components. The robust ones, based on the median and on σ̃τ , are tighter and
more centered with the good measurements, given that the median is a robust estimator of
the central tendency, and its value is not affected by the anomalous data. As a result, the
four outliers are all outside the robust 3σ thresholds.
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Figure 8. Classical and Robust estimation of στ on a set of empirical data concerning impure
Plutonium items measured in attended mode. Dotted line: 3σ threshold based on the sample mean
and on the classical estimation σ̂τ . Dashed line: 3σ threshold based on the sample median and on
the robust estimation σ̃τ = σ̃ρ,1.

6. Conclusions

The availability of an efficient and unbiased estimation of the uncertainty components
in nuclear safety measurements is a fundamental element for a reliable detection of possible
data falsification by operators that could mask diversion. Top-down methods for UQ rely
fundamentally on modeling measurement data as a one-way random effect model with
within and between groups variance components, which are usually estimated through the
classical ANOVA expressions. However, the reliability of these estimates could be seriously
affected by the presence of outliers in the data.

The aim of this article was to introduce the use of robust approaches in the UQ of
nuclear safety measurements, and to analyze the general benefits in terms of estimates
accuracy and bias reduction. For this purpose, we proposed a robust estimator of the
variance components that combines several desirable statistical properties, i.e., suitable
breakdown point, high efficiency, closed expression. Simulation results and the empirical
application proved that the presence of even on single outlier may significantly affect the
reliability of classical estimates. The robust estimators, instead, have the capacity to handle
anomalous data, and to remarkably limit their negative effects on the final estimates.

Robust statistics offers many other alternative methods for estimating within and
between group variance. The promising outcomes obtained through the simulation ex-
ercise and the empirical application may be considered as a starting point for a broader
investigation aimed to compare different robust estimators for one-way random effect
models in simulated and empirical contexts, and to identify the more suitable one. Such
analysis will undoubtedly represent a solid contribution to the still ongoing development
of reliable UQ methods for error variance estimation.
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Appendix A. MATLAB Codes and Implementation Details

The whole simulation exercise is based on the following MATLAB codes developed
by the author and available upon request:

1. MonteCarlo.m

- INPUT: (i) Ng: a (g× 1) vector of integers representing the number of observation
in each group; (ii) sigmaRand: the value of σρ; (iii) sigmaSyst: the value of
σρ; (iv) contamination: the kind of contamination (A, B, C or empty for no
contamination); (v) nsim: the number of simulation to generate.

- OUTPUT: (i) outClassical: (nsim× 3) matrix containing the values of [σ̂τ σ̂ρ σ̂ς]
obtained in each simulation; (ii) outRobust1: (nsim × 3) matrix containing the
values of [σ̃τ σ̃ρ,1 σ̃ς,1] obtained in each simulation; (iii) outRobust2: (nsim × 3)
matrix containing the values of [σ̃τ σ̃ρ,2 σ̃ς,2] obtained in each simulation.

2. Gestimator.m

- INPUT: (i) y: (N × 1) vector of observations; (ii) g: (N × 1) vector of integers
representing that group of each observation.

- OUTPUT: (i) sigmaTot1: the value obtained for σ̃τ ; (ii) sigmaRand1: the value
obtained for σ̃ρ,1; (iii) sigmaSyst1: the value obtained for σ̃ς,1; (iv) sigmaRand2:
the value obtained for σ̃ρ,2; (v) sigmaSyst2: the value obtained for σ̃ς,2;
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