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Abstract: At present, the success of most intelligent fault diagnosis methods is heavily dependent
on large datasets of artificial simulation faults (ASF), which have not been widely used in practice
because it is often costly to obtain a large number of samples in reality. Fortunately, various faults
can be easily simulated in the laboratory, and these simulated faults contain a lot of fault diagnosis
knowledge. In this study, based on a Siamese network framework, we propose a bearing fault
diagnosis based on few-shot transfer learning across different datasets (cross-machine), using the
knowledge of ASF to diagnose bearings with natural faults (NF). First of all, the model obtains a good
feature encoder in the source domain, then defines a fault support set for comparison, and finally
adjusts the support set with a very small number of target domain samples to improve the fault
diagnosis performance of the model. We carried out experimental verification from many aspects
on the ASF and NF datasets provided by Case Western Reserve University (CWRU) and Paderborn
University (PU). The results show that the proposed method can fully learn diagnostic knowledge in
different ASF datasets and sample numbers, and effectively use this knowledge to accurately identify
the health state of the NF bearing, which has strong generalization and robustness. Our method does
not need second training, which may be more convenient in some practical applications. Finally, we
also discuss the possible limitations of this method.

Keywords: fault diagnosis; few-shot; transfer learning; across different datasets

1. Introduction

Bearings are indispensable parts of much important machinery and equipment, which
may lead to serious economic losses and casualties in the event of failure [1]. Therefore,
it is essential to obtain the state of the bearing quickly and accurately. In recent years,
machine learning has been applied to intelligent fault diagnosis of bearings because of
its powerful ability. Nowadays, many well-known machine learning methods, such as
support vector machine (SVM) [2], deep Boltzmann machine (DBM) [3], convolution neural
network (CNN) [4], generate adversarial network (GAN) [5], and so on, have achieved
excellent results. The success of most studies, however, are heavily dependent on a large
number of artificial simulated faults (ASF) data, which has the following two conditions:
(1) there is a large amount of marked data with fault information; and (2) the training data
and testing data come from the same probability distribution. However, for a variety of
reasons [6], it is impractical to obtain a large number of actual fault data in the real world,
which cannot meet the first condition; the second condition cannot be satisfied because of
the great difference in the feature distribution between the ASF and natural faults (NF).
Therefore, many research results are not applicable to the working environment of real
machines and cannot be widely applied in industrial production.

Recently, some researchers have tried to expand the amount of data by means of
data over-sampling [7,8] and data generation [9] to solve the dilemma of limited fault
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data. However, these methods focus on the size of fault data and the data quality cannot
be guaranteed, so their contribution to improving the current intelligent fault diagnosis
performance is limited. For instance, due to the marginalization of distribution, there is a
strong linear relationship between the generated data samples and training samples [10].
Subsequently, some scholars focused on few-shot learning (such as Matching networks [11],
Siamese networks [12] and Relation networks [13]) and transfer learning. Few-shot learning
is expected to have the same ability as human beings in the process of recognizing new
species, acquiring knowledge based on a few instances and guiding new tasks [14]. The
diagnostic knowledge that transfer learning can learn in the source domain is used in the
target domain [15]. Few-shot learning and transfer learning are considered to be the most
promising fault diagnosis technologies for practical applications, and they have been the
main research hotspots in recent years [16].

In the aspect of few-shot learning, Ren et al. [17] proposed a capsule automatic encoder
model based on automatic encoder and capsule network. Experiments show that the model
has the ability to extract a variety of important features from a small number of samples, and
can identify fault categories quickly and accurately. Zhang et al. [18] proposed a Siamese
network model with a first-layer wide kernel convolution network. Through experimental
verification under the conditions of limited data, new fault categories and noise, good fault
identification accuracy is achieved. Li et al. [19] used sparse automatic encoders based on
deep non-negative constraints to perform diagnosis under the condition of a small amount
of fault data, and achieved certain results, but the classification accuracy is significantly
reduced in the case of very few samples. Feng et al. [20] proposed a semi-supervised
attention-attracting meta-learning network, which uses unlabeled data to refine the model
and accurately identify faults. Li et al. [21] proposed a new model-agnostic meta-learning
method for fault diagnosis under complex working conditions, and acquired knowledge
through the diagnosis task of known working conditions to quickly diagnose bearing
faults under unknown operating conditions. Yu et al. [22] integrated the few-shot learning
strategy into a multi-label convolutional neural network for bearing fault diagnosis, and
completed the diagnosis task with limited samples. In addition, many scholars [23–26]
have proposed different few-shot learning methods to achieve fault diagnosis, but most of
these methods rely on appropriate laboratory artificial fault data.

In the aspect of transfer learning, Wang et al. [27] developed a novel transfer learning
method based on a Siamese network, and used the label trimming method to improve
the classification performance of the model under different working conditions and cross
bearing positions. He et al. [28] designed a new type of deep multi-wavelet automatic
encoder to extract the knowledge of the source domain which is similar to the feature
distribution of the target domain for fault diagnosis in the new domain. Liu et al. [29]
proposed a new adversarial network focusing on the performance of bearing fault diagnosis
under different working conditions, and enhanced the domain adaptability through the
conditional countermeasure mechanism to improve the diagnosis effect. In addition, some
scholars have tried to transfer from ASF to NF. For example, Wu et al. [30] used six different
fine-tuning-based methods and a meta-learning model to carry out artificial-natural fault
transfer experiments. The results are compared, and it is concluded that meta-learning
is better in the relatively simple finite sample transfer task. Wang et al. [6] proposed an
artificial-natural fault transfer learning method based on the reinforcement relation network
(RRN), and improved the classification performance of the network by label smoothing
and AdaBound algorithm. The data used in the above two articles, however, are from the
same machine. As a result, some researchers have tried to transfer diagnostic knowledge
from one machine to another. Yang et al. [31] proposed a feature-based transfer neural
network to reduce the distribution differences and inter-class distances of the learned
transferable features through multi-layer domain adaptation and regularization conditions
for pseudo-label learning, utilizing the diagnostic knowledge of laboratory machines to
identify the health status of real-case machines. Liang et al. [32] proposed a depth domain
adaptive transfer learning network and carried out experiments on the fault data of different
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machines, it is proved that it is effective to collect tagged fault data from one machine for
training and to test another machine.

To sum up, although few-shot learning has achieved certain achievements in fault
diagnosis with limited samples, these achievements are based on the standard dataset of
ASF, and there is a great difference between real fault and simulated fault, so it cannot be
directly applied to real industrial machines. In the current research on transfer learning,
whether between different working conditions or between ASF and NF, the source domain
and target domain of most experiments come from the same dataset (the source and target
domain data is collected on the same test bench or machine) and follow the same feature
distribution. This ignores a major problem: if you want to apply it to a real machine, you
need to obtain a large amount of appropriate source domain data in the same real machine,
which is not feasible. Therefore, some researchers try to obtain a large amount of fault data
from a machine that is convenient for data collection, and extract diagnostic knowledge
from it to identify the health status of another machine, and we believe that this is a feasible
method to solve the problem that a large number of fault data cannot be obtained in real
industrial production. The reason for this is that it is relatively easy to obtain ASF data in
the laboratory, which includes the diagnostic knowledge of real machine bearings.

In this paper, we propose a bearing fault diagnosis method based on few-shot transfer
learning across different datasets (cross-machine) inspired by the fine-tuning-based method.
Our model is based on the framework of a Siamese network and has the ability of few-shot
learning. First of all, the model is trained with the ASF data, and the available diagnosis
knowledge is learned. Then, a fault support set for comparison is defined and it is assumed
that a very small number of NF samples can be obtained. These few NF samples are input
directly into the support set or replace the original samples to improve the generalization
ability of the model. Finally, the knowledge of ASF is used to effectively identify the health
state of the new machine bearings. The main innovations and contributions of this paper
are as follows:

(1) In view of the problems that most of the current intelligent fault diagnosis methods
cannot be directly applied to industry, a few-shot transfer learning method across
different datasets is proposed, which can use the diagnostic knowledge learned from
ASF data to effectively identify the health state of the new machine bearings.

(2) For the first time, a very small number of target domain samples are used to replace
the original samples of the support set in fault diagnosis, which improves the general-
ization ability of the model, and has very high stability and accuracy even in different
datasets (ASF-NF) with great differences in feature space distribution.

(3) Several experiments are designed to compare and verify many aspects of the proposed
method, which has achieved the expected results, and our method does not need
secondary training, which will be more convenient.

The structure of this paper is as follows: Section 2 introduces the theoretical back-
ground of the method proposed in this paper. Section 3 introduces the proposed method
and our model. Section 4 carries on the experiment and analysis from different aspects.
Section 5 gives the main conclusions.

2. Basic Theory
2.1. Few-Shot Learning Strategy

When human beings recognize a new thing, they may only need to learn knowledge
from a few instances to be able to accurately identify such things. Few-shot learning is
proposed in order to acquire this human skill. The general strategy of few-shot learning
based on a Siamese network is shown in Figure 1. Different from the general deep learning
strategy, the input during training is a pair of the same or different samples (x1, x2), one
only needs to label the sample pairs (x1, x2) with the same or different class. The output is
the probability of similarity between sample pairs (x1, x2). When testing, there are mainly
two strategies: one-shot k-way and N-shot k-way. One-shot k-way refers to the k categories
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in the support set, each class has only one instance; and N-shot k-way means that there are
k categories in the support set, and each class has N instances.

Figure 1. General strategies of few-shot learning.

In the one-shot k-way test, a test sample x̂ that need to be classified and a support set
are given, the support set is defined as shown in Equation (1). Next, the model judges the
similarity between samples (x1, x2, x3, . . . , xk) in the support set and the test sample x̂, and
selects the highest similarity as the same class of x̂, as shown in Equation (2).

S = {(x1, y1), . . . , (xk, yk)} (1)

The y is the label of the class, k represents the kth fault class.

C(x̂, S) = argmax(P(x̂, xc)), xc ∈ S, (2)

The P is the probability of similarity, C is the fault class most similar to the test sample x̂.
In the N-shot k-way test, there are k classes in the support set, each class has N different

instances, such as shown in Equation (3), and the support set is shown in Equation (4).
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The H is a set containing multiple instances of the same class, k represents the kth fault
class, N represents the Nth instance in the same fault class.

Sk = {H1, H2 . . . , Hk} (4)

The model will judge the similarity between the k*N instances of the support set and
the test samples x̂, and select the highest similarity as the same class of x̂, as shown in
Equation (5).

C(x̂, Sk) = argmax(P(x̂, xc)), xc ∈ Sk (5)

Here P and C are the same as Equation (2), but the difference lies in the difference
between S and Sk.

2.2. Fine-Tuning-Based Method

The main goal of fault diagnosis based on transfer learning is to transfer the learned
knowledge from the source domain to the target domain. Among the many current transfer
learning strategies, the fine-tuning-based method has been widely studied and proved
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to be effective. We are inspired by the fine-tuning-based method and put forward our
method strategy.

The learning process of fine-tuning-based method is divided into two stages. First, the
network model learns the knowledge of diagnosis in the source domain; then, fine-tuning
the full connection layer in the target domain to obtain a new classifier as shown in Figure 2.

Figure 2. Transfer learning based on fine-tuning.

3. The Proposed Method
3.1. The Proposed Few-Shot Transfer Learning Methods

We are inspired by the fine-tuning-based method and put forward our method strategy.
From Section 2, we can see that the support set plays an important reference role in the
Siamese network. The test sample x examples are always compared with the samples in the
support set, and the most similar examples in the support set are selected for classification,
as shown in Equations (2) and (5). In the few-shot transfer learning based on a Siamese
network, we assume that a small amount of target domain data has been obtained and use
them to adjust the support set, as in Figure 3. The following two few-shot transfer learning
methods are proposed.

Figure 3. The proposed few-shot transfer learning methods.
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(1) S(s+t): Directly add target domain samples to the support set.

This method adds a very small amount of target domain samples (xt, yt) to the original
support set after the training with source domain data, and finally tested. In this case, the
expression of the support set is Equation (6). In this paper, we uniformly use S(s+t) to
denote the method of directly add target domain samples to the support set.

S = {(xs1, ys1)..(xsk, ysk), (xt1, yt1)..(xtk, ytk)} (6)

The s in xs represents from the source domain, t in xt represents from the target
domain.

(2) S(t): Replace the original sample in the support set with the target domain sample.

In this method, after training the model with source domain data, a very small number
of target domain samples are used to replace the original samples in the support set, and
the model is finally tested. At this point, the support set is shown in Equation (7). In this
paper, we uniformly use S(t) to denote the replacement of the original sample in the support
set with the target domain sample.

S = {(xt1, yt1), (xt2, yt2) . . . , (xtk, ytk)} (7)

The t in xt represents the target domain.

3.2. Model

Figure 4 shows the model we use. This is a Siamese network with a deep convolution
neural network with a wide first layer core (WDCNN). In this model, the two WDCNN
have the same structure and parameters, and the weights are shared. The setting of the
WDCNN network architecture is shown in Table 1, which is consistent with the setting in
reference [33]. This design strategy is used because the vibration signal is more sensitive to
the overall correlation in the time domain or frequency domain, and the useful information
in the signal will be lost if the first layer core is too small, and because all layers are
small cores which may be affected by high-frequency noise common in the industrial
environment, resulting in poor performance of feature coding. It is proved that WDCNN
with the first layer of wide kernel has good anti-noise ability, generalization ability and
robustness. The model consists of a series of convolution layers, the step size of the first
layer is set to 16, and the step size of the other layers is fixed to 1. In order to optimize
the performance of the model, the number of convolution filters is a multiple of 16. In the
previous convolution layer, the Relu activation function is used to encode the features, and
the full connection layer uses the sigmoid activation function to map the features.

Figure 4. Few-shot learning model based on a Siamese network.
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Table 1. Structural parameter of WDCNN.

No Layer Type Kernel
Size/Stride

Kernel
Number

Output Size
(Width × Depth) Padding

1 Conv1 64 × 1/16 × 1 16 128 × 16 same
2 Pooling1 2 × 1/2 × 1 16 64 × 16 valid
3 Conv2 3 × 1/1 × 1 32 64 × 32 same
4 Pooling2 2 × 1/2 × 1 32 32 × 32 valid
5 Conv3 3 × 1/1 × 1 64 32 × 64 same
6 Pooling3 2 × 1/2 × 1 64 16 × 64 valid
7 Conv4 3 × 1/1 × 1 64 16 × 64 same
8 Pooling4 2 × 1/2 × 1 64 8 × 64 valid
9 Conv5 3 × 1/1 × 1 64 6 × 64 valid
10 Pooling5 2 × 1/2 × 1 64 3 × 64 valid
11 Fully-connected 100 1 100 × 1

Input is a pair of samples (x1, x2), which can be the same or different. The output is the
probability of similarity between the sample pairs. Firstly, the metric distance between the
outputs of the network is optimized by Equation (8), where f represents a deep convolution
network. Equation (9) determines the probability of similarity, where sigm represents the
Sigmoid function and FC is a dense fully connected layer.

d2
f

(
xi

1, xi
2

)
= ‖ f

(
xi

1

)
− f

(
xi

2

)
‖ (8)

P
(

xi
1, xi

2

)
= sigm(FC

(
d2

f

(
xi

1, xi
2

))
(9)

Let M represents the minibatch size, where i indexes the ith minibatch, let y(i) =(
x(i)1 , x(i)2

)
be a length-M vector which contains the labels for the minibatch. Now we as-

sume y(i) equal to 1 when
(

x(i)1 , x(i)2

)
is the same class, and y(i) equal to 0 when

(
x(i)1 , x(i)2

)
is different class. We impose a regularized cross-entropy objective on our binary classifier
of the following form:

L
(

x(i)1 , x(i)2

)
= y(i) log

(
p
(

x(i)1 , x(i)2

))
+

(1− y(i)) log
(

1− p
(

x(i)1 , x(i)2

))
+λT

∣∣w∣∣2
(10)

The optimizer we chose is Adam, which calculates individual adaptive learning rates.
Update parameters through Equation (11):

m(T+1)
w | = β1m(T)

w + (1− β1)∇wL(T)

v(T+1)
w | = β2v(T)w + (1− β2)

(
∇wL(T)

)2

m̂w | = m(T+1)
w

1−(β1)
T+1

v̂w | = v(T+1)
w

1−(β2)
T+1

w(T+1) | = w(T) − η m̂w√
v̂w+ε

(11)

where w(T+1) means the parameters at epoch T, L(T) is the loss function, βi is the forgetting
factor of the ith moment of the gradient, m and v are moving averages.

4. Experiment and Results
4.1. Data Introduction and Processing

Like most deep learning algorithms, in order to confirm our proposed transfer learning
strategy, we need to prepare appropriate data samples. We selected the data provided
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by Case Western Reserve University (CWRU) [34] as the ASF datasets, that is, the source
domain. They are collected from the experimental platform of CWRU (shown in Figure 5),
and all use the single point damage of electro-discharge machining (EDM). The vibration
acceleration signal of the faulty bearing is collected by the accelerometer, and the sampling
frequency is 12 kHz. The bearings selected in this paper are installed at the drive end, and
there are three types of bearings: inner ring fault bearing, outer ring fault bearing and
normal bearing. The parameters are shown in Table 2.

Figure 5. Bearing test bench of CWRU.

Table 2. Source domain data parameters.

Dataset Name Name Fault Location Speed (rpm) Loads (hp)

0.021-OuterRace Outer ring 1772 1
A 0.021-InnerRace Inner ring 1772 1

Normal None 1772 1

0.021-OuterRace Outer ring 1750 2
B 0.021-InnerRace Inner ring 1750 2

Normal None 1750 2

0.021-OuterRace Outer ring 1730 3
C 0.021-InnerRace Inner ring 1730 3

Normal None 1730 3

On the modular test bench (Figure 6), the Paderborn University (PU) researchers with
6 sets of normal bearing data, 12 sets of artificially damaged bearing data of three fault
types, and 14 groups of naturally damaged bearing data caused by accelerating lifetime
test [35]. Damage levels are divided according to the percentage of length of the damage
relative to pitch circumference is calculated (Table 3). The vibration acceleration signal of
the faulty bearing is collected by the accelerometer, and the sampling frequency is 64 kHz.
We choose the natural damage dataset of PU as the target domain data, and the details of
the parameters are shown in Table 4.

Figure 6. Modular test bench of PU.
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Table 3. Damage levels to determine the extent of damage.

Damage
Level Assigned Percentage Values Limits for Bearing 6203

1 0–2% ≤2 mm
2 2–5% >2 mm

Table 4. Target domain data parameters.

Dataset
Name Name Fault

Location

Damage
(Main Mode

and Symptom)

Damage
Level

Damage
Feature

Load Torque
(Nm)

Speed
(rpm)

Radial
Force (N)

D
KI04 Inner ring Fatigue: pitting 1 Single 0.7 1500 1000
KA04 Outer ring Fatigue: pitting 1 Single 0.7 1500 1000
K005 Normal None None None 0.7 1500 1000

E
KI16 Inner ring Fatigue: pitting 2 Single 0.7 1500 1000
KA16 Outer ring Fatigue: pitting 2 Single 0.7 1500 1000
K004 Normal None None None 0.7 1500 1000

We sampled and processed the CWRU source domain data in Table 2, taking all
2048 data points as a sample. Because there are not enough data points in the original
data, the number of samples that can be intercepted is too small, and when the number
of training samples is very small, it is easy to cause over-fitting. Therefore, we use the
method of overlapping sampling as shown in Figure 7a. There is a partial overlap between
each sample and the subsequent sample, with an offset of 80 and the training samples are
obtained. Similarly, we process the PU natural damage fault data as shown in Figure 7b.
Finally, the testing samples are obtained and a small number of samples for adjustment
support set (SNSASS) are obtained. It is worth noting that the testing samples and SNSASS
are independent and not duplicated. SNSASS can be seen as a small number of samples of
real machines that can be obtained. The experimental samples are shown in Table 5.

Figure 7. Data processing: (a) source domain data processing, (b) target domain data processing.

Table 5. Experimental samples.

Sample Purpose Inner Ring
0

Outer Ring
1

Normal
2 Total

Source domain Training 660 660 660 1980

Target domain SNSASS 5 5 5 15
Testing 75 75 75 225

4.2. S(s), S(s+t) and S(t) Analysis

To verify the validity of our proposed transfer method, we performed the following
three experiments as shown in Table 6.
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Table 6. Eight kinds of experiments.

Number Experiment
Name Model Support Set

1 S(s) Siamese network Training sample
2 S(s+t) Siamese network Training sample and SNSASS
3 S(t) Siamese network SNSASS

(1) S(s): direct transfer method (baseline).

Direct transfer method is a simple method without any optimization and adjustment
of fixed network parameters. This method uses source domain data for training and
directly uses target domain data for testing. In this experiment, the support set of the direct
transfer method based on a Siamese network is shown Equation (12), and the samples are
all training samples from the source domain. Direct transfer method based on the Siamese
network is expressed by S(s).

S = {(xs1, ys1), (xs2, ys2) . . . , (xsk, ysk)} (12)

The s in xs represents from the source domain.
In the experiment of S(s), we use the ASF data from CWRU to train and learn in the

Adam optimization program, the epochs of training are 90, and batch size chooses 64, and
the diagnostic knowledge learned is fixed. In the testing process, we directly input the NF
samples provided by PU into the model for feature extraction, and then select the samples
that are most similar to the test samples from the support set (the samples in the support
set are training samples), and think that they are the same class.

(2) S(s+t): directly add target domain samples to the support set.

The training process is the same as that of (1). Before testing, however, SNSASS are
added to the support set as a classification reference. The testing process is the same as that
of (1), except that the support set contains both training samples and SNSASS.

(3) S(t): replace the original samples in the support set with the target domain samples.

In the experiment of S(t), the process of training stage is consistent with that of (1),
and then all the samples of the original support set are replaced by SNSASS (the sample in
the support set at this time is SNSASS). In the process of testing, input PU samples to test
and obtain the results.

First of all, we verify the performance of S(s) (baseline), S(s+t) and S(t) in A→D, B→D,
C→D, A→E, B→E and C→E transfer tasks, each experiment is carried out 10 times, and
finally take the average. The experimental results are shown in Figure 8.

Figure 8. The results of S(s) (baseline), S(s+t) and S(t) in different transfer learning tasks.
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It can be seen from Figure 8 that S(t) has an absolute advantage in all tasks. The accuracy
is more than 89.69%, which is much higher than the other two methods, 42.18% higher than
S(s) in C→D. This is because, based on the S(t) learning theory, the instances of the support
set are all SNSASS (xt, yt) from the target domain, and the spatial distribution of the feature
space of the test samples x̂ that need to be classified is very similar to that of xt, so it is easy
to find similar examples in the support set and regard them as the same class of fault. The
experimental results of S(s) and S(s+t) are very close, but in most cases the accuracy of S(s+t)
is slightly higher than that of S(s). This is because the support set of S(s+t) has a small number
of SNSASS. Based on the few-shot learning theory (see Section 2), these SNSASS can help the
test sample x̂ to better find the most similar class to itself. However, its number accounts for
a small proportion (see Equation (13), η = 15

1980+15 ≈ 0.75%) in the support set, which cannot
bring great performance improvement as S(t) (η = 15

15 = 100%) does.

η =
nSNSASS

nSNSASS + nTraining
(13)

where η is the proportion of the number of SNSASS in the total quantity. nSNSASS is the
number of SNSASS. nTraining is the number of training sample.

In order to further verify the effect of η on S(s+t) and S(t), we gradually increase the
number of SNSASS and repeat the experiment again, each experiment is repeated 10 times,
and the result is shown in Figure 9. As can be seen from Figure 9a, with the increase in
the number of SNSASS (η increase), the accuracy of S(s+t) does not increase linearly, but it
shows an increasing trend as a whole, especially in A→D, B→D and C→D experiments.
However, with the increase in SNSASS, the performance of S(t) has not been improved as
shown in Figure 9b, and the accuracy fluctuates within an allowable error range. In other
words, if we can obtain a small amount of target domain data, S(t) can give full play to
its performance.

Figure 9. The curve of accuracy with the increase in the number of SNSASS. (a) the results of S(s+t).
(b) the results of S(t).

4.3. Comparisons with Other Methods

We also contrast our method with some popular methods, which include WDCNN [18,33],
CNN_MMD [36], CNN_FT [37], DANN [38] and MRN [30]. It should be noted that we set
the experimental parameters to the best case according to the characteristics of each method,
including data format, hyperparameters, epochs, and so on. The number of training samples
is 1980, the number of SNSASS is 15, and the number of test samples is 225. Similarly, each
method is tested 10 times in the A→D, B→D, C→D, A→E, B→E and C→E transfer tasks in
turn, and the results are averaged. The experimental results are shown in Figure 10.
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Figure 10. Experimental results.

Experiments show that S(t)_5-shot achieves the highest accuracy in all transfer learning
tasks, with an average of 96.53%, and S(t)_1-shot ranks second with an average of 94.63%,
followed by MRU, CNN_FT, DANN, S(s+t), S(s), CNN_MMD. There is no doubt that
WDCNN performs the worst among all transfer learning tasks, with an average accuracy of
only 44.86%. Of course, we know that it is unfair to compare WDCNN with these advanced
methods, but it also reflects the difficulty of these transfer learning tasks. After all, there
is a big gap between the fault features of ASF and those of NF. It is also evident from the
figure that in almost all methods (except WDCNN) the results of A→D, B→D and C→D
are worse than A→E, B→E and C→E, the reason is that D’s lower damage (level 1 damage)
level than E (level 2 damage), E’s more serious damage and more obvious failure features.
Learning the knowledge of A, B and C breakdown to diagnose E would be better.

Figure 11 shows the standard deviation of 10 repeated experiments for each method
in the A→D, B→D, C→D, A→E, B→E and C→E transfer learning tasks. As can be seen
from Figure 11, S(t)_5-shot has the smallest standard deviation among all transfer learning
tasks with an average of 2.66%, followed by S(t)_1-shot with an average of 3.53%, much
smaller than other methods. Except that the average standard deviation of MRN is 8.45%,
the rest are more than 10%, which means that it is difficult to learn diagnosis knowledge
from ASF to diagnose NF, resulting in very unstable diagnosis results of other methods.
Simultaneously, it is demonstrated that S(t) has much higher stability than other methods.

Figure 11. The standard deviation of 10 repeated experiments for each method.
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4.4. The Influence of Different Source Domain and the Number of Training Samples

It is not only the quality of the data in the source domain that is very important, but the
quantity of the data is also important. It is very important to select the appropriate bearing
fault source domain data and quantitative training model, but in the actual industrial
production, it is difficult to determine the appropriate source domain data. Therefore,
in this section we discuss the harshness of the proposed method on the source domain
data. We selected several relatively well-performing methods for comparison, Figure 12
is the result curve of DANN, MRN, CNN_FT and S(t)_1-shot learning fault diagnosis
knowledge from datasets A, B and C, respectively, and used it to diagnose D and E. It can
be clearly seen that DANN, MRN and CNN_FT learns knowledge from different source
domains and fixes the model, which leads to great differences in experimental results.
The reason is that there is a big gap between the working conditions of A (1772 rpm),
B (1750 rpm) and C (1730 rpm) in speed. However, compared with other methods, the
result of S(t)_1-shot learning from A, B and C to diagnose D and E has only a small change
and a slight downward trend, indicating that S(t) has good ability to learn and can be well
leverage knowledge of the source domain. The reasons for the slight downward trend
with A-B-C are as follows: according to the speed of A, B and C, we think that the working
condition of A is more complex than that of B, and that of B is more complex than that of C.
The model can learn more obvious fault features under more complex working conditions,
so as to better complete the transfer task. In [18,21,39], the authors have also obtained a
similar conclusion.

Figure 12. The variation of experimental results with different source domains.

More complex working condition will have more diagnostic knowledge. Next, we
want to explore the influence of different fault diameters of the source domain bearing.
Therefore, an additional small experiment was performed here. Following the principle
of control variables, CWRU data (the load is 3 hp) with fault diameters of 0.021, 0.014,
and 0.007 inches were used as training sets and tested in D and E, the result is shown
in Figure 13.

,--., ,--., 
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S(t)_l- MRN CNN_F DANN S(t)_l- MRN CNN_FT DANN 
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0.007 93.07 83.67 64.44 63.77 0.007 98.58 98.17 85.51 81.03 

(a)-D (b)-E 

Figure 13. Results of training in different fault degrees, (a) tested in D. (b) tested in E.
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As can be seen in Figure 13, S(t) effectively learns diagnostic knowledge from different
fault diameters and shows the best performance, followed by MRN, and the worst is
DANN, which surprises us with just over 20% in 0.014 inches. However, we failed to find
the rule that the fault diameters affect the performance of the model, which may be due to
the big difference between ASF and NF.

In order to explore the performance of various methods under different sample num-
bers, the following groups of experiments were carried out when the number of training
samples was 90, 300, 600, 1200, 1500 and 1980. As shown in Figure 14, it presents the curve
of all experimental results with the number of training samples. Incredibly, the experimen-
tal results do not improve with the increase in the number of training samples, but show a
special curve shape. It is because having too small a number of training samples will cause
the model to learn insufficient knowledge that can be used in the target domain, resulting
in poor performance when diagnosing in the target domain; and having too many training
samples will cause the learned knowledge to be too focused on the source domain, which is
not applicable when it is transferred to the target domain. However, compared with other
methods, the results of S(t) do not change greatly with the number of data samples, which
shows that the dependence of S(t) method on data samples is very small and stable. This
is because the few-shot learning strategy of S(t) can learn and use knowledge in a small
number of training samples and is not sensitive to the growth of data.

Figure 14. Variation of diagnostic results with different numbers of training samples.

Assuming that a small sample of the target domain is obtained, similarly to fine-
tuning-based methods, S(t) can improve the performance of the model in transfer learning.
However, after obtaining the new target domain data, fine-tuning-based methods still need
to train the models that have been trained in the source domain. The S(t) method does
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not need a second training, but only needs to input these small target domain samples
into the support set, which is more convenient than fine-tuning-based methods in some
practical applications.

5. Conclusions

In this paper, it is established that there is still a long distance between the research of
intelligent fault diagnosis and the practical industrial application. A bearing fault diagnosis
based on few-shot transfer learning across different datasets is proposed, which uses a
very small number of target domain samples to adjust the support set to improve the
generalization performance of the model. Many groups of transfer experiments are carried
out by using the ASF dataset of CWRU and the NF dataset of PU. The conclusions are
as follows:

(1) With only a small amount of SNSASS, S(t) method greatly improves the accuracy
of fault classification, and the accuracy of S(s+t) is not significantly improved, but
increases with the increase in the number of SNSASS.

(2) Compared with other methods, the proposed S(t) method has the highest accuracy in
all cases and is also the most stable method.

(3) S(t) can fully learn diagnostic knowledge in different source domains and sample
numbers, and effectively use this knowledge to identify the health state of the target
bearing, which has strong generalization and robustness. In addition, unlike the
fine-tuning-based method, S(t) does not need secondary training, which is more
convenient in some practical applications.

S(t) provides a feasible way to apply laboratory data knowledge to real machine fault
diagnosis, solves the difficulty that a large amount of data cannot be collected in the real
world, and also provides a new idea and method for transfer learning. However, obtaining
a small amount of target domain data (SNSASS) is the key to the S(t) method. In some cases
of actual industrial production, it is also not easy to obtain a small amount of target domain
data, which is a limitation of the S(t) method. At the same time, although the difference
between ASF and NF brings great challenges to the transfer learning tasks, because of
the lack of available data, we were only able to perform three classification tasks. More
classification experiments and verification in more datasets can be performed in the future.
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