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Abstract: This article mainly studies first-order coherence related to the robustness of the triplex
MASs consensus models with partial complete graph structures; the performance index is studied
through algebraic graph theory. The topologies of the novel triplex networks are generated by
graph operations and the approach of graph spectra is applied to calculate the first-order network
coherence. The coherence asymptotic behaviours of the three cases of the partial complete structures
are analysed and compared. We find that under the condition that the number of nodes in partial
complete substructures n tends to infinity, the coherence asymptotic behaviour of the two sorts
of non-isomorphic three-layered networks will be increased by r−1

2(r+1) , which is irrelevant to the
peripheral vertices number p; when p tends to infinity, adding star copies to the original triplex
topologies will reverse the original size relationship of the coherence under consideration of the triplex
networks. Finally, the coherence of the three-layered networks with the same sorts of parameters, but
non-isomorphic graphs, are simulated to verify the results.

Keywords: multi-agent system; consensus; coherence; Cartesian product; Laplacian spectrum

1. Introduction

The consensus problem is a significant research field of multi-agent systems(MASs);
it requires that all nodes in the networked system reach a common physical state value
based on some control protocols. The nodes are designed to cooperate effectively under
the topologies of the system in order to reach the predetermined aims.

As a significant interdisciplinary field, consensus-related research has received much
attention from both engineers and scholars in the past two decades, and there exist many
applications or research works on the consensus problem, for instances, formation control,
sensor networks, decision making, and so on. Scholars have conducted significant valuable
research on consensus from various aspects, such as the order of system (first or second
order [1–19]), ways of communication (continuous or intermittent [4,7], control methods
(adaptive control [5], intermittent control [7], sliding mode control [19]), convergence time
(finite time or fixed time [6,8]) and so on.

For solving consensus problems, the connecting relations among nodes are charac-
terised by the graph of the network, and the convergence index of the dynamics model,
such as consensus speed [1,9] and network coherence [11–16], can be determined by the
second smallest Laplacian eigenvalue λ2 and the Laplacian spectrum. Similarly, as a branch
of coordination problems, synchronization problems are always connected with the notion
of system topologies [20–25].

There exists significant coordination-related research on the Laplacian eigenvalues [1,9–22]
of the network graph. In these enlightening works, Ref. [1] has showed that the algebraic
connectivity λ2 of the system topology can characterise the speed of the convergence

Entropy 2022, 24, 1296. https://doi.org/10.3390/e24091296 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24091296
https://doi.org/10.3390/e24091296
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24091296
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24091296?type=check_update&version=2


Entropy 2022, 24, 1296 2 of 15

process of the system. Ref. [10] has investigated how the Laplacian eigenvalues deter-
mines the robustness, and derived the consensus speed and the H2 norms of some classic
network structures.

The concept of network coherence has been proposed in [11,12], and the fact that the
robustness-related coherence can be characterised by the nonzero Laplacian eigenvalues
was obtained. In Ref. [14], an analytical expression for the leader–follower coherence is
determined depending on the number of leader nodes and network parameters. In [15],
based on the tree construction, the authors show that the consensus in symmetric and
asymmetric trees becomes better with an increasing number of leader nodes.

In recent years, multilayered structure has become a hot research topic of complex
networks [26,27], and it has many real examples of application, such as interactions between
the internet and power grid, and aviation and transportation networks.

Since many real-world networks have multi-layered topologies, it is natural and
meaningful to extend the application of the Laplacian spectrum for consensus theory to
multi-layered topologies. From the view of application, the star-shaped structure is a sort
of classic computer network graph, and it is widely studied in many fields, including the
coordination-related problem [10,16,17,21,22,24,28]. It is natural to consider the consensus
problem with both multi-layered structure and star subgraphs.

Combined with the above description, this paper considers several partial complete
graph-based triplex networks constructed by the graph operations, and this work mainly
focuses on the first-order robustness of consensus to communication noise under the triplex
systems. The main novelties of this paper are listed as follows:

1. Several novel triplex networks with partial complete graph structures are constructed
by graph operations, and the related three-layered networks are also proposed;

2. Theory on graph spectra is applied to obtain the Laplacian spectrums. Methods on
analysis are applied for the calculation of network coherence, and new results on the
asymptotic behaviour are acquired;

3. We find that, under the condition that the number of nodes in partial complete
substructures n tends to infinity, the coherence asymptotic behaviour of the considered
non-isomorphic three-layered networks will increased by r−1

2(r+1) , which is irrelevant
to the peripheral vertices parameter p. When p tends to infinity, the adding star
copies operation will reverse the original size relationship of the coherence under the
consideration of the novel triplex networks.

This article is organised as follows. In Section 2, notations on graph theory are sum-
marised and the relations between performance and Laplacian eigenvalues are described.
In Section 3, the topology constructions of the triplex systems and main results are given.
In Section 4, the simulation results are compared and analysed.

2. Preliminaries
2.1. Graph Theory and Notations

A complete graph of n vertices is denoted by Kn, and a star graph with k− 1 leaves
is denoted by Sk. The path with m vertices is denoted by Pm, and the fan graph with
p vertices is denoted by Fp. The wheel graph with r vertices is denoted as Wr. Ek is
defined to be the empty graph with k vertices, where empty graph means the graph has no
edges between any pair of vertices. Let G be a graph with vertex set V = {v1, v2, . . . , vN},
and its edge set is defined by E = {(vi, vj)|i, j = 1, 2, . . . , N; i 6= j}. The adjacency matrix
of G is defined as A(G) = [aij]N , where aij is the weight of the edge (vi, vj). To an
undirected graph, aij = aji. All the edges in the undirected networks of this paper are

0–1 weighted, that is, aij =

{
1, (vi, vj) ∈ E ;
0, (vi, vj) /∈ E .

. The Laplacian matrix of G is defined

as L(G) = D(G) − A(G), where D(G) is the diagonal degree matrix of G defined by
D(G) = diag(d1, d2, . . . , dN) with di = ∑

j 6=i
aij. The Laplacian spectrum is denoted by:



Entropy 2022, 24, 1296 3 of 15

SL(G) =

(
λ1(G) λ2(G) . . . λp(G)

l1 l2 . . . lp

)
, where λ1(G) < λ2(G) < · · · < λp(G) are the

eigenvalues of L(G), and l1, l2, . . . , lp are the multiplicities of the eigenvalues [29].
Denote the corona of two graphs by ‘◦’ [30,31], the join operation of two graphs by ‘O’ [29,32],

and the Cartesian product of two graphs by ‘×’ [32–34].

2.2. Relations for the Coherence and Laplacian Eigenvalues

(Refs. [11–15]) The first-order system with disturbance is

ẋ(t) = −L(G)x(t) + ϑ(t) (1)

with x(t) ∈ RN and where ϑ(t) ∈ RN is a vector of uncorrelated noise. L(G) is the
Laplacian matrix.

Definition 1 ([11,12]). The first-order network coherence is defined as the mean steady-state
variance:

H f = lim
t→∞

1
N

N

∑
i=1

Var
{

xi(t)−
1
N

N

∑
j=1

xj(t)
}

.

It has been proved that the first-order coherence H f is determined by the spectrum of
L. Let the L−eigenvalues be 0 = λ1 < λ2 ≤ . . . ≤ λN ; then, the first-order coherence can
be characterised by

H f =
1

2N

N

∑
i=2

1
λi

. (2)

3. Main Results

The layered partial complete networks of this paper have topologies composed by
linking the counterpart nodes of the different layers. The following subsections propose
the triplex partial complete networks and calculate the coherence.

3.1. The Coherence for the Triplex Networks with Gi(n, p)

In this subsection, three sorts of triplex partial complete subgraph structures Gi(n, p),
i = 1, 2, 3 and the corresponding extended graph Ji(n, p, r), i = 1, 2 are considered.

Case 1: As shown in Figure 1, the complete subgraph structure in the middle composed
by blue nodes is denoted by Kn; then, the partial complete graph can be denoted as
G1(n, p) := (KnOEp)× P3, and the corresponding network with dynamics (1) by G1.

Figure 1. An example of one layer of G1(n, p) with n = 3 and p = 5.
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Then, it can be derived that

SL[G1(n, p)] =
(

0 n + p n 1 1 + n + p 1 + n 3 3 + n + p 3 + n
1 n p− 1 1 n p− 1 1 n p− 1

)
,

Hence, the first-order coherence of G1 is

H(G1) =
1

6(n + p)

(
n

(n + p)
+

p− 1
n

+ 1 +
n

1 + n + p
+

p− 1
1 + n

+
1
3
+

n
3 + n + p

+
p− 1
3 + n

)
,

(i). If p→ ∞, then it can be obtained that H(G1)→ 1
6n + 1

6(1+n) +
1

6(3+n) ;

(ii). If n→ ∞, then H(G1)→ 0.

Define J1(n, p, r) := [(KnOEp)× P3] ◦ Er; this is abbreviated as J1. Let it be the topology
(see Figure 2) of the corresponding noisy network J1; then, SL(J1) has the following de-
scription:

(1). 0, r + 1 ∈ SL(J1) repeated only once’

(2). (n+p+r+1)±
√

(n+p+r+1)2−4(n+p)
2 ∈ SL(J1) repeated n times;

(3). (n+r+1)±
√

(n+r+1)2−4n
2 ∈ SL(J1) repeated p− 1 times;

(4). (r+2)±
√

(r+2)2−4
2 ∈ SL(J1) with multiplicity 1;

(5). (n+p+r+2)±
√

(n+p+r+2)2−4(n+p+1)
2 ∈ SL(J1) repeated n times;

(6). (n+r+2)±
√

(n+r+2)2−4(n+1)
2 ∈ SL(J1) repeated p− 1 times;

(7). (r+4)±
√

(r+4)2−12
2 ∈ SL(J1) repeated 1 time;

(8). (n+p+r+4)±
√

(n+p+r+4)2−4(n+p+3)
2 ∈ SL(J1) repeated n times;

(9). (n+r+4)±
√

(n+r+4)2−4(n+3)
2 ∈ SL(J1) repeated p− 1 times;

(10). 1 ∈ SL(J1) repeated 3(n + p)(r− 1) times.

Figure 2. An example of one layer of J1(n, p, r) with n = 3 and p = 5, r = 3.

Therefore, the first-order coherence H(J1) can be derived as:

H(J1) =
1

6(n + p)(1 + r)

[
1

r + 1
+

n + p + r + 1
n + p

+
n + r + 1

n
+ (2 + r) +

2 + n + p + r
n + p + 1

+
n + 2 + r

n + 1
+

4 + r
3

+
4 + n + p + r

3 + n + p
+

4 + n + r
3 + n

+ 3(n + p)(r− 1)
]
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Therefore,

(i). When n and r are fixed, H(J1)→ r−1
2(1+r) as p→ ∞, and it is irrelevant to n;

(ii). Let n→ ∞; then, H(J1)→ r−1
2(1+r) , it is irrelevant to p;

(iii). If r → ∞, then

H(J1)→ 1
6(n+p)

(
1

n+p + 1
n + 1 + 1

n+p+1 + 1
n+1 + 1

3 + 1
3+n+p + 1

3+n

)
+ 1

2 .

Remark 1. Different from the result (i) of the asymptotic properties of H(G1), the limitation of
H(J1) in result (i) is only relevant to the parameter r as p tends to infinity. In the result (ii)
of H(G1) and H(J1), when n → ∞, the coherence limitation increases by r−1

2(r+1) and we have
limp→∞ H(J1) = limn→∞ H(J1).

Case 2: The structure composed by the hub nodes is defined the same as Case
1, and if the generalised leaf nodes are connected into a path (see Figure 3), then the
triplex graph of the system can be denoted as G2(n, p) := (KnOPp) × P3, and it can
be derived that SL[G2(n, p)] has the description: 0, 1, 3 ∈ SL[G2(n, p)] with multiplic-
ity 1, respectively; n + p, n + p + 1, n + p + 3 ∈ SL[G2(n, p)] with multiplicity n, re-
spectively; n + 4sin2( kπ

2p ) ∈ SL[G2(n, p)] with multiplicity 1, where k = 1, 2, . . . , p − 1;

n + 1 + 4sin2( kπ
2p ) ∈ SL[G2(n, p)]] with multiplicity 1, where k = 1, 2, . . . , p− 1; n + 3 +

4sin2( kπ
2p ) ∈ SL[G2(n, p)] with multiplicity 1, where k = 1, 2, . . . , p− 1.

Figure 3. An example of one layer of G2(n, p) with n = 3, p = 5.

Therefore, the first-order coherence of noisy network G2 can be characterized as

H(G2) =
1

6(n + p)

(
1 +

1
3
+

n
n + p

+
n

n + p + 1
+

n
n + p + 3

+
p−1

∑
k=1

1
n + 4sin2( kπ

2p )

+
p−1

∑
k=1

1
n + 1 + 4sin2( kπ

2p )
+

p−1

∑
k=1

1
n + 3 + 4sin2( kπ

2p )

)
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(i). Let n be fixed and p→ ∞; then, it can be obtained that:

lim
p→∞

H(G2) =
1
6

(
1√

n(n + 4)
+

1√
(n + 5)(n + 1)

+
1√

(n + 7)(n + 3)

)
(ii). If p is fixed, let n→ ∞; then, H(G2)→ 0;

Define J2(n, p, r) := [(KnOPp)× P3] ◦ Er, abbreviate it as J2, and let it be the topology
(see Figure 4) of noisy network J2; then, SL(J2) has the following description:

(1). 0 and r + 1 ∈ SL(J2) with multiplicity 1;

(2). (2+r)±
√

(2+r)2−4
2 ∈ SL(J2) with multiplicity 1;

(3). (4+r)±
√

(4+r)2−12
2 ∈ SL(J2) with multiplicity 1;

(4). (n+p+r+1)±
√

(n+p+r+1)2−4(n+p)
2 ∈ SL(J2) repeated n times;

(5). (n+p+r+2)±
√

(n+p+r+2)2−4(n+p+1)
2 ∈ SL(J2) repeated n times;

(6). (n+p+r+4)±
√

(n+p+r+4)2−4(n+p+3)
2 ∈ SL(J2) repeated n times;

(7).
(n+4sin2( kπ

2p )+r+1)±
√
(n+4sin2( kπ

2p )+r+1)2−4(n+4sin2( kπ
2p ))

2 ∈ SL(J2) with multiplicity 1,
k = 1, 2, . . . , p− 1;

(8).
(n+4sin2( kπ

2p )+r+2)±
√
(n+4sin2( kπ

2p )+r+2)2−4(n+4sin2( kπ
2p )+1)

2 ∈ SL(J2) with multiplicity
1, k = 1, 2, . . . , p− 1;

(9).
(n+4sin2( kπ

2p )+r+4)±
√
(n+4sin2( kπ

2p )+r+4)2−4(n+4sin2( kπ
2p )+3)

2 ∈ SL(J2) with multiplicity
1, k = 1, 2, . . . , p− 1;

(10). 1 ∈ SL(J2) repeated 3(n + p)(r− 1) times.

Figure 4. An example of one layer of J2(n, p, r) with n = 3 and p = 5, r = 3.

Therefore, the coherence H(J2) can be calculated as:
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H(J2) =
1

6(n + p)(1 + r)

(
1

r + 1
+ (2 + r) +

4 + r
3

+
n + p + 1 + r

n + p
+

n + p + 2 + r
n + p + 1

+
n + p + 4 + r

n + p + 3
+ 3(p− 1) + (1 + r)

p−1

∑
k=1

1
n + 4sin2 kπ

2p

+ (1 + r)
p−1

∑
k=1

1
n + 4sin2 kπ

2p + 1
+ (1 + r)

p−1

∑
k=1

1
n + 4sin2 kπ

2p + 3

+ 3(n + p)(r− 1)
)

,

Hence, we have

(i). When n and r are fixed,

lim
p→∞

H(J2) =
1
6

( ∫ 1

0

1
n + 4sin2 πx

2
dx +

∫ 1

0

1
n + 4sin2 πx

2 + 1
dx +

∫ 1

0

1
n + 4sin2 πx

2 + 3
dx
)

+
r

2(1 + r)
= lim

p→∞
H(G2) +

r
2(1 + r)

;

(ii). Let n→ ∞, H(J2)→ r−1
2(1+r) holds;

(iii). If r → ∞,

H(J2)→
1

6(n + p)

(
4
3
+

1
n + p

+
1

n + p + 1
+

1
n + p + 3

+
p−1

∑
k=1

1
n + 4sin2 kπ

2p

+
p−1

∑
k=1

1
n + 4sin2 kπ

2p + 1
+

p−1

∑
k=1

1
n + 4sin2 kπ

2p + 3

)
+

1
2

.

Remark 2. By comparing the pairs of results on H(G1), H(J1) and H(G2), H(J2), one can see
that the coherence asymptotic behaviour of the above cases (ii) increases by r−1

2(1+r) , and we have
limp→∞ H(J1) = limn→∞ H(J1) = limn→∞ H(J2); in addition, for subcase (i), limp→∞ H(J2) >
limp→∞ H(J1). However, in the previous subsection, we have limp→∞ H(G2) < limp→∞ H(G1),
which means, under the triplex structures, the adding of the star-subgraph copies can change the size
relation of the first-order coherence as p → ∞. To the subcase (iii), it can be obtained that, when
p ≥ 4, n ≥ 3, limr→∞ H(J2) > limr→∞ H(J1).

Case 3: Similarly, define the network G3 with the triplex graph G3(n, p) := [(KnOCp)×
P3]. Then, it can be derived that

H(G3) =
1

6(n + p)

(
1 +

1
3
+

n
n + p

+
n

n + p + 1
+

n
n + p + 3

+
p−1

∑
k=1

1
n + 4sin2( kπ

p )

+
p−1

∑
k=1

1
n + 1 + 4sin2( kπ

p )
+

p−1

∑
k=1

1
n + 3 + 4sin2( kπ

p )

)
.

One can see that the limitation properties for H(G3) are the same as those of H(G2),
i.e., limn→∞ H(G2) = limn→∞ H(G3). In addition, the case that G3 adheres to star-shaped
topologies is similar to Case 2 and is omitted here.

Remark 3. In the subcase (i) of Case 1 and Case 2, it can be derived that limp→∞ H(G2) <
limp→∞ H(G1), which means H(G2) behaves better than that of G1, and the result is in accord
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with the edge version of the interlace theorem on Laplacian eigenvalues ([29]). However, deleting
edges may reduce the cost of the network, although the operation reduces the robustness of the
consensus models. Therefore, accurate calculation of a robustness-related index is necessary for
judging whether this trade-off is bearable.

3.2. Coherence for the Special Cases: Triplex Star/ Wheel/ Fan Graph

This subsection mainly studies the special cases of the above triplex structures. In fact,
if the hub node set of the partial complete structure has only one node, then the topology
Sp × P3 can be interpreted as a special case of G1(n, p) with a star structure in each layer,
and Fp × P3 can be interpreted as a special case of G2(n, p) with n = 1 (see Figure 5).
In addition, Wn × P3 can be viewed as a special case of G3(n, p) with n = 1.

Denote the network that owns topology Sp × P3 by T1, and denote the network that
owns Fp × P3 by T2, that is, it has a fan structure in each layer. Denote Wn × P3 by T3. Then,
the following derivation can be acquired: the Laplacian spectrum of the star structure with
p vertices has the form

SL(Sp) =

(
0 p 1
1 1 p− 2

)
. It can be obtained that

H(T1) =
1

6p

(
(p− 1) +

(p− 2)
2

+
1
3
+

p− 2
4

+
1
p
+

1
p + 1

+
1

p + 3

)
Thus, H(T1)→ 7

24 as p→ ∞.
Similarly,

Figure 5. An example of the triplex-fan structure with p = 5.

The coherence of T2 can be derived as

H(T2) =
1

6p

(
1 +

1
3
+

1
p
+

1
p + 1

+
1

p + 3
+

p−2

∑
k=1

1
1 + 4sin2( kπ

2(p−1) )
+

p−2

∑
k=1

1
2 + 4sin2( kπ

2(p−1) )

+
p−2

∑
k=1

1
4 + 4sin2( kπ

2(p−1) )

)

Therefore, H(T2)→
√

5
30 +

√
3

36 +
√

2
48 ≈ 0.152 as p→ ∞.

Similarly, it can be derived that H(T3) = H(T2) → 0.152 as p → ∞, and it is found
that limp→∞ H(T2) = limp→∞ H(T3) < limp→∞ H(T1).
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Remark 4. Similar to the triplex cases, duplex structures can also be discussed and the coherence
can be derived similarly. The problems may be generalised into multilayered ones or weighted ones
in future research.

4. Simulation

This section mainly presents the comparisons and simulation analysis of the coherence
of the three-layered networks. One can see from Section 3 that the algebraic connectivity has
the relation: λ2(Gi(n, p)) = λ2(Tk) = 1, i = 1, 2, 3; k = 1, 2, 3, which means the consensus
speed of the triplex network is irrelevant to the number of nodes n or p. It is also found

that λ2(J1) = λ2(J2) =
(r+2)−

√
(r+2)2−4

2 .
For the network coherence for the triplex networks, the change of H(G1(n, p)) with

the parameters is shown in Figure 6. It can be seen that when p is fixed, H(G1) → ∞ as
n→ ∞; when n is fixed and p→ ∞, the asymptotic properties is relevant to n. The point
(93,97,0.005002) satisfies the result (i) on H(G1).

20
40

60
80

100

20

40

60

80

100
0

0.02

0.04

0.06

0.08

0.1

0.12

p

X: 93
Y: 97
Z: 0.005002

n

H
f

Figure 6. The change of H(G1) with the variation of parameters n and p.

The variance of the first-order coherence for G2 with respect to the parameters n and p
(n, p ∈ [3, 100]) is shown in Figure 7. One can see that when the number of hub nodes n is
assigned to a relatively small value, the coherence changing trend with p is slower than
the case that p is fixed to a small value and n varies. When the values of n and p are both
relatively small, we can see that the robustness of G2 is worse than in the case that at least
one of n or p is large enough.

When n is a relatively small value (see Figure 7, for instance, n = 5, p = 132,
H(G2) ≈ 0.08745), it is consistent with the result that Section 3.1 presents; i.e., when
n = 3, H(G2(3, p)) → 0.0873 as p → ∞ (Figure 8). Figure 9 describes the change of
coherence of H(G2(n, 3)), which is also consistent with the fact that Section 3.1 presents;
i.e., H(G2(n, p))→ 0 when the value of p is fixed. Figure 10 shows that when limp→∞ H(J2) >
limp→∞ H(J1), the points (198, 0.4603) and (196, 0.2535) satisfy the analysis derivation in
Case 2. Figure 11 shows that limn→∞ H(J1) = limn→∞ H(J2) = 0.25. Figure 12 implies the
limitation trend of the subcase (iii); that is, when r → ∞, H(J2) > H(J1), it is consist with
the analysis that Remark 2 describes.

In Figure 13, the change of first-order coherence of the triplex star network, i.e., H(T1),
is described. The value of the point (195, 0.2898) in the figure is consistent with the
convergence trend that H(T1) → 7

24 . Figure 14 characterises the variance of Ti, i = 2, 3,
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and we can see that the value of the point (297, 0.1525) satisfies the result of calculations of
the coherence limitation that limn→∞ H(Ti) =

√
5

30 +
√

3
36 +

√
2

48 ≈ 0.152.

Figure 7. The change of H(G2) with the variation of parameters n and p.
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Figure 8. The change of H(G2) with p when n = 3.
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Figure 9. The change of H(G2) with n when p = 3.
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Figure 10. The change of H(Ji), i = 1, 2 in the subcase (i) when n = 3, r = 3.
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Figure 11. The change of H(Ji), i = 1, 2 in the subcase (ii) when r = 3, p = 5.
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Figure 12. The change of H(Ji), i = 1, 2 in the subcase (iii) when n = 3, p = 5.
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Figure 13. The change of H(T1) with respect to n.
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Figure 14. The change of H(Ti) with respect to n, i = 2, 3.

5. Conclusions

This article mainly studies the robustness-related index of the consensus for the
partial complete graph-based triplex MASs, where the robustness can be measure by
the first-order network coherence. The graph spectra approach is applied to analyse
the system topologies and derive the coherence. For the novel three-layered networks,
the relations based on the asymptotic behaviours are determined through the calculations
of the coherence. Finally, the coherence of the triplex networks with non-isomorphic graphs
are analysed and simulated, and it is found that, based on the condition that the number
of nodes in the partial complete substructures, i.e., n, tends to infinity, the coherence
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asymptotic behaviour of the two sorts of non-isomorphic triplex networks will increased by
r−1

2(r+1) , which is irrelevant to the peripheral vertices parameter p. We also find that when p
tends to infinity, the adding star copies operation will reverse the original size relationship
of the coherence under the consideration of the triplex networks.
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