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Abstract: Shadow is one of the fundamental indicators of remote sensing image which could cause
loss or interference of the target data. As a result, the detection and removal of shadow has already
been the hotspot of current study because of the complicated background information. In the
following passage, a model combining the Atmospheric Transport Model (hereinafter abbreviated as
ATM) with the Poisson Equation, AP ShadowNet, is proposed for the shadow detection and removal
of remote sensing images by unsupervised learning. This network based on a preprocessing network
based on ATM, A Net, and a network based on the Poisson Equation, P Net. Firstly, corresponding
mapping between shadow and unshaded area is generated by the ATM. The brightened image
will then enter the Confrontation identification in the P Net. Lastly, the reconstructed image is
optimized on color consistency and edge transition by Poisson Equation. At present, most shadow
removal models based on neural networks are significantly data-driven. Fortunately, by the model
in this passage, the unsupervised shadow detection and removal could be released from the data
source restrictions from the remote sensing images themselves. By verifying the shadow removal
on our model, the result shows a satisfying effect from a both qualitative and quantitative angle.
From a qualitative point of view, our results have a prominent effect on tone consistency and
removal of detailed shadows. From the quantitative point of view, we adopt the non-reference
evaluation indicators: gradient structure similarity (NRSS) and Natural Image Quality Evaluator
(NIQE). Combining various evaluation factors such as reasoning speed and memory occupation, it
shows that it is outstanding among other current algorithms.

Keywords: remote sensing image; shadow detection and removal; atmospheric transport model;
Poisson equation; deep learning

1. Introduction

Optical remote sensing images are widely used in environmental monitoring, land
surface inversion, ground object classification and various fields. However, the shadow
formed by occlusion in the imaging process will cause the loss of original pixel information,
which could lead to faulty information. Therefore, it is of great importance to detect and
remove the shadows of remote sensing images to guarantee the value of images in research.

At present, a number of researches have been done to remove shadows from simple
images by using deep learning networks [1–9]. Hieu Le et al. consider that there is a
linear relationship between unshaded images and shaded images after estimation and
simplification of images. To be more specific, the shaded areas can be brightened by using
linear transformation, and then the restored unshaded images can be obtained by fusing
the brightened image and the original shadow image [1]. Jin et al. construct a network for
hard and soft shadow, combining the traditional entropy physical model with the perceived
loss obtained by observing the feature map, to solve the problem of unsupervised shadow
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removal of a single image [2]. Zhang et al. focused on additional information and used
multiple GAN to mine residual and illumination information for shadow removal [3].
However, compared with ordinary images with simple background information, remote
sensing images with a complex background have the difficulty of balancing the surface
information such as color ratio and high-level semantic features such as the geometric
texture of the shadow area. Moreover, remote sensing images cannot obtain corresponding
shadow pairing data sets, or even adequate remote sensing images with or without shadow
that are suitable for training, which enlightens us to reduce the dependence on data. As a
single neural network is difficult to solve the problem, it would be better to combine the
traditional physical model and start with the generation principle of the shadow itself.

At the same time, most of the current shadow removal algorithms are problematic
in blurring, chromaticity inconsistency and boundary artifact in the restored area. Based
on these problems, in this study, a new method of image reconstruction in the shadow
area based on the atmospheric transmission model and the generation of countermeasure
network are proposed. It also introduces the Poisson Equation to improve the spatial
smoothness and continuous texture similarity at the boundary of the shadow area to
optimize the local area. As a result, it can detect and remove shadows of remote sensing
images in detail without interfere the original texture and background features of the
shadow area.

Because of the training of deep learning need work based on the physical principle,
our method has certain robustness and wide applicability applied to most aerial remote
sensing images, and the range can include urban buildings, road traffic, natural vegetation
and other fields. Compared with other methods, it performs better on the maintenance of
the color while brighten the shadow area. It shows better effects on deeper colors and more
subtle shadows and shows more advanced performance in qualitative and quantitative
evaluation experiments. In addition, this research can be further extended to other fields,
which is of great significance for military reconnaissance and detection based on remote
sensing images, urban construction for traffic planning and other various applications. The
specific contributions of this method can be summarized as follows:

• Propose an unsupervised shadow removal method for remote sensing images to over-
come the difficulties of obtaining adequate shadow data sets of remote sensing images;

• Apply the method of Atmospheric Transmission Model combined with neural network
based on the physical model, enhancing the robustness of neural network training,
releasing the strict restrictions of traditional methods on natural conditions such as
satellites and improving the versatility under different conditions;

• Take the Preliminary Restoration map obtained by the atmospheric transmission model
as the ground truth, addressing the problems of slow convergence and insufficient
mapping constraints caused by the traditional generation of “unpaired” images of the
countermeasure network, and improving the efficiency of shadow removal;

• Use chromaticity consistency loss, structure perception loss and Poisson guidance loss
based on Poisson equation, optimizing effects on detailed shadows, maintaining color
consistency and reducing boundary effects.

2. Related Work

In order to mitigate the interference of shadow on remote sensing images and im-
prove the efficiency of utilization of images, researchers are trying to improve shadow
processing technology of remote sensing images from various angles [10–15]. Our work
is a new attempt to reform the shadow images by combining the Atmospheric Physical
Transmission model with the generation of confrontation network. The following passage
will review the work related to shadow removal, including traditional methods and neural
network methods.

Traditional methods could be classified into image enhancement based and shadow
compensation based on model. Image enhancement processing is to consider shadow as a
special noise to analyze the characteristics of the shadow area in terms of spectrum and



Entropy 2022, 24, 1301 3 of 15

texture and then using image enhancement or denoising to compensate. Wang et al. [16]
proposed a method based on Luminance based Multi-Scale Retinex (LMSR) [17], which
first compensates the brightness component, then synthesizes it with the primary color
component and then converts it to RGB space. Tian et al. combined gray-scale linear
mapping transformation and histogram matching method to compensate. Li [18] and
Zhou [19] proposed a gray-scale mapping of shadow homogenous region [20,21], by
constructing the mapping between shadow pixels and shadow homogenous region pixels
through improved gamma transformation repair the shadow region.

Ye et al. [22] used Minkowski normal form to estimate the light source color and
non-shadow areas of the image constructing a mapping to simulate the lighting conditions
of non-shadow for compensation. From the theoretical angle of radiation transmission,
Guo et al. considered the transmission of solar energy and proposed a shadow removal
theory based on the energy information compensation model.

However, most methods based solely on physical models could work well with ade-
quate information of satellite, surface and atmospheric parameters, but their performance
are highly limited by the absence of prior conditions such as satellite information. To resolve
these barriers, methods based on deep learning, such as pixel fusion using fusion network,
u-net, flow net [23], the method of generating confrontation network [2,8,24–26], and the
method of improving compensation based on CNN basic network [27] are proposed for
shadow area image reconstruction. As for the compensation of the shadow area, the essence
is allied to the enhancement of the low illumination image. Combined with the image
enhancement processing idea mentioned above, the shadow removal task is similar to the
removal of “noise” under conditions like thick clouds and thick fog. Li et al. [28] proposed
a dark light image enhancement method based on zero reference depth curve estimation,
which converts the enhancement task into the estimation of specific function, and measures
the subtle enhancement quality by designing a group of differentiable non reference losses
to drive the learning; the IDE proposed by Ju [29] and the IDGCP method proposed by
and [30] et al. improved on the IDE are based on the atmospheric scattering model, extract-
ing the depth ratio from the original haze image and the uniform virtual transformation.
Finally, the global strategy and visual indicators to restore the scene reflectivity are used to
restore the haze image.

Single traditional models or neural network methods have limitations on the shadow
removal task of remote sensing images. Inspired by the advanced methods above, we
combine traditional physical models, neural network, denoising and image restoration
to propose an unsupervised remote sensing image shadow removal network: AP Net,
which combines an atmospheric transmission model with the Poisson equation. A Net
uses the atmospheric physical transport model to estimate the corresponding mapping
parameters between shadow and non-shadow maps. The original shadow image and
the preliminary restored image are transferred to P Net, while the images with different
shadow conditions under similar background are used for confrontation reconstruction.
It can address the obstacles of slow convergence and insufficient mapping constraints
caused by the “unpaired” images of the original network and improve the efficiency of
shadow removal.

To solve the difficulty that the inconsistency between color intensity in the shadow
repair area of the reconstructed image and that of the surrounding area with artifacts, we
introduce chromaticity consistency loss in P Net. Additionally, because of the similarity of
the color gradient and shadow boundary in the restored area of the reconstructed image
and that in the surrounding area, the continuity of the pixel characteristics at the boundary
between the shadow and the non-shadow area, we adopt the Poisson partial differential
equation to solve the given Dirichlet boundary condition, and use the color gradient to
replace the color intensity to produce a more reasonable effect. Beside the model above,
MS-SSIM L1 loss is used to retain high-frequency information such as texture details in the
original shadow area while maintaining color brightness characteristics.
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The flow chart of the whole shadow detection and removal modeling method is shown
in Figure 1 below:
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3. Proposed Method

The traditional physical shadow removal model has difficulties in obtaining param-
eters and processing a large number of images as a whole due to the large amount of
calculation. However, another kind of method based on deep network lacks the inter-
pretability of the internal mechanism. Therefore, we propose a method combining tradi-
tional physical models and deep networks, using a simplified atmospheric transport model
to construct the relationship between non-shadow maps and shadow maps. For the case
that the atmospheric attenuation coefficient and atmospheric transmittance coefficient are
more complicated and difficult to obtain in the original function, A Net is used to learn the
corresponding parameters. After the parameters are determined, the preliminary shadow
restoration and brightening map can be calculated according to the physical model formula.

In order to solve the obstacles that remote sensing shadow images lack ground truth,
the above-obtained incremental images are passed as reference images instead of ground
truth to P Net, then used in the Cycle Gan for further learning, and finally a restored image
that satisfies the conditions of the discriminator could be obtained from the network.

3.1. A Net: Simplifying the Atmospheric Transport Model to Construct Unshaded Maps
3.1.1. Difference Component Method to Extract the Preliminary Shadow Area

According to the physical principle, Shadows is generated by higher objects blocking
direct sunlight, so that the characteristics of dark targets corresponding to specific shadows
are determined by the amount of sunlight radiated to the target and reflected from the
target objects. According to the research of GUO et al. [31], the shadows of remote sensing
images are mainly concentrated in the interval from the visible light to near-infrared bands
where the proportion of ambient reflected light is very small [31]. Shadowed areas are
missing most of the direct light, which led to higher saturation and lower lightness in the
HSI color space compared to other objects such as roads, vegetation, and buildings [32].
Based on this feature, we construct a normalized saturation difference index (SI) and use
the maximum inter-class variance algorithm to segment and extract shadows from the SI
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matrix calculated from the image. For each image pixel, SI is calculated by the formula
as follows:

SI =
S− I
S + I

(1)

where S and I are the corresponding components of the I space respectively.

3.1.2. Shadow Area Recovery of Remote Sensing Images

It is believed that a remote sensing shadow image is a shadowless remote sensing
image combined with atmospheric effects such as direct light and reflected light. To be more
specific, there is a mapping relationship between shadow images and non-shadow images:

ψ : Is f (x, y)→ Is(x, y) (2)

where Is f is the original unshaded remote sensing image, Is is the shaded remote sensing
image, and ψ is a combination of direct, reflected, and scattered atmospheric effects.

Remote sensing images are mainly formed by satellite sensors receiving radiation or
reflection information from the ground. Since large objects block most of the direct sunlight,
the information received from direct incident light in shadowed areas is basically negligible.
As a result, the reflection and scattering of atmospheric space becomes the main factors.
Except for the part of the solar radiation that is directly scattered by the atmosphere into
space, the contribution of the ground object to the information received by the sensor can
be roughly divided into [31]:

• Reached the ground object and scattered by the atmosphere, then directly reflected
into the sensor:

t(µS)ρe−τ/µV (3)

• Reached the object and catered by the atmosphere, then scattered by the atmosphere
to the sensor as well as the part where the ground and the atmosphere are scattered
with each other for multiple times to reach the sensor:

t(µV)ρ̃t(µS) +

(
e−τ/µS + t(µS)

)(
e−τ/µV + t(µV)

)
Sρ̃2

1− Sρ̃
(4)

where µV is the cosine of the solar zenith angle, µS is the cosine of the zenith angle of the
remote sensor, ρ and ρ̃ are the terrestrial hemispheric reflectance of the corresponding
processes, τ is the atmospheric attenuation coefficient, S is the top-level atmospheric
reflectance, t(µS) is the atmospheric transmittance of light reaching the object, and
t(µV) is the atmospheric transmittance of light directed or reflected from the object to
the sensor.

The inverse mapping of atmospheric transport is represented by the ratio of the
amount of radiation received in non-shadowed to the shadowed condition, which can be
written as [31]:

H(µV , µS) = e−τ/µV ρSe−τ/µS + e−τ/µV t(µS)ρ + e−τ/µV ρ′t(µV) + t(µS)t(µV)ρ̃ (5)

K(µV , µS) =

(
e−τ/µS + t(µS)

)(
e−τ/µV + t(µV)

)
Sρ̃2

1− Sρ̃
(6)

G(µV , µS) = t(µS)ρe−τ/µV t(µV)t(µS)ρ̃ +

(
e−τ/µS + t(µS)

)(
e−τ/µV + t(µV)

)
Sρ̃2

1− Sρ̃
(7)

so, we have ∣∣∣ψ−1
∣∣∣ = H(µV , µS) + K(µV , µS)

G(µV , µS)
(8)
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where ρs is the ground reflectance and ρ′ is the ground hemispheric reflectance scattered to
the atmosphere by the ground.

The visible wavelength scattered by the ground and the atmosphere for multiple times
has been attenuated and compared with the direct sunlight and atmospheric scattered light,

it is less significant, so the (e−τ/µS+t(µS))(e−τ/µV +t(µV))Sρ̃2

1−Sρ̃ part will do reasonable neglect.
The reflection of electromagnetic waves includes specular reflection, diffuse reflection,

which reflects incident light in all directions from entire surface evenly, and directional
reflection, which reflects in all directions but not uniform. Since most remote sensing
images contain buildings or vegetation, and the wavelength of such natural surfaces is
rough enough, the reflected radiance can be approximately regarded as not changing with
the observation angle, which can be assumed that the observed ground the object target is
a homogeneous Lambertian body, so it follows: ρ̃ = ρ.

Therefore, referring to the existing remote sensing shadow images, a pure shadow-free
image can be obtained only by solving the inverse mapping of the atmosphere comprehen-
sive action. Since the deep network needs to be used for subsequent learning, its certain
robustness will make a sense on improving the removal effect. Therefore, in order to solve
the complicity of the calculation, the model for solving the inverse mapping of atmospheric
transport is simplified as follows:

∣∣∣ψ−1
∣∣∣ = t(µS) + e−τ/µS

t(µS)
(9)

According to the experiments, the effect of radiation on the removal of image shadows
is not significant relative to the transmission mapping, so the initial operation only retains
the transmission mapping function, written as:

Is f (x, y) = Is(x, y) · ψ−1(x, y) (10)

For the unknown parameter µS and τ above, several expansion operations and then
subtracted are performed to the original image to obtain a contour map for preliminary
detection of shadows. The least squares method is used to compare with the area around the
shadow to learn the parameters. Formula (10) is brought in to restore the initial brightened
image after calculation.

3.2. Adaptive Intensity Shadow Masking

The convolution could be simplified to the product form, and the atmospheric trans-
port inverse mapping simplified model can be used to perform a preliminary operation.
The initial brightened image is noted as: Ibri.

Because of the complexity of the background information and the pixel information
loss brought by the shadow in the occluded area, we propose a shadow mask construction
method in order to reduce the loss of sharpness and enhance removing effect of penumbra
in the restoration area. The method normalizes the original shadow area pixel by pixel to
describe the shadow intensity of each point and retains the details of the background on
the basis of the original boundary.

The shadow intensity coefficient is constructed as the difference between the original
shadow image and the brightened image as follows:

Imat = 255− [α · (255− Imask ) + Ibri ] (11)

where Imat is the adaptive intensity mask and Imask is the original binary shadow mask.

3.3. P Net: Adversarial Reconstruction to Obtain Final Shadow-Free Map
3.3.1. Overall Framework

The overall network can be divided into two parts. One part is A Net for obtain-
ing mapping parameters to construct brightened images. Specifically, we use the least
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squares method to estimate the parameters. The other part is P Net for finally generating
shadow-free images. The input of the A Net part is the original shadow image and the
initial mask. The morphological algorithm performs several expansion operations on
the boundary area of the initial mask. Then the contour area around the shadow can be
obtained by subtraction.

The initial brightening image can be calculated by the mapping parameters from A Net
and the Formula (10). The process image with the adaptive strength mask was modified
in P Net on the basis of the STC Gan model [15]. With Cycle Gan as the prototype, the
generator part integrates the chromaticity consistency loss, the structure perception loss,
and the embedding layer is added to consider the shadow intensity when generating the
adaptive mask. A Poisson equation guided loss is added to judge the generated images
whether hold more natural shadow boundaries the discriminator stage. The structure of
AP Net network is shown in Figure 2 below:
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3.3.2. Loss Function

In the network structure of the loss functions, in addition to the adversary losses
contained in the original network, consistent losses and identity losses, chromaticity con-
sistency loss, structure perception loss and Poisson guided loss are also introduced in
the network.

• Chromaticity consistency loss

The main difficulties of many studies on shadow removal are the inconsistency of regional
chromaticity. There are methods of constructing compensation coefficients [33], bilinear
difference with surrounding areas [34], and color uniformity based on Wallis filtering [35].
In this paper, a chrominance loss function is proposed by constraining the pixel values
of the three channels of R, G, and B in the generated image, which try to be close to the
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brightened image after illumination compensation to achieve the effect of maintaining color
consistency. Specifically, it can be expressed as:

Lchroma =
√

∑
c
‖Zs fc − Zbric‖

2 (12)

where c ε {R, G, B} represents the corresponding color channel of the image, Zs fc and
Zbric are the pixel values of the color channel of the generated image and the brightened
image, respectively.

• Structural perception loss

For the reconstruction of the shadow area, the desired goal is to improve the brightness
of the shadow area and enhance its detailed texture, while the distortion degree of the
reconstructed image can be measured by the structural similarity index SSIM. In addition,
the perception-based model is more in line with the human eye’s ability to eliminate
intuitive need for shadows. SSIM mainly considers the features of the image in terms of
brightness, contrast and structure. The brightness is measured by the average gray value
of the image, the contrast is characterized by an unbiased estimate of the gray standard
deviation, and the structure is measured by the normalized correlation coefficient. For a
certain pixel P, the specific formula for calculating SSIM can be written as:

SSIM(P) =
2µxµy + C1

µ2
x + µ2

y + C1
·

2σxy + C2

σ2
x + σ2

y + C2
(13)

denote the validation image and the reference image by X and Y, respectively, µ∗ is the
mean value of the corresponding X or Y, σ∗ is the standard deviation, and σxy is the
covariance of X and Y.

The mean and variance of the image are calculated by Gaussian kernel and image
convolution, where P is defined as the set of patch pixels and N as the number of pixels.
The SSIM loss can be written as:

LSSIM(P) =
1
N ∑

p∈P
1− SSIM(p) (14)

SSIM loss can maintain better high-frequency detail but is insensitive to smooth
variations that can cause color shifts or brightness changes, while L1 Loss can preserve
region color and brightness but ignores local structure. Thus, assume SSIM-L1 Loss is a
combination of the two constructs, which is expressed as follows:

LSSIM−L1 = γ · LSSIM + (1− γ) · L1 (15)

where

L1(P) =
1
N ∑

p∈P

∣∣∣∣∣x(p)− y(p)

∣∣∣∣∣ (16)

To balance the two loss values, the γ parameter in Equation (15) was empirically set to
0.84 [36].

• Poisson guided loss

A common problem faced by the existing shadow removal methods is that the transition
at the border of the shadow area is unnatural and with artifacts. Taking the method in
this paper as an example, we combine the non-shadow area of the original image with the
shadow area of the incremental image. The idea of reconstructing shadow-free images is
essentially similar to image fusion.

It is of great significance to generate a smooth and natural shadow boundary, that is,
to keep the texture and color consistency of the fusion boundary. Rez P et al. found that
when the images are fused, the color intensity in the masked area of the generated image
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is inconsistent with the source image, but the color gradients of the two are basically the
same. Therefore, we replace the color intensity with the color gradient, which can produce
a more realistic effect [37]. The essence of our goal is also similar to solving Poisson partial
differential equations that given Dirichlet boundary conditions.

We define the closed subset S as the image definition domain, also the original remote
sensing shadow image. Ω is the closed subset of S, which represents the shadow area to be
reconstructed. In addition, f ∗ is the known scalar function defined on the boundary and
outside of domain Ω, representing the known information of the non-shadow area. Taking
the brightened image as the guide map, g is the known scalar function of the region to be
fused. f is the unknown scalar function defined inside the domain Ω. To reconstruct the
information of the shadow area and keep the gradient texture information as well as satisfy
the natural transition, it is necessary to solve the unknown scalar function f , and at the
same time satisfy the condition that hold f and f ∗ the same gradient on the boundary of
the domain Ω. The formula can be written as:

LPossion =
s

Ω

∣∣∇ f −∇g
∣∣2 (17)

with {
f |∂Ω = f ∗|∂Ω

∆ f = ∆g = div(∇g)
(18)

• Overall loss

Based on the model above, the overall loss function is as followed:

Ltotal = Lchroma + LMix + LPossion (19)

4. Experiment

To evaluate our method, we trained on 3747 images and finally tested on 2702 images
using our dataset. The experimental results are shown in Figure 3 below:

It can be seen from the experimental results that our method has a better removal
effect on images having darker shadows and the shadows with fine and large numbers
caused by complex objects. Compared with ST-CGan model and Ghost Free Net with a
problem of tone change in the restored shadow area or the overall image, our method
approximates the values of the R, G, B three channels from the pixel level, providing
a better restoration effect of the shadow area which is closer to the surrounding non-
shadow area and conforms to the natural scene. For the Mask Shadow Gan model and DC
Shadow Net, the use of the Dirichlet boundary condition does a good job on the removal
of dark shadows and the transition of borders. At the same time, it is worth noting that
compared with other methods, our model can detect some smaller shadow areas and make
corresponding restorations.

Due to the lack of ground truth in remote sensing shadow images, evaluation indica-
tors such as MSE and PSNR that require reference images are not suitable to be used. In
this paper, we use the Gradient Structure Similarity (NRSS) and Natural Image Quality
Evaluator (NIQE) to measure the quality of shadow removal images.

• Gradient Structure Similarity (NRSS)

A major factor affecting the quality of the restoration structure of remote sensing
images is the details in the shadow, the clarity of image restoration can be measured
according to the amount of high-frequency information contained in the target shadow area
after processing. In the current methods, Liang et al. [38] used the standard deviation of the
gradient profile to represent the sharpness of a point, established the sharpness histogram
of all edge points, and calculated the image blurriness accordingly. Saad et al. [39] proposed
a Blind image integrity notator using DCT Statistics (BLIINDS) to predict image quality
based on DCT transform, anisotropic entropy and multivariate Gaussian probability model.
In this paper, the clarity of details of shadow removal is measured by the gradient structure
similarity NRSS index [40]. Firstly, low-pass filtering is performed on the original image to
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obtain the reference image, and then the structural similarity in the target area between the
reference image and the original image to be evaluated is calculated. The indicators are
defined as:

NRSS = 1− 1
N

N

∑
i=1

SSIM(p) (20)

where N is the numbers of image blocks with the most abundant gradient information
selected in the gradient image G.

Entropy 2022, 24, x FOR PEER REVIEW 10 of 16 
 

 

 

(a) (b) (c) (d) (e) (f) 

Figure 3. The comparison effect of the method in this paper and other methods in removing shad-
ows from remote sensing images, where (a) is the original input image, (b) is the effect of our 
method, (c) is the ST-CGan model effect, and (d) is the Mask Shadow Gan model renderings, (e) is 
DC Shadow Net model renderings, (f) is Ghost Free Net model renderings. 

It can be seen from the experimental results that our method has a better removal 
effect on images having darker shadows and the shadows with fine and large numbers 
caused by complex objects. Compared with ST-CGan model and Ghost Free Net with a 
problem of tone change in the restored shadow area or the overall image, our method 
approximates the values of the R, G, B three channels from the pixel level, providing a 
better restoration effect of the shadow area which is closer to the surrounding non-shadow 
area and conforms to the natural scene. For the Mask Shadow Gan model and DC Shadow 
Net, the use of the Dirichlet boundary condition does a good job on the removal of dark 
shadows and the transition of borders. At the same time, it is worth noting that compared 
with other methods, our model can detect some smaller shadow areas and make corre-
sponding restorations. 

Figure 3. The comparison effect of the method in this paper and other methods in removing shadows
from remote sensing images, where (a) is the original input image, (b) is the effect of our method,
(c) is the ST-CGan model effect, and (d) is the Mask Shadow Gan model renderings, (e) is DC Shadow
Net model renderings, (f) is Ghost Free Net model renderings.

• Natural Image Quality Evaluator (NIQE)

In the image inpainting task, some evaluation indicators such as PSNR can be closer
to the original image at the pixel level, but images with high similar indicators may not
conform to the visual habits of the human eye, which cannot prove that the effect of
inpainting and reconstruction is more effective. Since human eye is more sensitive to
areas with higher contrast ratios in the image, we use the Natural Image Quality Evaluator
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index [41] (NIQE), fitting it into the Multivariate Gaussian (MVG) model based on the
“quality perception” features and regard the corresponding distance as the quality of
reconstruction.

The NIQE algorithm uses the maximum likelihood method to estimate the mean and
variance matrix of the MVG model, extracts the spatial domain features of the restored
image, and calculates the distance between the mean and variance parameters of the
restored image and the natural image MVG fitting as the evaluation index:

D(v1, v2, ∑1, ∑2) =

√
(v1 − v2)

T
(

∑1 + ∑2

2

)−1

(v1 − v2) (21)

among them, v1, v2, ∑1, ∑2, respectively, represent the mean and variance matrix of the
MVG model obtained by fitting the natural image and the distorted image.

We use gradient structure similarity (NRSS) to assess the realism of the generated
shadow-free images and Natural Image Quality Evaluator (NIQE) to measure the percep-
tual similarity, where the lower values show the better performance. The specific results of
comparison with several advanced shadow removal methods are shown in Table 1 below:

Table 1. Quantitative comparison of shadow removal results for the dataset.

Method Area NRSS NIQE

Ours
Shadow 0.9621 15.7264

Non-shadow 0.9642 16.5147
All 0.9343 4.5851

ST-CGan [12]
Shadow 0.9633 16.2860

Non-shadow 0.9693 17.6712
All 0.9433 4.6267

Mask Shadow Gan [3]
Shadow 0.9806 28.5165

Non-shadow 0.9815 37.3405
All 0.9463 4.6211

DC-Shadow Net [2]
Shadow 0.9651 17.1019

Non-shadow 0.9752 17.9761
All 0.9399 5.1012

Ghost Free Net [9]
Shadow 0.9681 36.6969

Non-shadow 0.9846 40.6417
All 0.9482 4.8993

The experimental result shows that our model performs better than other competitors
regardless of whether it is evaluated at the pixel level or perceptual level. In comparison, the
gradient structure similarity is improved by at least 5.67%, and the Natural Image Quality
Evaluator is improved by at least 3.62%, which proves the effectiveness of our model.

5. Ablation Studies

We conducted an ablation study to analyze the effectiveness of various components of
our method, such as: chromaticity consistency loss, structure perception loss and Poisson
guided loss. The corresponding results are shown in Figure 4 below:

The specific quantitative comparison results are in Table 2 below:
According to the experimental results, at the gradient similarity level, the removal

of the structural perception loss has the greatest impact on the removal effect, while at
the perception level, the difference between the results after removing the chromaticity
consistency loss is significant. Additionally, the shaded area and the non-shaded area have
basically the same impact on the NRSS indicator. However, in the calculation process of
NIQE, the shadow area fluctuates by 0.7162, and the non-shadow area fluctuates by 0.5519,
indicating that the transformation of the model to the shadow area of the image is the main
factor causing the improvement of perception.
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Table 2. Quantitative comparison of comparative results of ablation studies with different components.

Method Area NRSS NIQE

Ours
Shadow 0.9621 15.7264

Non-shadow 0.9642 16.5147
All 0.9363 4.5851

w/o Lchroma

Shadow 0.9673 16.4426
Non-shadow 0.9698 17.0666

All 0.9408 4.4880

w/o LMix

Shadow 0.9690 16.9150
Non-shadow 0.9712 17.4450

All 0.9420 4.6016

w/o LPossion

Shadow 0.9651 15.6853
Non-shadow 0.9696 16.4976

All 0.9388 4.5631Entropy 2022, 24, x FOR PEER REVIEW 12 of 15 
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Figure 4. The result of the ablation experiment after removing some components, where (a) is the
original input image, (b) is the result of removing the chromatic consistency loss. (c) is the effect of
removing the structural perception loss, (d) is the result of removing the Poisson guided loss, and
(e) is the shadow-free picture that the complete model generates.
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6. Conclusions

We propose AP Net, a network for removing shadows of remote sensing images, which
combines atmospheric physical transport models with chromatic consistency, structural
features, and Poisson equation-based losses. Unsupervised training could be suitable for
processing remote sensing images with complex backgrounds. In addition, supported by
physical principles, the applicability of the model is expanded to address the limitations
of the dataset. Combining traditional physical models and GAN network, the method
in this paper achieves more perfect results in the color consistency, edge smoothing and
fine shadow detection and compensation of shadow areas. Different degrees of improve-
ment have also been gained in Gradient Structural Similarity (NRSS) and Natural Image
Quality Evaluation Index (NIQE). Moreover, we confirm the validity of each component
of the network by comparing experiments with other shadow removal methods on the
unified dataset, the results show that the removal effect of our model is better than other
advanced models.
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