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Abstract: Background: Several algorithms have been proposed to quantify synchronization. However,
little is known about their convergent and predictive validity. Methods: The sample included 30 per-
sons who completed a manualized interview focusing on psychosomatic symptoms. The intensity
of body motions was measured using motion-energy analysis. We computed several measures of
movement synchrony based on the time series of the interviewer and participant: mutual infor-
mation, windowed cross-recurrence analysis, cross-correlation, rMEA, SUSY, SUCO, WCLC–PP
and WCLR–PP. Depressive symptoms were assessed with the Patient Health Questionnaire (PHQ9).
Results: According to the explorative factor analyses, all the variants of cross-correlation and all the
measures of SUSY, SUCO and rMEA–WCC led to similar synchrony measures and could be assigned
to the same factor. All the mutual-information measures, rMEA–WCLC, WCLC–PP–F, WCLC–PP–R2,
WCLR–PP–F, and WinCRQA–DET loaded on the second factor. Depressive symptoms correlated
negatively with WCLC–PP–F and WCLR–PP–F and positively with rMEA–WCC, SUCO–ES–CO,
and MI–Z. Conclusion: More standardization efforts are needed because different synchrony measures
have little convergent validity, which can lead to contradictory conclusions concerning associations
between depressive symptoms and movement synchrony using the same dataset.

Keywords: nonverbal communication; movement synchrony; time-series analysis; validity; depression

1. Introduction

Processes relevant in psychotherapy can be located on different time scales ranging
from neuronal processes that change within milliseconds, to affective and interpersonal
processes representing single sessions, to between-session changes of mood stages [1–3].
Both bottom-up effects (e.g., when patient–therapist interactions have impacts on patient’s
mood) and top-down effects (e.g., mood affecting the kind of interpersonal interaction)
are assumed [1]. The core of psychotherapy process is generally considered to rest in
the exchanges between the patient and therapist, which consist of verbal–semantic and
nonverbal aspects.

The nonverbal interaction of patient and therapist may be understood as a coupled
dynamical system [4–8]. Each sub-system (the patient’s or the therapist’s) obeys its own
eigen-dynamics and coupling dynamics. The eigen-dynamic is constituted by an actor’s
ability to perceive and process information and act accordingly (see Figure 1 left). The cou-
pling dynamic refers to the mutual influence between the patient and therapist, may be
asymmetrical (e.g., the therapist affecting the patient’s state more than vice versa) and may
change during the interpersonal interaction (e.g., at the beginning of a session, the patient
influences the therapist, whereas at the end the influence is reversed). There are two
different understandings of coupling dynamics. One is that the degree of coupling changes
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more or less smoothly over time [9–11], the other regards the coupling dynamics as an
on–off process whereby phases with no or very weak coupling (no synchronization visible)
may alternate with strongly coupled phases [5,8]. The former dynamics may be assumed
in more stationary processes (e.g., physiological data), whereas the latter on–off dynamics
occur in behavioral processes with non-stationary bursts (e.g., movement activity). Phases
of strong coupling are characterized by a synchronization of sub-system states and are
hence called synchronization intervals [4,12] or mimicry episodes [13]. The person who
acts as the driver during the coupling is called leader, and the person who follows/imitates
is the driven (see Figure 1 right).
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Figure 1. Schematic illustration of a dyad as coupled dynamical system (left) and hypothetical
motion activity of two interactants with synchronization intervals (right).

1.1. Synchronization in Patient–Therapist Interaction

Psychotherapy research has investigated the synchronization of physiological pa-
rameters [14,15], body movements [5,11], facial expressions [16], prosodic cues [17–19],
and language style [20,21]. Many studies have investigated the relationship between (non-
verbal) synchronization and therapeutic success. According to the systematic review of
Wiltshire et al. [22], physiological synchrony was most frequently correlated with empathy
and language, vocal synchrony with therapeutic alliance, and movement synchrony with
psychotherapy outcomes. This review supported the InSync model of psychotherapy [3,23],
which assumes that (nonverbal) synchrony in patient–therapist interaction affects the emo-
tion regulation of patients (as a top-down effect at medium/tonic to longer/chronic time
scales) as well as the therapeutic relationship and, as a consequence, therapeutic success
(bottom-up effect at tonic and fast/phasic time scales).

Other psychotherapy studies have investigated (nonverbal) synchrony in interpersonal
interaction as a diagnostic feature of mental disorders. Multiple studies suggested, for exam-
ple, that attenuated nonverbal synchrony was linked with depressive symptoms [16,24–26].
These findings correspond with neurophysiological [27,28] and interpersonal models of
depression [29]. The former explains changes in emotion regulation and interpersonal
interaction (e.g., less smiling or movements) by disorder-related changes in neurophys-
iological processes (e.g., dysfunctions in the left frontal hemisphere of the brain) [30,31].
Interpersonal models of depression [29] assume that depressed persons induce a negative
mood in their conversation partners, thus provoking negative responses, which in turn
confirm the negative expectations of the depressed person. Accordingly, in interviews with
depressed patients, the interviewers synchronize their nonverbal behavior less often.

It may be noted, however, that the findings are not homogeneous. Some studies
did not find significant associations between synchrony and therapeutic outcome [17,32],
or even reported that higher synchrony was related to higher symptom levels [33,34].
This was also true for synchrony as a diagnostic feature, e.g., when more vocal synchrony
was correlated with higher anxiety symptoms in the study of [35].



Entropy 2022, 24, 1307 3 of 22

From a methodological point of view, an explanation of the conflicting results may be
that nonverbal synchrony was measured differently. Thus, researchers may have addressed
different aspects, or even different concepts, of synchrony, which may have resulted in
varying correlations between synchrony and therapeutic outcome as well as symptom
load [36]. This unsettled state of research has motivated the present study on the validity
of different synchronization measures.

1.2. Measures of Synchronization and Its Convergent Validity

Various statistical methods may be used to estimate the average degree of coupling
(e.g., [14,37]) or identify synchronization intervals (e.g., [12]). Despite multiple overviews
of methods applied in psychotherapy research [10,36,38] so far, there are only few studies
on the validity of synchrony measures.

First, it should be noted that synchrony measures depend on the parameter settings
of algorithms. Ramseyer and Tschacher [39], Schoenherr et al. [40] and Behrens et al. [41]
applied windowed cross-lagged correlation algorithms multiple times to the same bivariate
time series and varied parameters such as degree of smoothing, window size and maximum
time lag. Among other things, they showed that smaller windows [39–41], non-transformed
movement data and slight smoothing [40] lead to higher synchronization values and higher
correlations between synchrony and therapeutic alliance, respectively [39]. The application
of a pseudo-synchrony approach [42] also affects the measured synchrony. For each real-
world time-series pair, Moulder et al. [43] generated multiple artificial time-series pairs by
(a) shuffling participants, (b) shuffling time-series segments within a dyad, (c) shuffling
measurement points within a dyad and (d) reversing one of the time series in the pair. They
found that the decision as to whether synchrony was present in a time-series pair strongly
depended on the applied shuffling method. All these findings imply that the validity of
synchrony measures depends on the parameter settings of an algorithm.

Regarding the validity of synchrony measures, one should distinguish different kinds
of validity. Predictive validity is present when a synchrony measure predicts an external
criterion in accordance with theoretical expectations, as was investigated by [36,39,44,45].
Feniger-Schaal, Schoenherr, Altmann and Strauss [44] applied windowed cross-lagged
correlation (WCLC) with peak picking (PP) by [12] to motion time series that were captured
in a “mirror game”. In the first phase of the mirror game, the study assistant mirrored
the movements of a participant. In the second phase, the leading–following roles were
switched. In the third phase, these roles were not predetermined. In concordance with
instructions, the algorithm measured more synchrony with the participant leading in the
first study phase, and more synchrony with the assistant leading in the second phase. In the
study of Luehof [45], WCLC with PP by [9], windowed cross-lagged regression (WCLR)
with PP by [4,12], and recurrence quantification analysis (RQA) were able to discriminate
between interviews with rapport-trained interviewers and control interviewers, finding
more synchrony with the trained interviewers. The WCLR–PP showed the best discrim-
ination. Schoenherr et al. [36] used therapeutic success as the criterion to be predicted
by synchrony. They found that only windowed cross-correlation (WCC), WCLC–PP and
WCLR–PP correlated significantly in the expected direction with therapeutic success.

Schoenherr, Paulick, Deisenhofer, Schwartz, Rubel, Lutz, Strauss and Altmann [40]
studied the criterion validity of synchronization measures using artificially generated
time-series pairs that contained a single synchronization interval. The WCLC–PP and
WCLR–PP by [4,12] were applied to each time-series pair and correct identifications of the
synchronization interval (the criterion) were counted. The best concordance in terms of the
average Cohen’s κ was observed for both WCLC–PP and WCLR–PP with window widths
of 3 and 5 s, non-transformed movement data and slight smoothing. When applying the
algorithms to real motion time series with isolated synchronization intervals (no other
movement activity before or after the synchronization interval), the identification rate
varied between moderate and substantial Cohen’s κ, depending on the parameter settings.
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Validity defined as congruence between different measures was investigated by
Schoenherr, Paulick, Worrack, Strauss, Rubel, Schwartz, Deisenhofer, Lutz and Altmann [36],
Luehof [45] and Tschacher and Meier [14]. They applied multiple algorithms to naturalis-
tic bivariate time series and determined convergent validity by the correlations between
different synchrony measures. In their study of physiological synchrony, Tschacher and
Meier [14] found little or no inter-correlations between SUSY–ESabs, SUSY–ESnoabs and the
SUCO algorithm. In a study of movement synchrony, Luehof [45] found no concordance
between the synchrony measures of WCLC–PP by [9], WCLR–PP by [4,12], and recurrence
quantification analysis (RQA). In the study of Schoenherr, Paulick, Worrack, Strauss, Rubel,
Schwartz, Deisenhofer, Lutz and Altmann [36], cross-lagged correlation (CLC), cross-lagged
regression (CLR), windowed cross-correlation (WCC), windowed cross-lagged correlation
(WCLC) by [37], WCLC by [32], WCLC–PP and WCLR–PP by [4,12], and cross-recurrence
quantification analysis (CRQA) by [46] were conducted. The correlation between two
synchrony measures ranged from not present (r ≈ 0) to almost perfect (r ≈ 1). In a sub-
sequent exploratory factor analysis, CLC, WCLC by [37], and WCLC by [32] formed a
factor of highly correlated synchrony measures. The second factor loaded on average cross-
correlation within the synchronization intervals assessed with WCLC–PP and WCLR–PP
by [12]. The third factor consisted of non-linear synchrony such as CRQA and the frequency
of synchrony of WCLC–PP and WCLR–PP by [12]. Schoenherr et al. [36] concluded that
the examined algorithms did not measure the same kind of synchrony and that different
measures predicted different effects on therapeutic outcome.

1.3. Research Question

The present study explored the convergent validity and predictive validity of cross-
correlation- and entropy-based measures of movement synchrony. We used data from a pi-
lot study on nonverbal communication in depressive patients and healthy controls [16,47,48].
The primary study focused on the evaluation of feasibility of recruitment, assessment pro-
cedures, automatic coding of nonverbal behavior and provided first empirical results on
the differences between patients with depression and healthy controls in terms of body
motion, facial expressions and prosody. In the present secondary analysis, we addressed a
methodological question: the validity of movement synchronization measures. For this pur-
pose, multiple algorithms measuring synchronization were applied to motion times series
of participants and interviewers. The convergent validity was examined by correlations
between the synchrony measures. According to [36], we assume weak convergent validity
in terms of low correlations between different synchrony measures, and that some measures
can be assigned to different facets of synchrony measures. As in [36], we conducted an
exploratory factor analysis to identify the facets of synchronization. Due to the fact that the
distribution of synchrony measures is non-normal, we conducted a minimum rank factor
analysis, which is more appropriate for non-normally distributed data. The predictive
validity was investigated by comparing the synchrony measures in patients with major de-
pression and in healthy controls as well as by the correlation between synchrony measures
and symptom load, which was assessed with questionnaires. According to the literature
mentioned above, movement synchrony was expected to be lower in the interview dyads
with depressive patients.

To our knowledge, the present study is the second peer-reviewed study on the conver-
gent validity of synchronization measures applied in clinical research. In the first study [36],
the synchronization of the patient and psychotherapist in an early therapy session was
investigated. In comparison to [36], we applied additional synchronization measures, espe-
cially measures based on information theory, and the homogeneity of the interactions was
given (manual-guided interviews rather than therapy sessions addressing patient-specific
conversation topics in [36]), and predicted criterion and synchrony were much closer in
terms of time (the criterion—depression—was assessed before the interviews rather than
measured weeks after the sessions, as was true for the criterion—reduction of interpersonal
problems—in [36]).
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2. Materials and Methods
2.1. Sample of Participants

The sample included 15 inpatients with major depression and 15 healthy controls
matched by age and gender, thus groups did not differ regarding mean age and gender
distribution. The age range was 20 to 30 years. Of the 30 participants 40% were female.
Table 1 gives a short description of both groups, which showed no group differences
regarding further socio-demographic characteristics. Patients with depression reported
higher degrees of depressive and anxiety symptoms. For a detailed description of inclusion
criteria, recruitment, and group characteristics, see the primary study [16].

Table 1. Description of included study subjects.

All
(NPersons = 30)

Healthy
Controls

(NPersons = 15)

Depressive
Patients

(NPersons = 15)
p-Value

Socio-demographic characteristics
Age in years 25.2 (3.14) 25.5 (3.25) 24.9 (3.10) 0.6091
Gender 1.0000
Male 18 (60.0%) 9 (60.0%) 9 (60.0%)
Female 12 (40.0%) 6 (40.0%) 6 (40.0%)
Education 0.1686
No high-school degree 6 (20.0%) 1 (6.67%) 5 (33.3%)
High-school degree 24 (80.0%) 14 (93.3%) 10 (66.7%)
Partner status 0.6817
Without partner 22 (73.3%) 10 (66.7%) 12 (80.0%)
In steady relationship 8 (26.7%) 5 (33.3%) 3 (20.0%)

Questionnaires (pre interview)
Depressive symptoms (PHQ9) 9.43 (7.10) 3.40 (2.44) 15.5 (4.52) <0.0001
Anxiety symptoms (GAD7) 6.80 (5.76) 1.73 (1.71) 11.9 (3.29) <0.0001

Note: For continuous variables average and standard deviation are reported and for categorical variables frequency
and percentage. For categorical variables a chi-squared or exact Fisher test was applied (the latter, when one or
more expected cell frequencies were less than 5). For continuous variables we used a t-test or Kruskall–Wallis test
(the latter for non-normally distributed data). For more details see [16]. N denotes the number of persons.

2.2. Instruments

Prior to the interviews, several questionnaires were administered. We assessed the
degree of depressive symptoms using the corresponding scale of the Patient Health Ques-
tionnaire (PHQ9) [49]. A sum score of 0–4 is interpreted as no or minimal, 5–9 as mild,
10–14 as moderate, and 15–27 as severe depressive symptoms. The degree of anxiety symp-
toms was measured with the Generalized Anxiety Disorder Scale (GAD7) [49]. The values
0–4 are interpreted as no or minimal, 5–9 as mild, 10–14 as moderate, and 15–21 as severe
anxiety symptoms. Both sum scores have an acceptable internal consistency (Cronbach’s
α > 0.8). Further questionnaires were assessed in the primary study but not used in the
present study.

2.3. Interviews of Patients and Controls

The focus of the interviews was on somatic complaints, which may be present in
healthy participants as well, similar to anamnestic interviews regarding somatoform dis-
orders (SCID-I, section G) [50]. Example questions were: “Have you been ill during the
last few years?”, or “Have you had any significant problems with headaches?”. At the
beginning of interviews, the interviewer asked warm-up questions (e.g., “Did you find your
way to the site easily?”) to allow the interviewee to become accustomed to the recording
situation (cameras, etc.).

We used two cameras to record a frontal view of each person. Both recordings were
subsequently synchronized by means of a film clapperboard and merged into a split-screen
video. Interviews were held in a neutral counseling room where the interviewee and inter-
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viewer sat across each other at a table on identical chairs. The interviews were conducted
by two female medical students (age ~25 years) in their senior semester. Both interviewers
were trained and instructed to adopt a professional and neutral style. Further details on
interviews and video recording are reported in [16,48].

2.4. Coding of Motor Activity during the Interviews

Using the interview videos, the motor activity of the interviewees and interviewers
was captured using motion-energy analysis, or MEA [51]. We applied the MATLAB©
scripts developed by Altmann [4,12], where regions of interest (ROI) can be drawn by
hand [5] (free download at https://github.com/10101-00001/MEA, accessed on 15 July
2022). To capture motor activity, the MEA considers all changes of subsequent (t; t + 1)
video frames of the recording. First, for each person, a ROI is defined that covers the
region in which movements are visible. Inside the ROI, those pixels are counted whose
grayscale values change substantially from t to t + 1 (cut-off value: 12 of 256 grayscale
degrees). The number of such pixels defines the motion energy of the respective person’s
ROI at t. For each of the 30 interview videos, we thus generated a bivariate time series that
represents in detail (25 measures per second) the visible movement activity (movement
of torso, arm, hands, and head of each interlocutor were aggregated to one measure of
individual motion energy).

After the MEA, we applied several pre-processing steps. First, each time series was
standardized by the size of the corresponding ROI and multiplied by 100. Accordingly,
the values of time series ranged from zero (no motion) to 100 (entire ROI activated). Finally,
all the time series were smoothed using a moving median with a bandwidth of five frames.

Figure 2 shows, as an example, one pair of motion-energy time series to which
the aforementioned preprocessing steps were applied. The time axis is given in frames
(25 frames = 1 s). Some algorithms analyze the time series window-wise, e.g., in rMEA und
WinCRQA, 1500 frames, or in WCLR–PP, 125 frames. To illustrate what amount of motion
activity was captured during such intervals, in Figure 2 we plotted examples of time series
segments with length 1500 frames and 125 frames, respectively.
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The length of the time series ranged from 10,325 to 42,250 frames (from 413 to 1850 s,
respectively; median = 855 s). The interviews of the patients lasted longer than those of
controls (medianPatients = 1276 s, medianControls = 759 s, median test p = 0.001).

2.5. Measures of Movement Synchrony

The 30 bivariate time series originating from the interviews served as the data input for
the synchronization measures that we wished to assess. Features of the measures provided
by the algorithms introduced below are summarized in Table 2.

2.5.1. Cross-Correlation

The “simplest” measure of movement synchrony is the cross-correlation (CC) of both
time series describing the movements of interlocutors. Please note that in this approach no
time lag between both time series is modeled.

Some research has considered the sign problem when the averages of cross-correlations
are computed: For example, a time series may include sections with r = 0.5 and the
same number of sections with r = −0.5, so that the aggregated cross-correlation is zero,
leading to the conclusion that on average there is no interrelatedness, or no synchrony.
To avoid this problem, prior to aggregation, the signs of cross-correlations may be removed
by calculating the absolute values (e.g., [37,42,55]), or the coefficient of determination
(squaring the correlations) may be used (e.g., [12]). In the latter approach, large cross-
correlations will be weighted higher. Furthermore, sometimes Fisher’s Z-transformed
correlation is considered, because then values are approximately normally distributed.
Since a consensus has not been reached, we considered all the options in the present study:
raw values of cross-correlations (including negative and positive values when averaging;
CC–raw), the absolute values (CC–abs), Fisher’s Z-transformed (CC–Z), and squaring of
cross-correlations (CC–R2).

2.5.2. rMEA

The R package rMEA [37,52] is based on the work of Ramseyer and Tschacher [11,42]
and includes motion capture via MEA as well as (a variant of) windowed cross-lagged
correlation (WCLC) to compute the averages of local cross-correlations. Similar to the
approach of Boker, Rotondo, Xu and King [9], local associations of both time series
are quantified by the cross-lagged correlations of time-series segments—so-called win-
dows. When starting the algorithm, the user has to define the window size (default value:
b = 60 s, i.e. 60·25 = 1500 respective time points when the video frame rate per second
is 25) as well as the maximum time lag (default value: τmax = 5 s, 125 respective time
points) which defines the range of the considered time lags. The calculation of WCLC
contains three steps. First, a cross-correlation (time lag τ = 0) for a pair of windows with
the same starting point (t) is computed. Second, the start position of the reference window
is kept constant, whereas the start position of the second window is shifted up to the
maximum time lag. In the third phase, the position of the reference window is shifted
with an increment of 30 s (default value). Then, the algorithm repeats step 1 and 2 for this
start position of the reference window. The result is a matrix whose columns refer to the
time lag (−τmax, . . . , 0, . . . , τmax) and rows to the start position of the reference window
(1, . . . , L− b + 1; L: time-series length, b: window width). The values of this matrix are
the Fisher’s Z-transformed coefficients of WCLC (default setting). Before applying the
transformation, the absolute values of all cross-correlations are computed to remove the
signs (default setting).
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Table 2. Features of synchronization measures.

Algorithm/Package Method
Global or Local

Synchrony
Estimation

Time Lag Significance Test Sign of
Correlations

Peak
Picking Output/Synchrony Scores

CC Cross-
correlation Global No No Positive and negative

values no

Cross-correlation (CC–raw)
Fisher’s Z-transformed CC (CC–Z)

Absolut values of CC (CC–abs)
R square of CC (CC–R2)

rMEA by Kleinbub
and Ramseyer [52]

Windowed
cross-lagged

correlation, Fisher’s
Z-transformed

Local Yes Sample shuffling Absolute values no

Windowed cross-correlation without time
lags (rMEA–WCC)

Windowed cross-lagged correlation with
time lags (rMEA–WCLC)

SUSY by Tschacher
and Haken [53]

Windowed
cross-lagged

correlation, Fisher’s
Z-transformed

Local Yes Segment shuffling
Absolute values (SUSY–

ESabs); positive and
negative (SUSY–ESnoabs)

no

global effect size of absolute values of
cross-correlations (SUSY–ESabs)

global effect size of cross-correlations
(SUSY–ESnoabs)

SUCO by Tschacher
and Meier [14]

Windowed regression,
Fisher’s Z-transformed Local No Segment shuffling

Absolute values
(SUCO–ESabs); positive
and negative (SUCO–
CO, SUCO–ES–CO)

no

global concordance value (SUCO–CO)
global effect size of regressions

(SUCO–ESabs)
global effect size of concordance values

(SUCO–ES–CO)

WCLC–PP by
Altmann [4,12]

Windowed
cross-lagged

correlation and
peak-picking algorithm

Local Yes
R squared

difference test with
α = 0.001

Squared (positive) yes

Frequency of synchrony relative to
conversation duration (WCLC–PP–F),

average R2 of WCLC within the
synchronization intervals (WCLC–PP–R2)

WCLR–PP by
Altmann [4,12]

Windowed
cross-lagged regression

and peak-picking
algorithm

Local Yes
R squared

difference test with
α = 0.001

Squared (positive) yes

Frequency of synchrony relative to
conversation duration (WCLR–PP–F),

average R2 of WCLR within the
synchronization intervals (WCLR–PP–R2)

MI by Pardy [54] Information theory Global No No not applicable no

mutual information (MI–raw)
Jackknife bias corrected MI (BCMI)

(MI–COR)
Z-scores of BCMI (MI–Z)

WinCRQA by Coco
and Dale [46]

Windowed
cross-recurrence Local Yes No not applicable no

Recurrence rate in % (WinCRQA–RR)
Determination rate in % (WinCRQA–DET)
Normalized entropy (WinCRQA–ENTR)

Note: CC: cross-correlation; rMEA: R package motion-energy analysis; SUSY: surrogate synchrony; SUCO: surrogate concordance; WCLC: windowed cross-lagged correlation; WCLR:
windowed cross-lagged regression; PP: peak picking; R2: squared correlation; MI: mutual information; WinCRQA: windowed cross-recurrence quantification analysis.
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In the present study we considered two measures of the degree of synchrony provided
by the rMEA package: First, the average windowed cross-correlations (step 1 above; rMEA–
WCC), and second, the average windowed cross-lagged correlations (step 3 above; rMEA–
WCLC). The former only includes values of the column of the WCLC matrix referring to
τ = 0, whereas the latter considers all columns. In contrast to Boker, Rotondo, Xu and
King [9] and Altmann [4,12] there is no selection of WCLC maxima, thus no application of
a peak-picking algorithm.

Due to the fact that noise and non-stationarity can cause cross-lagged correlation,
a pseudo-synchrony approach [42,56] is conducted in the next step. The corresponding
bootstrap algorithm randomly recombines the time series of person A and person B of
another interview multiple times (default value: 100 times) and each time computes the
WCLC. Thus, the surrogate generation is based on person shuffling. In this way, a statistic
is produced to test whether the present WCLCs are different from the expected value of a
random distribution of WCLC values.

2.5.3. SUSY

Surrogate synchrony (SUSY) [53,55] is based on the cross-correlation function of
dyadic time series (the algorithm can be used online: https://www.embodiment.ch/,
accessed on 15 July 2022). The cross-correlations are computed across a range of lags L
(here −5 s ≤ L ≤ 5 s). The cross-correlation function is computed segment-wise, i.e., sepa-
rately in all non-overlapping segments of the time series (here segment-size = 30 s). It may
be noted that terminology differs in the rMEA package, where “window” is used to denote
segments. All cross-correlations are transformed using Fisher’s Z-transformation to allow
the aggregation of cross-correlations. The synchrony of any segment is then defined as
the mean of all (lagged) cross-correlations of this segment, and the synchrony of the time
series as the mean of segment means. Aggregation is performed using either absolute Z
cross-correlations (Zabs) or the original, negative or positive, cross-correlations (Znoabs).
The reason for taking the absolutes of correlations is that one may define synchrony irre-
spective of the direction of coupling, which may be negative (“anti-phase”) or positive
(“in-phase”); in Zabs, both are collapsed into one signature of synchrony. Znoabs differenti-
ates in-phase from anti-phase coupling. Then surrogate tests are performed to establish
a control condition for the Zabs and Znoabs values of each dyad. Surrogate time series
in SUSY are generated by randomly shuffling the sequence of segments, independently
for each dyad member (surrogate generation by segment shuffling). From a dyadic time
series with n segments, n(n − 1) surrogates can be produced. In the present analysis,
all n(n − 1) respective surrogates were used. The surrogate step produces effect sizes
(ES) as the final signatures of synchrony in SUSY, namely SUSY–ESabs and SUSY–ESnoabs.
SUSY–ESabs is derived using the mean surrogate Zabs and their standard distribution:
SUSY–ESabs = (Zabs − Zabs-surr)/SD(Zabs-surr). SUSY–ESnoabs is computed analogously.
The leading–following relationships of synchrony may further be operationalized by differ-
entiating between positive and negative lags L.

2.5.4. SUCO

Surrogate concordance (SUCO; online access https://www.embodiment.ch/,
accessed on 15 July 2022) [14,55] is based on the correlations of the local slopes of dyadic
time series (A,B). The slopes are determined by least-squares regression in windows (here,
window size was 3 s) of the time series, and the time series are again partitioned into seg-
ments of 30 s duration as in SUSY. The linear slopes are computed inside the first window
of segment i, the window is then shifted by an increment of 1 s and the slopes are again
computed; thus, overlapping windows are used. This is repeated until all windows in
segment i are covered. The slopes in segment i of time series A are Pearson-correlated with
those of the same segment of B. The resulting correlation ri denotes the relation between A’s
and B’s slopes in segment i of the time series. This is performed in all segments of the time
series A and B. The absolute values of all correlations ri are Fisher’s Z-transformed and

https://www.embodiment.ch/
https://www.embodiment.ch/
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aggregated, yielding Z’abs (with high comma to distinguish from SUSY). Segment-wise
shuffling is used, as in SUSY, to create surrogate time series, yielding the effect size of
Z’abs, labeled SUCO–ESabs. The concordance index (SUCO–CO) across all segments of the
client–therapist interaction is defined by the natural logarithm of the sum of all positive
correlations ri divided by the absolute value of the sum of all negative correlations ri, as
previously suggested by Marci and Orr [57]. Using surrogate analysis, an effect size SUCO–
ES–CO is computed by standardizing the concordance index by the mean and standard
deviation of the concordance indexes of surrogate data, in analogy to the procedure in
SUSY. The leading–following relationships of concordance synchrony are operationalized
by shifting of A’s windows with respect to B prior to computing ri, yet such lags were not
computed in the present analyses.

2.5.5. WCLC–PP and WCLR–PP

The algorithm by Altmann [4,12] (download at https://github.com/10101-00001/
sync_ident, accessed on 15 July 2022) combines three approaches: First, the computa-
tion of local associations proposed by Boker, Rotondo, Xu and King [9], Ramseyer and
Tschacher [11] and Watanabe [58]; second, the reduction of auto-correlation bias [59]
by a regression approach, e.g., as performed by Gottman and Ringland [60]; and third,
the differentiation between significant and non-significant local associations and their
selection by a peak-picking algorithm as proposed by Boker, Rotondo, Xu and King [9].
The algorithm is based on the assumptions that in interpersonal interaction, phases of
synchrony (high degree of coupling) alternate with phases of non-synchrony (no coupling),
and that within a phase of synchrony the data are sufficiently described by cross-lagged
regression. The validity and high detection rate of the algorithm has been shown in
multiple studies [36,40,44,45].

The computation consists of three steps. First, the local associations are computed.
This can be performed with windowed cross-lagged correlation (WCLC) or windowed
cross-lagged regression (WCLR). Similar to rMEA and SUSY, time-lagged windows of
both time series are considered. In WCLR, for each start position of a reference window
(e.g., of person A) and each possible time lag (τ), two cross-lagged regressions are applied.
In model 1, the window of person A beginning at t + τ is predicted by the window of
person A beginning at t. This means that only the auto-correlation is modeled. However,
in model 2, the window of person A beginning at t + τ is predicted by a window of
person A beginning at t (corresponding to the auto-correlation) as well as a window of
person B beginning at t (corresponding to the cross-correlation). Then, the coefficient
of determination is computed based on both models: ∆R2

t,τ = R2
M2,t,τ − R2

M1,t,τ (note:
M1: model 1; M2: model 2; t: start position of window; τ: time lag between “action”
and “response”). ∆R2

t,τ quantifies the proportion of variance of window A at t, which
is explained by cross-lagged correlation with time lag τ and which is unbiased by the
auto-correlation with time lag τ. The procedure described above is conducted for each
position of the reference window (t ∈ {1, . . . , L− b + 1}; L: length of time series; b: window
width) and each time lag of interest (τ ∈ {−τmax, . . . , τmax}). All resulting ∆R2

t,τ values
are stored in a matrix (so-called R square matrix; [12]). Similar to rMEA, the column
refers to the time lag (−τmax, . . . , 0, . . . , τmax) and the row to the start position of the
reference window (1, . . . , L − b + 1; L: time-series length; b: window width). However,
the values of matrix (∆R2

t,τ) are not correlation coefficients but the proportion of explained
variance by cross-correlation adjusted by auto-correlation with the same time lag (also
called R square or coefficient of determination). In contrast to WCLR, the WCLC by
Altmann [4,12] estimates the local associations between two time-series windows with cross-
lagged correlations. They can be confounded by auto-correlation. However, the process is
similar: The correlations computed for windows that are time-lagged and “moved” over
the time axis. The result is also a R square matrix. Its elements (R2

t,τ) are the squared
windowed cross-lagged correlations at a specific start position of reference window (t) and
a specific time lag (τ) of the interlocutor’s window.

https://github.com/10101-00001/sync_ident
https://github.com/10101-00001/sync_ident
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In the second step of the analysis, the R square matrix is analyzed by a peak-picking
algorithm (abbreviation: PP) [4,12]. For each start position of reference window at t, local
maxima of ∆R2

t,τ (R2
t,τ) values are detected (for illustrations see [12]). Next, local maxima

with equal time lag and directly consecutive in time are combined into intervals. When a
start position of the reference window is part of multiple intervals, then the interval with
the largest average ∆R2

t,τ is selected. These selected intervals are called synchronization
intervals [12]. The output of the peak-picking algorithm is a list of synchronization intervals
(abbreviation: LOSI). Based on this list, an interpersonal interaction can be described as a
process where phases of movement synchronization (synchronization intervals with a high
degree of cross-lagged correlation) alternate with phases without synchronization (without
significant cross-lagged correlation).

In the last step of WCLC–PP and WCLR–PP, various synchronization measures can
be quantified based on the LOSI. In the present study, we considered the frequency of
movement synchrony defined as the proportion of synchronization intervals in relation
to the duration of the time-series length (WCLC–PP–F and WCLR–PP–F) and the average
interrelatedness of both time series within the synchronization intervals quantified by the
average R square of the synchronization intervals (WCLC–PP–R2 and WCLR–PP–R2).

Before starting WCLC–PP and WCLR–PP, some parameter values have to be defined.
In the present study, the window width was 125 time points (5 s), the R2 cut-off was 0.25
(both values suggested by the simulation study of [40]), the increment was one frame
(resulting in overlapping windows), and the maximum time lag τmax = 125 frames (both rec-
ommended by [5,8]). According to the simulation study of [40], in the LOSI we considered
only synchronization intervals with average

(
∆R2) > 0.25, which led to better identification

rates and lower false positives.

2.5.6. Mutual Information

Mutual information (MI) [61] quantifies the amount of information that is shared by
two random variables and uses this as a measure of dependence. Shannon information
is closely linked with entropy [62]. In other terms, MI is the joint distribution of both
time series related to the marginal distributions of both time series under the assumption
of independence. In contrast to cross-correlation, which assumes continuous or interval-
scaled time series, mutual information can only be computed for categorical variables or
continuous variables binned into categories. A further difference is that MI does not rest on
the assumption of linear dependencies between time series.

In the present study, we estimated MI using the R package mpmi (command cmi.pw) [54]
which automatically calculates a vector of smoothing bandwidths for each of the dyadic
time series. It uses a kernel-smoothing approach to estimate the joint distribution and both
marginal distributions. The package provides three measures: an (uncorrected) raw value
of MI (MI–raw), a Jackknife bias-corrected MI (MI–cor), and a Z-score of bias-corrected MI
that provides a statistic for the null-hypothesis that the bias-corrected MI is zero (MI–Z).

2.5.7. Recurrence Techniques

Cross-recurrence quantification analysis (CRQA) [63–65] is based on a state–space
approach. Given time series of two coupled dynamical systems, in the first step, recur-
rence techniques identify the time points when both systems are in the same state (e.g.,
both interlocutors smile). This includes simultaneous and time-lagged states. The infor-
mation is stored in the recurrence matrix (illustrated as a recurrence plot). In continuous
data (e.g., movement intensity), a distance measure has to be defined (usually Euclidian
distance) and a recurrence threshold (radius: ε) has to be specified. Instead of same states,
the simultaneous and time-lagged similarity of continuous state parameters is identified
( ε <||xt − xt+τ ||).

The values of the recurrence matrix are zero or one, depending on the similarity of
values (in categorical time series, identity of values) at a specific time point of the reference
time series and time lag of the interlocutors’ time series. Based on the recurrence matrix,
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various parameters describing aspects of coupling can be computed, e.g., the percentage
of recurrence points in the recurrence plot (recurrence rate: RR in %), the percentage of
recurrence points forming diagonal lines (percentage of determinism: DET in %) or the
Shannon information entropy of the diagonal line length longer than the minimum line
(entropy: ENTR; entropy normalized by number of diagonal lines in the recurrence plot:
rENTR) [46,66]. Of these measures, WinCRQA–DET is often used as a synchrony measure,
e.g., in [40,67,68]. Please note that as in other algorithms, the result of the recurrence
analysis depends on the parameter values, especially on the recurrence threshold [69].

In the present study, we conducted the windowed cross-recurrence quantification
analysis (R command: wincrqa) implemented in the R package CRQA [46,66]. We trans-
formed all the time series to the unit-interval and used a Euclidian distance with ε = 0.05 as
recurrence threshold. The embedding dimension was three. As in rMEA, the window
width was 1500 frames (60 s), the overlap of windows was 750 and the maximal time lag
was 125 (5 s). The algorithms provided various outcome parameters for each window (e.g.,
RR, DET and ENTR). To obtain a measure for the entire conversation, we averaged these
values over all the windows.

2.6. Statistical Analysis of Synchrony Measures

After the video recording of the 30 interviews and the measurement of motion energy
during the interviews using the MEA, we applied the listed algorithms on the motion-
energy time series to quantify synchrony. We created a data matrix in which a column
refers to a specific synchrony measure and a line to an interview. Based on this table we
investigated the validity of synchrony measures.

First, the convergent validity of synchronization measures was examined by Pearson
and Spearman correlations. Thus, we assumed that all synchrony measures correlated with
each other. According to Cohen [70], r > 0.1 can be interpreted as small, r > 0.3 as moderate
and r > 0.5 as a large effect.

Due to the findings of [36], we explored facets of synchrony using factor analysis.
To determine the number of extracted factors, we applied a parallel test with 100 bootstraps.
We computed an exploratory factor analysis (EFA) with a maximum likelihood estimator
(ML) as well as a minimum rank factor analysis (MINRANK), which is more appropriate in
non-normally distributed data. In both factor analyses, the factors were allowed to correlate
(oblimin rotation). An acceptable model fit is given when the root-mean-square error of
approximation (RMSEA) is <0.08 and the Tucker Lewis Index (TLI) is >0.9.

Next, the predictive validity of synchronization measures was examined. We assumed
that in dyads of patients with major depression, less movement synchronization would
be observed than in the dyads of healthy controls. The synchronization measures of both
groups were compared using the Kruskall–Wallis tests. In significant group differences,
we reported Hedges g as an effect size measure. According to Cohen [70], g > 0.2 can be
interpreted as small, g > 0.5 as moderate and g > 0.8 as a large effect.

Furthermore, for the predictive validity we assumed that a higher symptom load
(assessed with PHQ9 and GAD7) would be related to less synchronization observed in the
interviews. We computed Pearson and Spearman correlations.

3. Results

First, we investigated the convergent validity with correlations between different
synchronization measures (Table 3). The three measures based on mutual information were
highly interrelated (all Pearson r > 0.845, p < 0.01). This also holds for the three measures
of the SUCO approach (all r > 0.718, all p < 0.05). Moderate correlations were found for
both measures of rMEA (r = 0.685, p < 0.05), both measures of SUSY (r = 0.502, p < 0.05),
both measures of WCLC–PP (r = 0.51, p < 0.05), and the four variants of cross-correlation
(all r > 0.69, all p < 0.05).
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Table 3. Pearson correlations (lower left triangle) and Spearman correlations (upper right triangle) of synchronization measures.

1.
CC–
raw

2.
CC–
abs

3.
CC–Z

4.
CC–R2

5.
rMEA–
WCC

6.
rMEA–
WCLC

7.
SUSY–
ESabs

8.
SUSY–
ESnoabs

9.
SUCO–

CI

10.
SUCO–
ESabs

11.
SUCO–
ES–CI

12.
WCLC–

PP–F

13.
WCLC–
PP–R2

14.
WCLR–

PP–F

15.
WCLR–
PP–R2

16. MI–
raw

17.
MI–
cor

18.
MI–Z

19. Win-
CRQA–

RR

20. Win-
CRQA–

DET

21. Win-
CRQA–
ENTR

1 0.22 1.00 * 0.22 0.48 * 0.22 0.64 * 0.78 * 0.70 * 0.56 * 0.73 * −0.17 0.04 −0.17 0.06 0.02 −0.01 −0.12 −0.2 0.02 0.18
2 0.69 * 0.22 1.00 * 0.72 * 0.57 * 0.46 * 0.19 0.27 0.25 0.23 −0.25 0.23 −0.26 0.06 0.03 0 0.07 −0.24 −0.18 0.07
3 1.00 * 0.69 * 0.22 0.48 * 0.22 0.64 * 0.78 * 0.70 * 0.56 * 0.73 * −0.17 0.04 −0.17 0.06 0.02 −0.01 −0.12 −0.2 0.02 0.18
4 0.73 * 0.95 * 0.74 * 0.72 * 0.57 * 0.46 * 0.19 0.27 0.25 0.23 −0.25 0.23 −0.26 0.06 0.03 0 0.07 −0.24 −0.18 0.07
5 0.73 * 0.88 * 0.73 * 0.82 * 0.75 * 0.63 * 0.35 0.50 * 0.56 * 0.53 * −0.1 0.39 * −0.16 0.18 0.22 0.18 0.28 −0.32 −0.24 −0.1
6 0.21 0.56 * 0.21 0.44 * 0.68 * 0.33 0.08 0.22 0.33 0.2 0 0.57 * −0.09 0.09 0.43 * 0.39 * 0.49 * −0.33 −0.33 −0.1
7 0.72 * 0.66 * 0.72 * 0.64 * 0.74 * 0.40 * 0.57 * 0.52 * 0.54 * 0.54 * −0.13 0.07 −0.13 0.09 −0.09 −0.12 −0.09 −0.12 0.01 0.17
8 0.74 * 0.43 * 0.74 * 0.50 * 0.40 * 0.02 0.50 * 0.66 * 0.50 * 0.60 * 0 0.12 −0.02 0.16 −0.06 −0.05 −0.28 −0.08 0.22 0.3
9 0.83 * 0.64 * 0.83 * 0.68 * 0.72 * 0.25 0.64 * 0.57 * 0.57 * 0.96 * −0.12 0.2 −0.07 0.29 −0.02 −0.02 −0.01 −0.02 0.14 0.13
10 0.70 * 0.61 * 0.70 * 0.59 * 0.72 * 0.3 0.64 * 0.51 * 0.72 * 0.62 * 0 0.31 −0.14 0.35 0.05 0.04 0.05 −0.04 0.14 0.22
11 0.82 * 0.62 * 0.82 * 0.64 * 0.73 * 0.21 0.66 * 0.53 * 0.96 * 0.75 * −0.19 0.14 −0.15 0.2 −0.1 −0.12 −0.03 −0.08 0.14 0.16
12 −0.3 −0.25 −0.3 −0.32 −0.16 0.31 −0.15 −0.01 −0.16 −0.17 −0.29 0.44 * 0.87 * 0.03 0.1 0.06 0.09 −0.46 * −0.44 * −0.32
13 0.17 0.32 0.17 0.32 0.38 * 0.65 * 0.15 0.14 0.36 0.26 0.21 0.51 * 0.31 0.48 * 0.29 0.29 0.3 −0.31 −0.27 0.02
14 −0.28 −0.31 −0.28 −0.40 * −0.21 0.21 −0.15 0.02 −0.11 −0.2 −0.24 0.93 * 0.39 * 0.02 0 −0.01 −0.01 −0.37 * −0.43 * −0.28
15 0.14 0.19 0.14 0.21 0.22 0.25 0.08 0.12 0.34 0.3 0.21 0.32 0.66 * 0.35 0.2 0.23 0.07 0.2 0.16 0.22
16 −0.01 −0.06 −0.02 −0.14 0.13 0.53 * 0 −0.16 0.02 0.1 −0.11 0.28 0.49 * 0.26 0.35 0.98 * 0.80 * −0.18 −0.38 * −0.17
17 0 −0.07 −0.01 −0.14 0.1 0.47 * 0 −0.16 0.01 0.1 −0.12 0.22 0.46 * 0.22 0.39 * 0.99 * 0.74 * −0.09 −0.28 −0.15
18 −0.08 −0.05 −0.08 −0.12 0.16 0.58 * 0 −0.26 0.01 0.04 −0.05 0.27 0.44 * 0.27 0.27 0.89 * 0.84 * −0.3 −0.58 * −0.25
19 −0.06 −0.15 −0.06 −0.07 −0.24 −0.41 * −0.09 −0.08 0.03 −0.01 −0.03 −0.44 * −0.22 −0.31 0.19 −0.16 −0.06 −0.23 0.83 * −0.05
20 0.16 −0.07 0.16 0.09 −0.19 −0.51 * 0.01 0.2 0.18 0.07 0.17 −0.49 * −0.24 −0.41 * 0.07 −0.33 −0.22 −0.43 * 0.84 * 0.13
21 0.26 0.23 0.26 0.26 0.1 −0.21 0.28 0.28 0.22 0.37 * 0.28 −0.41 * −0.12 −0.40 * 0.02 −0.16 −0.15 −0.24 0.04 0.12

Note: Ndyads = 30; * p < 0.05; CC: cross-correlation; SUSY: surrogate synchrony by Tschacher and Haken [53]; SUCO: surrogate concordance by Tschacher and Meier [14]; rMEA:
R package for motion-energy analysis by Kleinbub and Ramseyer [37]; WCLC–PP and WCLR–PP: windowed cross-lagged correlation and windowed cross-lagged regression with
subsequent peak picking by Altmann [4,12]; MI: mutual information by Pardy [54]; WinCRQA: windowed cross-recurrence quantification analysis by Coco and Dale [46], and Coco,
Mønster, Leonardi, Dale and Wallot [66].



Entropy 2022, 24, 1307 14 of 22

Contrary to our expectation, no single synchrony measure significantly correlated
with all other synchrony measures. Synchrony quantified as cross-correlation (CC–raw,
CC–abs, CC–Z, and CC–R2) correlated with synchrony measures of SUSY, SUCO and
rMEA package moderately (most Pearson r > 0.5). In contrast, the synchrony measures of
WinCRQA correlated negatively with rMEA–WCLC (e.g., Pearson r(WinCRQA–RR, rMEA–
WCLC) = −0.41, p < 0.05), WCLC–PP–F (e.g., r(WinCRQA–DET, WCLC–PP–F) = −0.49,
p < 0.05), WCLR–PP–F (e.g., r(WinCRQA–DET, WCLR–PP–F) = −0.41, p < 0.05) and mutual
information (e.g., r(WinCRQA–DET, MI–Z) = −0.43, p < 0.05).

The parallel test suggested for EFA and the minimum rank factor analysis that two
factors best describe the considered movement-synchrony measures. The loadings of
both factor analyses were similar (Table 4). The variants of cross-correlation, all measures
of the SUSY package, all measures of the SUCO package, and the rMEA–WCC formed
a factor. The indicators of the second factor were all variants of mutual information
and rMEA–WCLC. In the minimum rank factor analysis, WCLC–PP–F, WCLC–PP–R2,
WCLR–PP–F, and WinCRQA–DET were also assigned to the second factor. WCLR–PP–R2,
WinCRQA–RR, and WinCRQA–ENTR had low loadings (<0.5) and were not assigned to
either factor. rMEA–WCLC, WCLC–PP–F, and WCLR–PP–F showed large cross-loadings
(>0.3). Accordingly, in both factor analyses the model fit described by RMSEA and TLI was
not acceptable.

Table 4. Loadings of exploratory factor analysis with maximum likelihood estimator (“ML”) and
minimum rank factor analysis (“MINRANK”).

ML MINRANK
Factor 1 Factor 2 Factor 1 Factor 2

CC–raw 1.00 0.01 0.93 −0.09
CC–abs 0.70 −0.05 0.86 0.05
CC–Z 1.00 0.01 0.93 −0.09
CC–R2 0.74 −0.12 0.88 −0.06
rMEA–WCC 0.74 0.15 0.88 0.24
rMEA–WCLC 0.23 0.53 0.38 0.74
SUSY–ESabs 0.73 0.02 0.80 0.02
SUSY–ESnoabs 0.73 −0.14 0.66 −0.14
SUCO–CI 0.84 0.04 0.88 0.03
SUCO–ESabs 0.71 0.11 0.80 0.06
SUCO–ES–CI 0.81 −0.04 0.87 −0.03
WCLC–PP–F −0.30 0.27 −0.30 0.68
WCLC–PP–R2 0.18 0.49 0.28 0.72
WCLR–PP–F −0.28 0.26 −0.31 0.62
WCLR–PP–R2 0.15 0.37 0.24 0.45
MI–raw −0.00 1.00 −0.04 0.81
MI–cor 0.00 0.99 −0.04 0.75
MI–Z −0.07 0.89 −0.06 0.82
WinCRQA–RR −0.07 −0.15 −0.05 −0.46
WinCRQA–DET 0.16 −0.31 0.12 −0.63
WinCRQA–ENTR 0.26 −0.16 0.34 −0.34

Variance explained by factor 32.8% 18.0% 37.4% 23.2%

Correlation of both factors −0.02 0.04

RMSR 0.16 0.12
RMSEA 0.266 0.301
TLI 0.367 0.189

Note: Ndyads = 30; oblimin rotation; loadings > 0.5 marked bold and cross-loadings > 0.3 italic; CC: cross-correlation;
SUSY: surrogate synchrony by Tschacher and Haken [53]; SUCO: surrogate concordance by Tschacher and Meier [14];
rMEA: R package for motion-energy analysis by Kleinbub and Ramseyer [37]; WCLC–PP and WCLR–PP: windowed
cross-lagged correlation and windowed cross-lagged regression with subsequent peak picking by Altmann [4,12];
MI: mutual information by Pardy [54]; WinCRQA: windowed cross-recurrence quantification analysis by Coco
and Dale [46], Coco, Mønster, Leonardi, Dale and Wallot [66]; RMSR: root mean square of the residuals; RMSEA:
root-mean-square error of approximation; TLI: Tucker Lewis Index of factoring reliability.
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Next, we examined the predictive validity based on the criterion whether the syn-
chronization measures predicted the assignment into the group of healthy controls or of
depressed patients. Table 5 reports the group averages of the different synchronization
measures as well as the p-value of group mean comparisons. When measuring synchrony
with rMEA–WCC (gHedges = 0.838, p = 0.0274), SUCO–ES–CO (gHedges = 0.771, p = 0.0473),
and MI–Z (gHedges = 0.882, p = 0.0197), we found that patients with depression had a
higher degree of synchrony (in terms of interrelatedness) than the healthy controls. Such an
association at a trend level was also found for SUSY–ESabs (gHedges = 0.620, p = 0.0918) and
SUCO–ESabs (gHedges = 0.664, p = 0.0754). In contrast, WCLC–PP–F and WCLR–PP–F (mea-
suring the frequency of synchronization intervals) indicated that patients with depression
synchronized less often than healthy controls (WCLC–PP–F: gHedges = −1.03, p = 0.008 and
WCLR–PP–F: gHedges = −0.994, p = 0.0114). All other synchrony measures were unrelated
to group assignment.

Table 5. Average synchronization depending on group assignment (averages and standard deviations,
the p-value to Kruskall–Wallis test) and Spearman correlations (r) between symptoms and synchrony
scores using the entire sample.

Entire
Sample

Healthy
Controls

Depressive
Patients

Group
Comparison r with r with

N = 30 N = 15 N = 15 p-Value PHQ9 GAD7

CC–raw 0.02 (0.09) 0.00 (0.06) 0.04 (0.10) 0.1677 0.24 0.39 *
CC–abs 0.06 (0.06) 0.05 (0.03) 0.08 (0.07) 0.1617 0.28 0.39 *
CC–Z 0.02 (0.09) 0.00 (0.06) 0.04 (0.10) 0.1654 0.24 0.39 *
CC–R2 0.01 (0.01) 0.00 (0.00) 0.01 (0.02) 0.1402 0.29 0.39 *
rMEA–WCC 0.11 (0.04) 0.09 (0.03) 0.13 (0.05) 0.0274 0.49 * 0.60 *
rMEA–WCLC 0.09 (0.02) 0.09 (0.02) 0.09 (0.01) 0.1835 0.29 0.36 *
SUSY–ESabs 0.59 (1.00) 0.28 (0.92) 0.90 (1.00) 0.0918 0.33 0.43 *
SUSY–ESnoabs −2.60 (9.02) −1.61 (4.66) −3.59 (12.0) 0.5588 −0.19 −0.02
SUCO–CI 0.39 (0.77) 0.21 (0.62) 0.58 (0.88) 0.1989 0.36 0.43 *
SUCO–ESabs 0.97 (1.92) 0.34 (1.25) 1.60 (2.29) 0.0753 0.46 * 0.49 *
SUCO–ES–CI 0.93 (1.48) 0.37 (1.06) 1.48 (1.67) 0.0473 0.49 * 0.56 *
WCLC–PP–F 0.41 (0.11) 0.46 (0.07) 0.36 (0.11) 0.0081 −0.43 * −0.40 *
WCLC–PP–R2 0.40 (0.02) 0.40 (0.02) 0.40 (0.02) 0.5902 −0.02 −0.02
WCLR–PP–F 0.45 (0.09) 0.49 (0.05) 0.41 (0.11) 0.0114 −0.47 * −0.39 *
WCLR–PP–R2 0.43 (0.02) 0.43 (0.02) 0.43 (0.03) 0.8538 0.01 0.04
MI–raw 0.70 (0.26) 0.64 (0.27) 0.75 (0.26) 0.2537 0.21 0.23
MI–cor 0.55 (0.21) 0.51 (0.22) 0.60 (0.20) 0.2508 0.20 0.22
MI–Z 64.3 (21.5) 55.3 (17.2) 73.3 (22.1) 0.0197 0.39 * 0.38 *
WinCRQA–RR 41.7 (10.7) 41.4 (12.9) 42.1 (8.32) 0.8581 0.03 −0.06
WinCRQA–DET 99.3 (0.45) 99.3 (0.49) 99.3 (0.42) 0.9594 0.03 −0.06
WinCRQA–ENTR 0.70 (0.02) 0.69 (0.02) 0.70 (0.02) 0.2987 0.19 0.14

Note: * p < 0.05; CC: cross-correlation, SUSY: surrogate synchrony by Tschacher and Haken [53]; SUCO: surrogate
concordance by Tschacher and Meier [14]; rMEA: R package for motion-energy analysis by Kleinbub and Ramseyer
[37]; WCLC–PP and WCLR–PP: windowed cross-lagged correlation and windowed cross-lagged regression with
subsequent peak picking by Altmann [4,12]; MI: mutual information by Pardy [54]; WinCRQA: windowed
cross-recurrence quantification analysis by Coco and Dale [46], Coco, Mønster, Leonardi, Dale and Wallot [66];
PHQ9: Depression Module of Patient Health Questionnaire; GAD7: Generalized Anxiety Disorder Scale.

To test predictive validity, we also examined the correlation between the degree of
symptom load and synchronization measures (see Table 5). Similar to the group comparison,
we found that rMEA–WCC (Spearman r = 0.49, p < 0.05), SUCO–ESabs (r = 0.46, p < 0.05),
SUCO–ES–CI (r = 0.49, p < 0.05), and MI–Z (r = 0.390, p < 0.05) correlated with the degree
of depressive symptoms (PHQ9 sum-score) in terms of more depression leading to more
synchrony. In contrast, the significant correlation coefficients of WCLC–PP–F (r = −0.43,
p < 0.05) and WCLR–PP–F (r = −0.47, p < 0.05) suggested that more depression is related
to less synchronization. Regarding the degree of anxiety (GAD7 sum-score), we found
more significant correlations than for depressive symptoms (see Table 5). Many of these
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correlations between anxiety symptoms and synchrony were larger than the corresponding
correlations between depressive symptoms and the synchrony measure (e.g., GAD7 and
rMEA–CC: r = 0.600 versus PHQ9 and rMEA–CC: r = 0.46). In contrast, the correlation
between the frequency measures of synchronization and anxiety symptoms were lower
than the corresponding correlation between synchrony and depressive symptoms (e.g.,
GAD7 and WCLR–PP–F: r = −0.39 versus PHQ9 and WCLR–PP–F: r = −0.47).

4. Discussion

Nonverbal interpersonal interaction can be regarded as a complex dynamical system
as it comprises a high number of elements, considers changes in time depending on external
parameters, and may form temporary self-organized patterns that decrease the initially
high entropy of these systems. One such pattern that has received considerable attention
in recent social and clinical psychology is movement synchrony. Sequences of movement
synchronization defined as temporally coordinated motor activity are characterized by a
reduced degree of complexity and entropy, respectively, and a high degree of interrelated-
ness between participants and their behavior. Currently, several synchrony measures are
available, some based on information theory (e.g., mutual information) and some on cross-
correlation (e.g., cross-lagged correlation or windowed cross-lagged correlation). Whereas
developers (or users) claim that their algorithms actually measure “synchrony”, there is
as yet very little simulation or empirical evidence regarding the validity of synchrony
measures, with few exceptions [40,55]. The present study therefore investigated two as-
pects of the validity of movement-synchrony measures: convergent validity and predictive
validity. We applied several algorithms to the same dataset of 30 bivariate time series
that represented the motor activity of both the interviewer and interviewee during clinical
interviews on somatic complaints. From each interview video, bivariate motion time series
were derived. Using these time series, we computed multiple synchronization measures
and investigated the correlations between different measures (convergent validity). We also
explored which synchrony measure predicted whether the interviewee belonged to the
depression group (predictive validity).

4.1. Convergent Validity

Regarding the convergent validity, we found that synchrony measures originating
from the same algorithmic approach were moderately to highly related. For instance,
the three measures of mutual information of the R package mpmi [54] correlated highly
among each other. The same was true to a moderate degree for measures of the SUCO
algorithm [53], the rMEA package [37], and WCLC–PP [4].

When considering measures originating from different algorithms, their convergent
validity (their correlation) varied considerably. The largest correlation was observed
between CC–raw and SUCO–ESabs (Spearman r = 0.78, p < 0.05). Many correlations,
however, were insignificant and some were significant and negative, e.g., the correlation
between MI–Z and WinCRQA–DET (Spearman r =−0.58, p < 0.05) or between WCLC–PP–F
and WinCRQA–RR (Spearman r = −0.46, p < 0.05). When analyzing different aspects or
facets of synchrony, research should consider synchrony measures of different algorithms
instead of different measures of the same algorithm.

In detail, there are differences to other studies. In the study of Schoenherr, Paulick,
Worrack, Strauss, Rubel, Schwartz, Deisenhofer, Lutz and Altmann [36], the correlation
between rMEA–WCLC and WCLC–PP–F was higher (Pearson r = 0.55, p < 0.05, see ([36],
Table 3, lower left triangle)) than in our study (Pearson r = 0.31, not significant). The same
holds for the correlation between WinCRQA–RR and WCLC–PP–F (Pearson r = 0.769,
p < 0.05, in ([36], Table 3, lower left triangle) versus r = −0.44, p < 0.05, in our study).
Furthermore, our correlations between different synchrony measures did not correspond
with the findings of Luehof [45] and Tschacher and Meier [14]. Depending on the kind of
physiological data, Tschacher and Meier [14] found little or no inter-correlations between
SUSY–ESabs, SUSY–ESnoabs and SUCO. Yet in the present study of body movements and
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their synchronization, these measures correlated to a moderate amount (all Pearson cor-
relations r > 0.5, all p < 0.05, see Table 2). Luehof [45] investigated body movements in
interviews and quantified movement synchrony with CRQA and WCLR–PP. The corre-
lation between CRQA–DET and WCLR–PP–F was r = −0.01 ([45] Table 4.40), whereas in
the present study WinCRQA–DET and WCLR–PP–F correlated with r = −0.41 (p < 0.05,
see Table 2, lower left triangle). However, it should be noted that in the discussed studies,
different parameter settings (e.g., window size) were applied, especially in the recurrence
techniques. Therefore, for each algorithm recommendations and guide lines for parame-
ter settings should be developed that can be applied across future studies [40]. Another
explanation for the heterogeneity may be that the kind of interaction (interviews versus
psychotherapy sessions) and/or the kind of data (cyclic physiological time series versus
movement time series characterized by bursts) affect the convergence of synchronization
measures. Future studies should therefore test the convergent validity of synchronization
measures with multiple and diverse datasets.

Next, we systematized the included synchrony measures using a data-driven approach:
Factor analyses suggested two facets of synchrony. Indicators of the first factor were rMEA–
WCC, all the variants of CC, and all the measures of SUSY and SUCO. These measures were
based on cross-correlations and did not consider a specific time lag between the time series. All
the MI measures, rMEA–WCLC, WCLC–PP–F, WCLC–PP–R2, WCLR–PP–F, and WinCRQA–
DET loaded on the second factor (when applying a minimum rank factor analysis). MI and
WinCRQA–DET are based on information theory and quantify a non-linear relationship in
continuous data. The other synchrony measures of this factor use cross-lagged correlations
(cross-lagged regression) to quantify a linear relationship between the time series. It should
be noted that Schoenherr et al. [36] found a three-factor structure in EFA. The difference to
our study may rest in that different synchronization measures were investigated and there
was a small dataset in the present study. However, consistent with Schoenherr et al. [36],
WCLC–PP–F, WCLR–PP–F, and WinCRQA–DET were assigned to the same factor.

In sum, we agree with Schoenherr et al. [36] by concluding that the convergent validity
across the considered algorithmic approaches is insufficient, if present at all. While the
mathematical justifications of all the approaches we tested here are clearly given, the quan-
tifications of synchrony they are offering are in most cases only loosely connected. The factor
analyses in Schoenherr et al. [36] and in the present study both suggest the presence of
multiple facets of synchrony, where one facet appears to summarize coupling in terms
of cross-correlation approaches, and the other relates to the frequency of synchronization
intervals and the information-theory-based measures.

Further research is needed that can differentiate these synchrony aspects from one
another. It would be straightforward to implement large studies with simulated datasets
of pairs of time series that represent clear types of coupling between the respective pairs.
The coupling may be locally restricted or globally present throughout the time series,
coupling may be linear or nonlinear, and time series may be auto-correlated and stationary
or not [71]. Such studies can ultimately elucidate which synchrony aspect is recognized by
which algorithm. In addition, it would be possible to tailor the parameter settings of the
algorithms to serve recognition.

A critical point to discuss is the convergent validity itself. Our study revealed that the
absolute value of cross-correlation (CC–abs) was moderately to highly correlated with all
the measures of rMEA, SUSY and SUCO (all Pearson r > 0.43, see Table 3). Accordingly,
these measures formed a separate facet of synchrony in the factor analysis. The cross-
correlation is one of simplest measures of synchrony by computing the linear relationship
between two time series, not considering any time lag and without segmentation (as in win-
dowed cross-correlations). The benefits of the more sophisticated algorithms rMEA, SUSY,
and SUCO lie in the inclusion of surrogate testing that allows the computation of effect
sizes and significance even in single-case time series. It remains to be seen how the various
correlation-based algorithms fare in heterogeneous and non-stationary data. On the other
hand, the measures that assess the frequency of synchronization intervals (WCLC–PP–F
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and WCLR–PP–F) were related only to cross-recurrence measures (WinCRQA) whereby
the signs of correlations were negative (both Pearson r ≈ −0.4, see Table 3). The question
is whether the validity is given when a measure appears somewhat idiosyncratic; future
research should explore in which conditions and in what kind of data the two facets of
synchrony may collapse into one factor.

Interestingly, a similar situation regarding convergent validity was present in the
measurement of adult attachment [71]. Possibly, the phenomenon of interest itself may
have multiple aspects (facets) that are not related in a linear manner and may be measured
currently only by one specific instrument (algorithm). Further methodological research
is necessary to build bridges between these facets of synchrony, e.g., by developing fur-
ther instruments (algorithms) or investigating non-linear relationships between the facets
of synchrony.

4.2. Predictive Validity

Second, we studied the predictive validity based on the assumption that the presence
of major depression as well as the degree of symptom load should result in a lower degree
of synchrony and fewer synchronization intervals, respectively. In the present naturalistic
dataset, more than half of the considered synchronization measures did not correlate with
the degree of depressive symptoms, e.g., rMEA–WCLC, all the variants of CC, all the
SUSY, and all the WinCRQA measures (see Table 5). The only synchrony measures that
corresponded with our hypothesis were WCLC–PP–F and WCLR–PP–F. There was a nega-
tive correlation between these synchrony measures and depressive symptoms (Spearman
r(WCLC–PP–F, PHQ9) = −0.43, r(WCLC–PP–F, PHQ9) = −0.47, respectively, both p < 0.05).
In contrast to our assumption, rMEA–WCC, SUCO–ES–CO, and MI–Z showed positive cor-
relations with depressive symptoms (all Spearman r > 0.46, all p < 0.05). These synchrony
measures suggested that interpersonal interactions with depressed patients are charac-
terized by a higher degree of movement synchrony. These results correspond with [36],
who studied predictive validity based on psychotherapy data, finding inconsistent correla-
tions with improvement of interpersonal problems in psychotherapy.

A possible explanation is that the algorithms measure different aspects of movement
synchrony, which then correlate differently with depressive symptoms. WCLC–PP–F and
WCLR–PP–F measure the frequency of synchronization intervals whereas rMEA–WCC,
SUCO–ES–CO, and MI–Z quantify the degree of interrelatedness of both time series. Nev-
ertheless, the present study revealed that in the diagnostic of depression, synchronization
measures can lead to contrary conclusions (depressed synchronized less than control versus
depressed synchronized more than controls). This raises the problem that the results of
different synchrony studies cannot be aggregated when different measures have been used.
A solution may be to measure movement synchrony with multiple algorithms, for example,
when the relationship between depressive symptoms and synchronization is investigated.
This would be comparable to studies on the efficacy of psychological treatment, in which
both primary and secondary outcomes are assessed.

4.3. Limitations

Our sample of interview videos (bivariate time series) was rather small. Accordingly,
the statistical analysis had low statistical power with limited generalizability. Future studies
on the validity of synchronization measures should investigate large and diverse samples
(e.g., free communication, structured interviews, and psychotherapy sessions) and consider
time series related to different behavior modalities (e.g., movement synchrony and facial
synchrony) and different contexts (e.g., mirror game and interviews). The present study
investigated only movement synchrony in structured interviews.

Previous studies [39–41,43] showed in various algorithms that synchronization mea-
sures depend on the parameter settings. In the present study, each algorithm was applied
with default parameter values recommended by the authors of the algorithms. Possibly,
the convergence of synchrony measures depends on equal settings of corresponding param-
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eters. In [36], WinCRQA and WCLR–PP were conducted with a window size of 5 frames
(5 s). The correlation of the resulting synchrony measures was r = 0.777 ([36], Table 3).
In the present study, the window size of WCLR–PP was 125 frames and the window
size of WinCRQA was 1500 frames. Both synchrony measures correlated with r = −0.41
(see Table 3).

Study designs must be discussed, too. In the present study, we did not control the
amount of synchrony in the experimental condition (patients versus controls) so that the
“true” synchrony or a proxy for that is not known. Our analysis of predictive validity
rested on the assumption that psychopathological symptom load should be linked to
movement synchrony during interviews on somatic complaints. There is some plausibility
for this assumption; yet it may be also true that both groups of participants were equally
synchronized, as the topic of somatic complaints is an engaging topic for depressive as
well as healthy interviewees. Additionally, as we discussed previously, the convergent
validity of published findings on psychopathology and synchrony is not yet sufficiently
robust because these findings originated from differing algorithms and differing parameter
settings. Thus, a possible conclusion is that it is too early to study predictive validity;
the (convergent) validity of the synchrony measures must be established in the first place.

At the very least, further studies building on the present one are necessary in the field
of synchronization research to clarify especially convergent, but also predictive validity.
On top of incorporating simulated data with known types of synchronized coupling
(in order to analyze convergent validity) [40], experimental data with covert instructions for
participants to synchronize (or not) [44,45], and sensitivity analyses on parameter settings
and their influences [39,40,43] must be performed.

5. Conclusions

To date, only a few comparisons between synchrony measures deriving from different
algorithms (frequency-, correlation-, information-based) have been performed systemati-
cally. Only recently and in the field of physics have such comparisons been performed on a
large scale [72]. In the present study, we pursued a similar goal using a small naturalistic
dataset that comprises psychological interaction processes.

Our study revealed that the convergent validity of synchronization measures applied
in clinical research range from non-existent to very good. As expected, factor analyses
suggested that the different convergence of the measures can be explained by the presence
of facets: on the one hand cross-correlation measures and on the other hand measures based
on information theory or describing the frequency of synchronization intervals. Moreover,
patients with depression and healthy controls can be distinguished by many synchrony
measures—which suggests predictive validity. However, some measures suggested that
patients and interviewer synchronize less often than dyads with controls, whereas other
measures suggested the opposite.

We believe the present study is a promising starting point for addressing the important
question of what psychological meaning may reside in synchronization measures. Given the
increasing number of synchrony studies in clinical, social, and developmental psychology,
these are also pressing open questions in the light of what has been called the “replication
crisis” in psychology and medicine.
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