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Abstract: Cryptocurrencies are relatively new and innovative financial assets. They are a topic
of interest to investors and academics due to their distinctive features. Whether financial or not,
extraordinary events are one of the biggest challenges facing financial markets. The onset of the
COVID-19 pandemic crisis, considered by some authors a “black swan”, is one of these events.
In this study, we assess integration and contagion in the cryptocurrency market in the COVID-19
pandemic context, using two entropy-based measures: mutual information and transfer entropy. Both
methodologies reveal that cryptocurrencies exhibit mixed levels of integration before and after the
onset of the pandemic. Cryptocurrencies displaying higher integration before the event experienced
a decline in such link after the world became aware of the first cases of pneumonia in Wuhan city.
In what concerns contagion, mutual information provided evidence of its presence solely for the
Huobi Token, and the transfer entropy analysis pointed out Tether and Huobi Token as its main
source. As both analyses indicate no contagion from the pandemic turmoil to these financial assets,
cryptocurrencies may be good investment options in case of real global shocks, such as the one
provoked by the COVID-19 outbreak.

Keywords: contagion; cryptocurrencies; integration; mutual information; transfer entropy

1. Introduction

Cryptocurrencies are relatively new and innovative financial assets. They are a topic
of interest to investors and academics due to their distinctive features (decentralization,
blockchain technology), high returns, and apparent independence from conventional
assets [1], but also for their frequent association with speculative bubbles, potential financial
instability, and contagion risk [2]. The increasing number of cryptocurrencies, their levels
of market capitalization, negotiation volumes, and prices [3] justify the development
of analyses aimed at improving knowledge about their behaviour and co-movements,
especially in periods of crisis.

Globalization promoted interdependence between financial markets and institutions [4]
and has enhanced the probability of financial contagion. The literature on contagion is
large and varied in methodologies and crisis contexts (see, for example, [5]). However,
despite the many published studies on the subject, there is no consensus about its definition
(see [6,7]). In [8], five definitions that rely on distinct assessment methodologies are pre-
sented. In fact, [9] points out that there is a coherence between the definition of contagion
and the methodological approach chosen to detect it.

In this study, we adopt one of the broadest definitions, proposed by [6]. According to
these authors, contagion is “a significant increase in cross-market linkages after a shock to
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one country (or group of countries).” [6] (p. 2223). Based on this definition, in what follows,
we consider that contagion is related to a significant increase in correlation levels between
cryptocurrencies, provoked by the onset of the COVID-19 pandemic. If no significant
increase in correlations is detected following the cut-off moment (crisis), then we conclude
that there is no contagion, although there may be interdependence.

The literature addressing issues related to the cryptocurrency market is in quick devel-
opment. Several studies have evaluated the interdependence between cryptocurrencies [10]
and their co-movements [11], cryptocurrency markets’ information flows [12], and links
with other financial assets or markets [13,14]. Previous analyses have also assessed herding
behaviour [15], co-explosivity [16], and contagion in cryptocurrency markets [17]. Our
analysis uses two econophysics techniques, mutual information (MI) and transfer entropy
(TE), both theoretic information-based approaches, to assess integration and contagion.

MI detects statistical dependence, regardless of the specific characteristics of the data,
and captures the structure of statistical correlation [18], allowing it to be interpreted as
a measure that quantifies the information exchanged between two systems. However,
as a symmetric measure, it provides no evidence of the dynamics or the direction of the
information exchange [19], which are both useful in evaluations of financial contagion.
Thus, TE is also used to identify the direction of the information flow between pairs of
cryptocurrencies and to increase the robustness of the MI analysis.

The COVID-19 pandemic has had a major effect on the global economy [20]. It has
also impacted financial markets and was the first major worldwide real shock since the first
cryptocurrency (Bitcoin—BTC) was launched in 2009. Natural disasters and pandemics
are a source of contagion in global financial markets and an emerging line of research
(see [21,22]). Financial contagion may be the outcome of both financial and non-financial
crises, but in either case, assessments require the definition of a cut-off moment. This
analysis is focused on the onset of the COVID-19 pandemic. Thus, in line with several
studies (see, for instance, [23–27]), we chose 31 December 2019, as the cut-off moment,
which was the day when the World Health Organization was first notified of the pneumonia
cases detected in Wuhan. This was the date when information became public and available
to all and, thus, to investors.

Our main goal is to evaluate integration and contagion effects in the cryptocurrency
market in the COVID-19 pandemic context, specifically on its onset. We use a set of
16 cryptocurrencies (twice the number considered by [27]), rather than the more common
three or four with the highest market capitalization, where the BTC is always included (see
for example [28–32]). Furthermore, we evaluate the relationships between all possible pairs,
not only between each cryptocurrency and BTC, in search of more in-depth knowledge of
the cryptocurrency market’s complex dynamics.

We contribute to the existing literature in three ways. Firstly, by considering the
periods before and after the COVID-19 pandemic onset, we produce new insights about
the cryptocurrency market’s behaviour when the financial system was much disturbed
by an extreme external event. Secondly, we provide evidence of integration between
cryptocurrencies emanating from a real, rather than a financial, crisis. Finally, we quantify
the information exchanged and identify the direction of the information flows within the
cryptocurrency market by applying theoretic information-based approaches, still relatively
uncommon in studies focusing on the cryptocurrency market.

The remainder of the paper is organized as follows: after this introduction, Section 2
reviews the relevant literature and presents recent empirical evidence of contagion in the
cryptocurrency market. Section 3 presents the data and methodology. Results are shown
and discussed in Section 4, and Section 5 concludes.

2. Brief Literature Review

Financial deregulation and liberalization, as well as technological progress, have pro-
moted financial integration [33]. Market integration is an important feature of international
finance, given, for example, its implications for diversification, risk management, and reg-
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ulatory formulation. Rising correlations across markets are relevant signs of increasing
market integration (see, inter alia, [34]). Therefore, evaluations of how individual financial
markets relate to each other are of interest, because integration may have positive real effects
(e.g., improving economic growth and welfare), but also negative ones (e.g., augmented
risk of contagion). As cryptocurrencies are financial assets included in investors’ portfolios,
the analysis of the co-movements between them, and also with other markets or assets, is
particularly relevant. Furthermore, the cryptocurrency market offers what other markets
lack, allowing observation of its structural self-organizational process since its inception.

In this study, we are interested in the co-movements between cryptocurrencies, and
this interest guides our review of the relevant literature. Most empirical studies have been
developed using samples containing a relatively small number of cryptocurrencies and
considering the BTC as a benchmark. This was the case of the analysis by [17], which
covered the period from July 2016 to May 2019 and assessed contagion from the BTC
to the other cryptocurrencies, using detrended cross-correlation analysis (DCCA). They
found out that there were signs of contagion for all but one cryptocurrency, the USDT.
Using copula functions, ref. [35] obtained similar results, and [36] used coherence and
cross-wavelet transform techniques to assess co-movement between the BTC and five major
cryptocurrencies. The results indicated that there were co-movements in the time-frequency
space, with leading relationships of the BTC with Dash, Monero (XMR), and Ripple (XRP),
a lagged relationship with Ethereum (ETH), and out-of-phase movements with Litecoin
(LTC). In addition, ref. [37] considered the interdependence of cryptocurrencies across time
and frequencies to investigate the dynamics of multiscale interdependence in a sample
of five leading and liquid cryptocurrencies from 2016 to 2018. They found high levels of
dependence at daily frequency scales, with the cross-wavelet transforms indicating that
contagion originated from XRP and ETH.

The return/volatility spillovers between cryptocurrencies were also evaluated.
While [38] measured interdependence in a sample of 18 cryptocurrencies, ref. [39] ex-
amined static and dynamic volatility connectedness amongst 8 cryptocurrencies. The
former concluded that the BTC was the dominant contributor to the return and volatility
spillovers, but such an outcome was not supported by the latter—their results showed
tight and time-varying volatility spillovers, but the BTC was not the leading influencer.
Evidence of shared leadership was obtained, for instance, by [40], which evaluated con-
nectedness via returns and volatility spillovers across six cryptocurrencies, and concluded
that there was shared leadership between the BTC and LTC, with ETH as the main net
receiver, highlighting the relevance of these cryptocurrencies as linkage with many oth-
ers, as was found by [41]. They also distinguished positive and negative returns, finding
evidence of larger negative spillovers than positive ones (contradicting [42]). XRP and
ETH were the main receivers of negative-return shocks, while very weak positive-return
spillovers were reported for ETH and Dash. Using intraday data of the most popular
12 cryptocurrencies, ref. [41] found that there are relevant return and volatility spillovers
between them. However, when they analysed the hierarchical clustering of their sample,
return- and volatility-clustering structures were quite different from each other, suggesting
that return and volatility might have different spillover patterns. Analysis by [43] exposed
a market with frequent structural breaks, which tended to spread from the smaller to the
larger cryptocurrencies. Similarly, ref. [44] found evidence of spillover leadership by small
cryptocurrencies. This diversity of results justifies the interest in further assessments.

The COVID-19 pandemic has disturbed stock markets in several countries, a fact that
justifies the interest in assessments of its contagion effects in other financial markets, and
never has the designation of contagion been more appropriate. In fact, despite its real nature
and absence of financial roots (in contrast to, for example, the 2007/2008 subprime crisis in
the US or the 2010/2011 Euro area sovereign debt crisis), the COVID-19 pandemic provoked
financial turmoil [45], intensified uncertainty, caused investor panic [46], and prompted
significant falls in several markets. This was the first global disturbance in the short life
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of cryptocurrencies [47]. Real and financial markets suffered its consequences [48,49], and
cryptocurrencies are probably not an exception [50].

The impact of the COVID-19 pandemic on the cryptocurrency market has been as-
sessed in several studies (e.g., [51–54], among others). Different timescales have also been
used, with high-frequency data (such as 5 min, 10 min, 15 min, 20 min, 30 min, and 1 h,
among others) specially used to analyse the network structure of cryptocurrencies and to
identify cryptocurrency communities (see, for example, [54]) or to test the statistical rela-
tionship between the cryptocurrency trading volume and returns (see, for example, [55]).
A broad set of these studies has used different indicators of the severity of the COVID-19
pandemic, financial-market-based proxies of down-market times, and proxies of market
volatility (including cryptocurrency-market-specific volatility indices), to analyse safe-
haven and hedge properties of cryptocurrencies (see, for example, [56] for a brief literature
review on this issue), with mixed evidence about these properties.

In order to assess the impact of the pandemic on the cryptocurrency market, and
considering a network perspective, ref. [57] estimated the multivariate transfer entropy for
a set of 146 cryptocurrencies. The turmoil has changed the structure of the cryptocurrency
network (in line with [51,52], among others) and led to an intensification of information
flows between cryptocurrencies, coincident with the abrupt fall in stock exchanges across
the world. This could indicate an increase in systematic risk and warn for the possibility of
contagion. Using high-frequency data (hourly closing prices) for the period from January
2019 to December 2020, ref. [51] analysed the co-movements and correlations between
Bitcoin and 31 of the most-tradable crypto assets. They identified significant changes in
patterns of co-movements and correlations during the pandemic period. The evidence
found suggests that during the COVID-19 crisis period, altcoins became more influential
in comparison to pre-pandemic times. They also found that despite the influential role
of Bitcoin in the digital asset ecosystem, due to recent developments in the blockchain
ecosystem, crypto assets that can be categorised as dApps and protocols have become more
attractive to investors than pure cryptocurrencies.

The relationships among the volatilities of five cryptocurrencies, three American in-
dices, and the prices of oil and gold were analysed by [58]. They concluded that there
were higher volatility spillovers between cryptocurrencies and lower volatility spillovers
between cryptocurrencies and other financial assets. During stable periods, cryptocur-
rencies displayed low dynamic conditional correlations with financial assets. However,
this pattern changed in early 2020. The conditional correlation among cryptocurrencies,
stock indices, and oil increased, leading the authors to confirm the effect of the coronavirus
contagion on such markets. Using the wavelet coherence approach and Markov’s switching
autoregressive model, ref. [28] observed financial contagion between cryptocurrencies and
stock markets during the COVID-19 pandemic. Other authors (e.g., [24,29,30]) also found
evidence that the BTC does not act as a hedge during serious financial turmoil (such as
the COVID-19 period). On the contrary, it amplifies contagion. In contrast, ref. [31] found
evidence that BTC is a safe haven investment.

The generalized detrended cross-correlation coefficient was applied by [59] to analyse
the impact of COVID-19 on multiscale cross-correlations among the cryptocurrency market
(represented by BTC and ETH) and 20 conventional assets (currencies, stock market indices,
and commodities). The authors found no significant cross-correlations in 2018 and 2019
between cryptocurrency and the other markets. However, this changed in 2020. They
identified four specific periods of statistically significant cross-correlations, all of them
related to the COVID-19 pandemic. In January 2020, with the drop of the S&P 500 and
other US stock markets, BTC fulfilled its planned role as a hedge for risky assets, and ETH
did not display significant cross-correlation with any other assets. In March 2020, both
cryptocurrencies became risky assets, with positive significant cross-correlation identified
between them and all the analysed markets (except for BTH vis-à-vis Swiss-franc (CHF),
Euro (EUR), and Japanese yen (JPY)). With the beginning of the second COVID-19 wave,
both cryptocurrencies revealed strong positive cross-correlation with traditional assets



Entropy 2023, 25, 98 5 of 18

(except with the JPY). Curiously, at the end of August 2020, after the COVID-19 slowdown
in the United States, both cryptocurrencies became positively correlated with all traditional
assets, including the JPY. These findings of cross-correlations during the sharp market falls
in early 2020, and also during the recovery phase, may be a sign that cryptocurrencies
became more connected with other global financial markets.

Using the same approach, but extending the analysed period and including four
more stock indices, ref. [59,60] concluded that the cryptocurrency market was strongly
cross-correlated during the turbulent periods of the COVID-19 pandemic, but it showed
even higher levels of cross-correlations with the other markets during the same turbulent
periods. However, even in such periods, the cryptocurrency market is more independent
from the other markets than those markets are independent among themselves, and the
cross-correlations between the cryptocurrency market and the other ones tend to decrease
as the pandemic becomes a more normal component of everyday life. Aiming to eval-
uate the connectedness among 27 emerging equity markets and seven high-capitalized
cryptocurrencies before and during the COVID-19 pandemic, ref. [53] applied the network
connectedness approach of Diebold and Yılmaz (2014). They found that the correlations
within and between the cryptocurrency and equity markets strengthened after the coron-
avirus outbreak. While the crypto market assets were mostly risk transmitters before the
pandemic, this risk-distributing role shifted more to the equity markets after the pandemic
outbreak. The analysis of frequency connectedness shows that major cryptocurrencies
cannot be used as diversifiers for the emerging stock markets because of their very high
eigenvector centrality scores.

The return spillovers between 18 cryptocurrencies in low and high volatility regimes
were evaluated by [47] between July 2016 and April 2020. They found several spillovers
in both regimes. A rolling windows analysis produced evidence of significant structural
changes in spillovers, not only in late 2018, but also in early 2020. Much higher spillovers
in the high volatility regime were observed during the COVID-19 outbreak, which is
consistent with the existence of contagion. Covering a short period, from January 2020
to April 2021, ref. [61] examined the impact of COVID-19 on the connectedness of eight
cryptocurrencies. The results showed, firstly, that cryptocurrencies act as a net receiver
and transmitter of shocks (the BTC and ETH were the highest transmitters). Secondly,
the causality-in-quantile test showed that the pandemic significantly caused spillover
connectedness between cryptocurrencies. Extending the analysed period until 31 October
2020, ref. [60] investigated the presence of detrended cross-correlations on the 80 most
liquid cryptocurrencies listed on Binance. Applying a spectral analysis of the detrended
correlation matrix and topological analysis of the minimal spanning, they concluded (in
line with [62]) that the cryptocurrencies became more strongly cross-correlated among
themselves than they used to be, and that the average cross-correlations increased with
time on a specific time scale (similar to the Epps effect). They also found changes in the
topology of the minimal spanning trees, which became more centralized for short time
scales and more distributed (and also more correlated) for long time scales.

The cryptocurrency market, like other financial markets, is dynamic. Its properties are
therefore constantly changing and evolving, and are still far from being fully identified and
understood [60], maybe because most past research was focused exclusively on BTC, or at
most on the four or five most important cryptocurrencies [63].

Most studies of contagion, interdependence, or integration in this market consider sam-
ples of the main cryptocurrencies (for example the study of [64], which analysed the mul-
tifractal cross-correlations of BTC and ETH trading characteristics in the post-COVID-19
time) and evaluate the relationship between each one and the BTC. Other possible links
that are, nevertheless, potentially important to improve knowledge of the dynamics of this
complex market have been less explored. Furthermore, except for [27], those studies are
focused on the connectedness across cryptocurrencies, while we assess the information
shared in the cryptocurrency market, using mutual information and the transfer entropy
concepts (both based on information-theoretic measures). In order to fill such gaps, this
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study considers a sample of 16 cryptocurrencies and evaluates relationships between all
possible pairs.

Of interest for analyses of contagion is the fact that the COVID-19 pandemic presents
distinct features from past crises. Potential contagion from the COVID-19 outbreak has
one clear catalyst that can be timestamped. This differentiates the pandemic crisis from the
other well-researched economic and financial sources of contagion, for which there were
various probable turmoil catalysts. In such cases, it could be difficult to exactly pinpoint
what provoked the crisis, which creates noise in contagion assessments. For example, in
the case of the 2007–2008 subprime crisis, there were various underlying causes.

Most analyses evaluate contagion when its source is of a financial nature. The trading
volume of cryptocurrencies has broken records during the COVID-19 pandemic. This
adds to the importance of examining their interactions, market dynamics, and the return
spillovers in a set of cryptocurrencies that are representative of this market. We perform
such assessments using distinct, but complementary methods, which are described and
justified in the next section.

3. Data and Methods

The empirical analysis is developed considering 31 December 2019, as the cut-off date
separating the pre-crisis and the COVID-19 crisis periods. The data sample comprises
closing daily prices for 16 cryptocurrencies (twice the number used by [27]) with more
than a billion-dollar market capitalization on 7 March 2020, representing more than 94%
of the total market capitalization on that date (the total market capitalization of all the
cryptocurrencies available in the used database was 263,364,575,633 USD on 7 March 2020,
the moment of data retrieval). The sample is, thus, representative of the cryptocurrency
market. Furthermore, the less well-known and less capitalized a cryptocurrency is, the less
liquid and less reliable the related data is [60], thus justifying the use of cryptocurrencies
with higher levels of market capitalization. The data were obtained from an open-access
source (https://coinmarketcap.com, accessed on 31 January 2021), considered an appropri-
ate database to conduct research [65]. The sample was selected in order to cover various
degrees of market capitalization and different underlying business models for cryptocur-
rencies. Due to data availability constraints, the time series for the distinct cryptocurrencies
have different starting dates. All data available before the cut-off moment were considered
in order to preserve all the possible information contained in each time series. All series
end by 30 January 2021 (see Table 1 for more details). Daily returns for the cryptocurrencies
are calculated as ri,t = ln

(
Pi,t

Pi, t−1

)
, where ri,t is the return of cryptocurrency i at period t,

and Pi,t and Pi,t−1 are the prices at time t and t − 1, respectively.
The objective is to evaluate the cryptocurrencies’ co-movements before and during

the COVID-19 pandemic. This allows us to conclude in terms of increased integration,
contagion, or independence, in line with our adopted definition of contagion (produced, as
mentioned above, by [6]), but also with those of authors such as [8] (definitions 3 and 4)
or [34].

As the returns do not follow a multivariate normal distribution, linear approaches
might not be the most suitable. In contagion and in integration assessments, more than
identifying cross-correlations, it is important to find the information flows and sources.
Thus, since theoretic information-based approaches (which are econophysics approaches)
allow this, MI and TE are both applied.

https://coinmarketcap.com
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Table 1. Sample Description.

Cryptocurrency Start Date Market Capitalization (USD)
Observations

Before 31
December 2019

After 31
December 2019

1 Bitcoin BTC 29 April 2013 162,684,945,903 61.77% 2.437 396
2 Ethereum ETH 07 August 2015 26,164,459,704 9.93% 1.607 396
3 Ripple XRP 04 August 2013 26,164,459,704 9.93% 2.340 396
4 Bitcoin Cash BCH 23 July 2017 6,059,789,428 2.30% 891 396
5 Bitcoin SV BSV 09 November 2018 4,290,029,659 1.63% 417 396
6 Tether USDT 25 February 2015 4,643,212,805 1.76% 1.770 396
7 Litecoin LTC 29 April 2013 3,889,681,824 1.48% 2.437 396
8 EOS EOS 01 July 2017 3,366,250,140 1.28% 913 396
9 BinanceCoin BNB 25 July 2017 3,138,663,736 1.19% 889 396
10 Tezos XTZ 02 October 2017 2,103,907,641 0.80% 820 396
11 ChainLink LINK 20 September 2017 1,520,607,569 0.58% 832 396
12 Cardano ADA 01 October 2017 1,268,987,677 0.48% 821 396
13 Stellar XLM 05 August 2014 1,183,231,787 0.45% 1.974 396
14 TRON TRX 13 September 2017 1,136,886,287 0.43% 839 396
15 Monero XMR 21 May 2014 1,143,443,765 0.43% 2.050 396
16 Huobi Token HT 03 February 2018 1,063,188,577 0.40% 696 396

Total 249,821,746,206 94.86%

Note: i. Table 1 shows basic information, such as the starting date, the market capitalization of each cryptocur-
rency (in value and percentage) on 7 March 2020, and the number of observations before and after the cut-off
date of 31 December 2019 (after the cut-off date, the number of observations is the same for all the analysed
cryptocurrencies); ii. The number of observations refers to closing prices, which means that the series of returns
have one less observation; iii. The total market capitalization on 7 March 2020, of all the cryptocurrencies available
on the used database was 263,64,575,633 USD.

The application of physics concepts to understand economic phenomena is the basis
of econophysics. Econophysics is a branch of literature that results from the connection
between statistical physics and economics. The concept of entropy is the central concept
of statistical mechanics, which is the main branch of physics that underlies econophysics.
Econophysics approaches have been used for more than a quarter century to study financial
markets, and they have allowed a better understanding of the markets’ complex behaviour
and of the mechanisms governing various phenomena in these markets (e.g., speculative
bubble formation, market crashes, asset cross-correlations, nonlinear autocorrelations,
the efficacy of investing strategies, price formation, etc.). It has been applied in many
areas of economics, including financial markets’ dynamics. Some of these applications are
ontological and others are metaphorical, as they draw on models of information theory
(due to [66]) or other models using the mathematics of entropy theory [67]. It is common to
resort to information theory, and especially to the concept of entropy, to express numerically
an amount of information that is shared or transferred between various data sets.

MI is a symmetric and bivariate measure of independence. It is based on the concepts
of entropy and divergence, proposed respectively by [66,68]. It can aggregate the concepts
of uncertainty and information. It may be applied to infer the existence of dependence.
According to the latter authors, it is a measure of the difference between two probability dis-
tributions. Considering two discrete random variables, X and Y, with marginal probability
distributions, pX(x) and pY(y), respectively, and joint probability distribution pX,Y(x, y),
MI is given by:

I(X, Y) = ∑x,y pX,Y(x, y)× log
pX,Y(x, y)

pX(x)pY(y)
(1)

The MI between two processes is then a measure of the reduction of uncertainty
(or information gain) in relation to a state where the two processes are independent
(pX,Y(x, y) = pX(x)pY(y)). In case of independence, the MI is null. One of our goals
is to assess contagion in the cryptocurrency market, and this can be done by comparing the
MI before and after the onset of the pandemic.
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According to [44], TE is an alternative to traditional causality assessments. It allows
estimation of the information flow between series, without requiring the pre-specification of
a model, nor a specific data structure (linearity), and has outperformed in quantifications of
the bi-directional flow of information [69]. TE is also robust to spurious relations [70]. To
quantify the information flow in a financial context, specific time-series properties and an
asymmetric measure are required [71]. A dynamic (considering transition probabilities instead
of static ones) and directional structure (by adding time lags to the variables) was introduced
by [19]. Aiming to measure the information flow between two series, [19] joined the Shannon
entropy and the Kullback and Leibler distance concepts, considering that stationary Markov
processes are involved. In the bivariate case, the information flow from Y (an l order process)
to X (a k order process) can be measured by quantification of the deviation to the generalized
Markov properties. This implies that the probability of observing X in time t + 1 in the state x
conditional to the k previous observations is given by p

(
xt+1

∣∣∣x(k)t

)
= p

(
xt+1

∣∣∣x(k)t , y(l)t

)
, with

x(k)t = (xt, . . . , xt−k+1) and y(l)t = (yt, . . . , yt−l+1), allowing the definition of TE, provided
in Equation (2). According to [19], the Shannon TE capturing the information flow from Y
to X is given by:

TEY→X(k, l) = ∑xt+1,x(k)t ,y(l)t
p
(

xt+1, x(k)t , y(l)t

)
log

p
(

xt+1

∣∣∣x(k)t , y(l)t

)
p
(

xt+1

∣∣∣x(k)t

) (2)

If p
(

xt+1

∣∣∣x(k)t

)
= p

(
xt+1

∣∣∣x(k)t , y(l)t

)
, then TE = 0, and the state of Y does not influence

the transition probabilities of X.
In a “gaussian world”, Granger Causality (GC) and TE are coincident [72], but this

is not the case in nonlinear dynamic contexts, and nonlinearity is common in financial
markets’ data (and, thus, probably in the cryptocurrency market, as well). Therefore, TE
could be a better measure to analyse the dynamics and possible asymmetric information
flows between cryptocurrencies. GC is a causal information flow measure (from a source to
a destination), while TE is a directional and dynamic measure of predictive information.
The cryptocurrency market is a complex system, and the cryptocurrencies display complex,
probably nonlinear, behaviour. Thus, the use of TE is justified for an in-depth evaluation of
their relations, including their magnitudes. All series of returns are stationarity, and thus,
the TE can be used.

TE, defined in Equation (2), is directional, as it considers dependence originating in Y.
The degree of dependence from X relatively to Y shows its asymmetry. TEX→Y(k, l) can be
calculated following an identical procedure. The information flow’s dominant direction
may be computed by subtracting TEs [19]. If TEY→X(k, l)− TEX→Y(k, l) > 0, the dominant
direction of the information flow is from Y to X; if TEY→X(k, l)− TEX→Y(k, l) < 0, the
opposite occurs (the dominant direction of the information flow is from X to Y). If
TEY→X(k, l)− TEX→Y(k, l) = 0, the flows are equivalent in terms of dominance.

The TE measure is derived for discrete data. However, most economic time series,
such as the return series, are considered continuous (not in what concerns time, but
because they can take any value on a continuous scale, the real line, meaning they can
also assume any fractional value). Thus, data discretization is necessary and may be done
using a finite number of partitions and symbolic codification. In the case of asset returns,
observations located in the tails are particularly important, and so data partition based on
empirical quantiles is usual. This means that observations in the left and right tails fall
into different categories. The results depend on the number of bins, and three bins are
usually considered [73]. The series of returns are split into three bins across the 5% and
95% quantiles (represented by qr

[0.05] e qr
[0.95], respectively). This division is consensual in
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the literature (see also [7]). The symbolic coding will replace each of the values in the series
under analysis, (t), by the corresponding symbol, i.e.,:

S(t) =


1
2
3

f or y(t) ≤ q1
f or q1 < y(t) < q2

f or y(t) ≥ q2

(3)

The statistical significance of TE and consequent statistical inference are based on the
bootstrap method proposed by [74], with 300 bootstrap replications (nboot = 300, default
value) and considering 50 observations from the beginning of the bootstrapped Markov
chain (burn = 50, default value). Repetition of the TE estimation produces the estimations’
distribution under the null hypothesis of absence of information flow. The p-value is
given by 1− q̂T , with q̂T as the simulated distribution quantile, determined by the TE
estimation [75]. TE estimations are computed using software R, R Transfer Entropy.

4. Results and Discussion
4.1. Descriptive Statistics

The descriptive statistics of cryptocurrencies’ returns are presented in Table 2. Using
StataSE 15® (64-bit) software, a standard Augmented Dickey–Fuller test for stationarity
was also performed (to save space, these results are not shown, but are available upon
request). All the series of returns are stationary (H0 of the Augmented Dickey–Fuller test
was rejected).

Table 2. Cryptocurrencies’ Returns Descriptive Statistics.

Cryptocurrency
Before 31 December 2019 After 31 December 2019

Mean Stdev. Skewness Kurtosis Mean Stdev. Skewness Kurtosis

BTC 0.0016 0.0427 −0.1527 10.7409 0.0039 0.0414 −3.4812 44.5290
ETH 0.0024 0.0714 −3.4274 74.6109 0.0060 0.0551 −2.5411 29.9171
XRP 0.0015 0.0727 2.0756 32.9133 0.0021 0.0660 −0.3960 26.4318
BCH −0.0008 0.0794 0.6179 10.4098 0.0018 0.0603 −1.8145 24.2868
BSV 0.0008 0.0901 0.8643 19.9132 0.0015 0.0814 2.8755 46.5471

USDT −0.0001 0.0211 −12.2749 829.3628 0.0000 0.0055 0.1522 37.9746
LTC 0.0009 0.0645 1.7163 28.5632 0.0030 0.0540 −1.5536 16.3358
EOS 0.0010 0.0827 2.2245 27.6377 0.0030 0.0545 −2.0790 22.8957
BNB 0.0055 0.0787 1.3888 15.1944 0.0003 0.0502 −3.3523 38.3843
XTZ −0.0004 0.0751 0.1255 10.5396 0.0019 0.0634 −2.1090 24.3520

LINK 0.0027 0.0812 0.7048 7.1339 0.0065 0.0711 −1.4227 18.0953
ADA 0.0003 0.0792 2.9094 29.3140 0.0061 0.0623 −1.1089 14.6842
XLM 0.0015 0.0754 2.0089 19.6020 0.0050 0.0668 1.6195 21.9256
TRX 0.0023 0.0963 2.1343 19.3240 0.0022 0.0545 −2.2636 24.9947
XMR 0.0016 0.0703 0.6497 9.6001 0.0029 0.0509 −2.4056 26.4712
HT 0.0009 0.0518 0.6165 7.6063 0.0021 0.0431 −3.5911 49.8863

Note: Stdev represents the standard deviation.

The results suggest that the onset of the COVID-19 pandemic did not significantly
change the cryptocurrencies’ behaviour, as their volatility did not increase after 31 December
2019. On the contrary, volatility seems to have decreased. However, this should be considered
with care because the number of observations is not constant across periods. The average
return for most cryptocurrencies is positive and near zero. Average returns have increased
since the 31 December 2019, except for Bitcoin SV (BSV) and Binance Coin (BNB).

Average returns on BSV were higher before 31 December 2019. After this date, it was
the cryptocurrency with the lowest average returns and the highest volatility. Skewness
was positive in the first period (with the exceptions of BTC and USDT) and negative in the
second (with the exceptions of BSV, USDT, and Stellar (XLM)), corroborating [27,51]. This
could be a sign of increased sensitivity to the effects of the COVID-19 pandemic and may be
interpreted as a higher probability of large positive return variations than negative ones in
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the first period. In contrast, negative returns could be more frequent in the second period,
which could reflect the turmoil and uncertainty in these markets. High kurtosis values
are observed in both periods, i.e., leptokurtic distributions. This means that the returns
do not follow a normal distribution. They display fat-tails (a stylized fact in financial
markets), justifying the application of nonlinear, rather than linear, techniques. In the
period before 31 December 2019, USDT revealed an extremely high kurtosis value. This
is a stable cryptocurrency, pegged to the USD. However, shortly after it was first issued
in 2014, questions of whether USDT’s issuer was really setting aside enough in assets
to keep its dollar peg secure have been raised. This was in part due to the fact that the
company had never released audited financial statements that normal deposit-taking banks
are required to report. Only in 2017, and due to investors’ doubts, did the company start
issuing attestations on its reserves. This may be a possible explanation for the high kurtosis
value found in this cryptocurrency in the period before 31 December 2019. In June 2018, a
report from Freeh Sporkin & Sullivan, LLP, based on a random date balance inspection and
a full review of relevant documentation of bank accounts, confirmed that, as of that date,
all tethers in circulation were indeed fully backed by USD reserves, which may explain the
more similar kurtosis values between the USDT and the remaining cryptocurrencies in the
period after the 31 December 2019.

4.2. Mutual Information

Figure 1a,b display the relationship between cryptocurrency returns before and after
31 December 2019, estimated by MI and presented in a heatmap format (the values are not displayed,
but are available upon request) with the significance levels, which allows for a quick analysis of the
intensity and the statistical significance of the relationships. MI measures the common information
between variables displayed in rows and in columns. The row variables are for moment t− 1, and
those in columns are for moment t. For example, MI

(
BTCt−1, All the other cryptocurrenciest)

)
and MI

(
All the other cryptocurrenciest−1, BTCt)

)
are estimated. This means that the diag-

onally opposite MI values do not have to be equal.
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Figure 1. Mutual Information Heatmaps. Notes: i. Each heatmap represents the relationship between
the cryptocurrencies before (a) and after (b) 31 December 2019, estimated by mutual information (to
be read as the mutual information between cryptocurrencies in rows and columns); ii. A one-day lag
was considered for the mutual information calculus; iii. Lighter red means lower mutual information
values, while darker red means higher mutual information values. The minimum mutual information
value was 0.000, and the maximum was 0.0379; iv. In order to be visually clearer, the change in mutual
information between the periods use the same colour scale; v. “**” and “*” refers to the statistical
significance of the relationship, with 1% and 5% significance, respectively.
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Although the higher colour intensity indicates more common information, i.e., higher
dependence between cryptocurrencies, it does not necessarily mean that such dependence
is statistically significant. The statistical significance is evaluated according to the critical
values provided by [76]. Evidence of statistically significant global dependence indicates a
strong relationship between cryptocurrencies, which means integration. Statistically signifi-
cant MI between assets could mean a violation of the Efficient Market Hypothesis (EMH)
because investors can use historical information to obtain abnormal profits. However,
based on this analysis, it is not possible to assess whether abnormal profits are systematic,
and, thus, nothing can be concluded about a possible violation of the EMH.

Figure 1a shows that USDT, EOS, LTC, XRP, and BTC are the least independent cryp-
tocurrencies (displaying higher integration). ETH, BSV, BNB, Tezos (XTZ), Chainlink
(LINK), Cardano (ADA), and HT are the most independent cryptocurrencies (the less inte-
grated). As these cryptocurrencies have different levels of market capitalization and are less
dependent, market capitalization is not a decisive factor in what concerns (in)dependence.
The two major cryptocurrencies, BTC and ETH, are independent from each other, which
could be related to their different mining protocols and different times required to mine
blocks. While the BTC protocol sequences transaction into groups called blocks, ETH
focuses on providing a platform to facilitate decentralized building applications on its
blockchain [77]. Cryptocurrencies with higher market capitalization display lower inde-
pendence, and BTC shares the leadership on return spillovers with other cryptocurrencies,
not being the leader, corroborating [39,40,51,52,60], among others. Between the least and
the most independent cryptocurrencies, are older and newer cryptocurrencies, thus the
return series length is not a decisive factor in what concerns (in)dependence.

In order to evaluate and identify whether cryptocurrencies have become more or less
integrated due to the onset of the COVID-19 pandemic, which can be interpreted as a
contagion risk in these markets, we have to ascertain whether dependence between them
has increased after the cut-off date. Thus, MI was also estimated after 31 December 2019,
and the results are also presented as a heatmap (Figure 1b)).

After the cut-off date, the cryptocurrencies sharing the greatest amount of information
with the others are BCH, BSV, EOS, XMR, and HT. BTC reduced the information shared
with other cryptocurrencies, which means that there was a reduction in its level of inte-
gration. BCH was the most dependent on BTC, indicating greater integration between
the two. LINK, Litecoin (LTC), ETH, BNB, and XTZ were the most independent (i.e., the
less integrated) cryptocurrencies. Figure 1b suggests that, overall, the cryptocurrencies
continued to be integrated. This reveals the continuity of the cryptocurrencies’ dependence
structure, in line with [78]. Nevertheless, the number of statistically significant relationships
decreased, leading to the conclusion that cryptocurrencies have lower dependence after the
beginning of the pandemic crisis, i.e., have become less integrated, contradicting [27,51,60].

We also aimed to evaluate contagion between cryptocurrencies during the onset
of the COVID-19 pandemic. To such end, we analysed the cryptocurrencies that were
not integrated before the 31 December 2019 (which displayed no statistically significant
relationships). If after this date, they became integrated, displaying statistically significant
MI, then contagion exists. Following this rationale, there seems to be contagion between
the pairs signalled in black in Table 3.
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Table 3. Contagion between Cryptocurrencies under a Mutual Information Analysis.
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Although most cryptocurrencies exhibit signs of contagion from HT, there is no conta-
gion from the majority of them to the others (except to ADA). We conclude that, overall,
there is no contagion in our sample of cryptocurrencies.

4.3. Transfer Entropy Results

We also computed TE to identify the direction of the information flows, and as a
complement to the MI analysis. Figure 2a,b show the relationship between cryptocurrencies
in rows and in columns, estimated by TE (the TE values are available upon request). These
heatmaps are interpreted as those displaying the MI analysis’ results, and as shown above,
cryptocurrencies in rows influence the cryptocurrencies in columns.
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Figure 2. Transfer Entropy Heatmaps. Notes: i. Each heatmap represents the relationship between the
cryptocurrencies analysed, before (a) and after (b) 31 December 2019, estimated by transfer entropy
(to be read as the cryptocurrencies in rows influencing the cryptocurrencies in columns); ii. A one-day
lag was considered for the transfer entropy calculus; iii. Lighter red means lower transfer entropy
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value was 0.0021, and the maximum was 0.0692; iv. In order to be visually clearer, the change in the
transfer entropy between the periods use the same colour scale; v. “**” and “*” refers to the statistical
significance of the relationship, with 1% and 5% significance, respectively.
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Figure 2a shows that all cryptocurrencies (regardless of market capitalization or the
dimension of their series of returns) strongly and significantly influence USDT. However,
the latter only significantly influences BSV, LTC, XRP, BCH, and XLM. On the contrary, BSV
significantly influences BTC, XMR, HT, and USDT, i.e., it influences the cryptocurrency
with the highest market capitalization (BTC), and also the two with the lowest market capi-
talization (XMR and HT). BTC, EOS, ADA, TRX, LTC, and XLM have the most significant
influence on all the others. Evidence concerning the last two cryptocurrencies corroborates
findings by [47]. LINK, XLM, TRX, and USDT (all of them non-mineable [55]) are the most
significantly influenced by the other cryptocurrencies. The first three have lower market
capitalization, while the last one displays one of the highest market capitalizations. Thus,
amongst the main influencers and the most influenced, we find cryptocurrencies with
different levels of market capitalization, indicating that such a feature does not determine
which cryptocurrencies are influencers or influenced. Between the most influential and
most influenced cryptocurrencies are older and newer cryptocurrencies, suggesting that
the length of the returns series is not a decisive factor in what concerns the dynamic pattern
of influence.

BTC, although significantly influencing some cryptocurrencies (e.g., XRP, USDT, and
LINK), is not dominant in terms of TE, corroborating [39,40,51,79], but contradicting [38,61].
This may reflect the fact that the increasing number of cryptocurrencies is responsible
for a less prominent role of BTC and for an increased level of competitiveness in the
cryptocurrency market.

The absence of statistical significance between cryptocurrencies indicates the absence
of integration amongst cryptocurrencies. In fact, the heatmap shows the absence of sta-
tistically significant flows between most pairs of cryptocurrencies (especially if the pair
contains either ETH or HT).

Figure 2b clearly shows a reduction of significant relationships between cryptocur-
rencies (lower dependence), and thus lower levels of integration. Amongst the cryp-
tocurrencies more significantly influenced by the others are TRX, XRP, and LTC (again,
cryptocurrencies with very different levels of market capitalization). There are significant
information flows from USDT and HT to most of the other cryptocurrencies, which means
that these two are the leading influencers and are integrated with almost all the others.

HT, a cryptocurrency with lower market capitalization and the second most recent in
the sample, was the only one exhibiting a significant information flow to other cryptocur-
rencies with high capitalization (BTC and ETH). This is in line with [43,44] and can lead
to a more complex structure than that of the other markets, where, typically, assets with a
high level of market capitalization have spillover effects on the less capitalized ones [60].

Some cryptocurrencies receive no statistically significant influence from others (this
is the case of XLM, contradicting [58]) or receive it from a maximum of two (such as BTC,
ETH, BCH, BSV, USDT, BNB, LINK, XMR, and HT). This indicates that there is a high level
of segmentation within the sample assessed in this study and suggests that most of these
cryptocurrencies may be used for diversification purposes in portfolios of cryptocurrencies
(in line with conclusions of [80]).

Analysing Figure 2a,b simultaneously, we observe that the (b) part clearly displays a
relatively lower number of statistically significant relationships. Therefore, cryptocurrencies
exhibit a lower level of integration, in line with the evidence produced by the MI analysis
and contradicting [51].

According to [81], the transfer entropy estimation could be biased when available data are
limited and the expected effect is rather small due to finite sample effects, making it difficult to assess
the significance of the obtained values. A bias correction is possible and used to calculate effective
transfer entropy (ETE), which is given by ETEY→X(k, l) = TEY→X(k, l)− TEYshu f f led→X(k, l),
where TEYshu f f led→X indicates the transfer entropy, using a shuffled version of the time
series. The shuffling process implies randomly drawing values from the observed time
series and realigning them to generate a new time series. This process destroys the time series
dependencies of Y, as well as the statistical dependencies between Y and X ([75]). To assess
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the statistical significance of the transfer entropy estimates, a Markov block bootstrap process
was applied, which in contrast to shuffling, preserves the dependencies within the variables
Y and X, but eliminates the statistical dependencies between them. Thus, repeated estimation
of transfer entropy provides the distribution of the estimates under the null hypothesis of no
information flow. We also accessed (as the R Transfer Entropy package allows it) the effective
transfer entropy. However, as the transfer entropy and effective transfer entropy values
quantify the amount of information flow from one series to another time series [82], and
given the results obtained do not lead to different interpretations from the ones presented
above, and due to space constraints, the results are available upon request.

In order to evaluate contagion between cryptocurrencies during the COVID-19 pan-
demic, we follow a procedure that is similar to that adopted when considering MI results.
Evidence of contagion exists solely for the pairs signalled in black in Table 4.

Table 4. Contagion between Cryptocurrencies under a Transfer Entropy Analysis.
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As TE allows the identification of directional causality between two variables, for the
above black-marked pairs, the source of contagion are the cryptocurrencies lagged one
period (in rows). Generally, USDT and HT seem to be the main sources of contagion. How-
ever, as for most cryptocurrencies, there are no statistically significant signs of contagion;
hence, we conclude that the assessed sample has not been affected by contagion from the
COVID-19 pandemic.

5. Conclusions

The main goal of this study was to assess contagion from the COVID-19 pandemic
to the cryptocurrency market. We followed [6] in considering that contagion occurs when
there is a significant increase in the links between assets or markets in the aftermath of a
shock. We used MI and TE to evaluate contagion in a sample of 16 cryptocurrencies in
the aftermath of the shock provoked by the onset of the COVID-19 pandemic. The TE
analysis complements the MI evaluation of dynamic and directional information flows and
increases its robustness.

The initial, exploratory MI analysis produced evidence of mixed integration patterns,
with some cryptocurrencies linked to others (EOS is one of the least independent in both
periods), and some revealing a status of independence in the context of the analysed sample
(LINK, ETH, BNB, and XTZ are the most independent in both periods). Although there
are mixed integration patterns in both periods, after 31 December 2019, the number of
statistically significant relationships declined, indicating that the COVID-19 outbreak did
not contribute to enhance integration in the cryptocurrency market. However, the pandemic
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seems to have produced dynamic changes in the group of analysed cryptocurrencies, and
this is in line with some previous studies (e.g., [51,52,57], among others), concluding that
the behaviour of the cryptocurrencies changes during periods of crisis.

The TE analysis also revealed mixed integration patterns in both periods, reinforcing
the results of the MI analysis, with TRX being one of the most influenced in both periods.
There were no cryptocurrencies leading return spillovers in the pre-31 December 2019
period, but after this date, USDT and HT became leading influencers. This supports
previous evidence indicating that BTC does not lead, and thus is not a main player in the
cryptocurrency market [4,39,51]. Therefore, changes in the behaviour of USDT and HT (the
influencers in the sample) require close monitoring during pandemic periods.

Both econophysics approaches indicate that just a few cryptocurrencies were affected
by the pandemic crisis. MI provided evidence of contagion between the majority of the
cryptocurrencies and ADA, and between HT and almost all the cryptocurrencies in the
sample. TE showed that, in general, USDT and HT were the main sources of contagion
in the cryptocurrency market. The analysis provides no evidence of contagion for most
assessed cryptocurrencies, suggesting that these financial assets may be a good alternative
investment to consider in the context of global real shocks that impact the financial markets.

Although there is generally no evidence of contagion in the group of assessed cryp-
tocurrencies, in a few cases (for the influenced and the influencers) there may be a potential
for disturbance of the cryptocurrency market’s stability. Investors may, however, use influ-
encer cryptocurrencies as possible predictors of the return of those influenced and to obtain
information to improve knowledge when deciding on portfolio composition. As the main
influencers are different in both periods, some cryptocurrencies may be used as possible
return predictors in stable periods, while others are more useful in times of turmoil.

Given the indicators from the descriptive statistics and the evidence from theoretic
information-based approaches, we conclude that the pandemic crisis did not strengthen
integration between cryptocurrencies, in contrast with [27,51,60]. The market thus offers
some portfolio diversification opportunities, a conclusion that is not surprising, given the
apparent disconnection of cryptocurrencies from the real economy. There could, however,
have been some contagion if the market was affected by general investors’ panic or fear,
which was not the case for the analysed sample.

The main limitation of this study is the smaller number of observations available after
31 December 2019. Nevertheless, given the rapid materialization of some real effects in
financial markets, our analysis provides results that are useful to inform decisions during
non-financial crises. Another limitation may be the different number of observations for
each time series in the period before 31 December 2019. Both issues will be considered
in future research devoted to the analysis of the effect of other disturbing events on this
particular market.
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