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Abstract: We present a Monte Carlo approach that allows us to easily implement Lynden-Bell (LB)
entropy maximization for an arbitrary initial particle distribution. The direct maximization of LB
entropy for an arbitrary initial distribution requires an infinite number of Lagrange multipliers to
account for the Casimir invariants. This has restricted studies of Lynden-Bell’s violent relaxation
theory to only a very small class of initial conditions of a very simple waterbag form, for which the
entropy maximization can be performed numerically. In the present approach, an arbitrary initial
distribution is discretized into density levels which are then evolved using an efficient Monte Carlo
algorithm towards the final equilibrium state. A comparison is also made between the LB equilibrium
and explicit Molecular Dynamics simulations. We find that for most initial distributions, relaxation is
incomplete and the system is not able to reach the state of maximum LB entropy. In particular, we
see that the tail of the stationary particle distribution is very different from the one predicted by the
theory of violent relaxation, with a hard cutoff instead of an algebraic decay predicted by LB’s theory.

Keywords: long range; Lynden-bell; Monte Carlo; core halo
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1. Introduction

Understanding the mass distribution in self-gravitating systems has remained a long-
standing challenge that has intrigued researchers for over seven decades [1–3]. The resolu-
tion of this enigma holds the potential to illuminate many theoretical puzzles, such as the
physical mechanisms underlying the regularities observed in the light profile of elliptical
galaxies and the mass distribution in dark matter halos.

Classical simulations conducted by Navarro, Frenk, and White [4,5] produced density
profiles of dark matter halos that current theories struggle to explain. Numerous refer-
ences [6–13] explore the scope of this problem, extending from the foundations of statistical
mechanics to the large-scale evolution of the universe [14].

In contrast to systems with short-range interactions, which equilibrate through colli-
sional processes, long-range systems relax primarily through collective effects arising from
the interactions of individual particles with the entire system. The long-range interacting
systems exhibit intriguing features such as: ensemble inequivalence [15], temperature
inversion effects [16], and the emergence of long-lived quasi-stationary states [17]. These
unique characteristics set them apart from their short-range counterparts and make them
fascinating subjects for study and exploration.

In the thermodynamic limit, interparticle correlations are absent in systems with long-
range interactions, and the N-particle distribution function, f N(~q1, . . . ,~qN ,~p1, . . . ,~pN , t),
can be factorized into a product of one-particle distribution functions, f (~q,~p, t),
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f N(~q1 , . . . ,~qN ,~p1 , . . . ,~pN , t) =
N

∏
k=1

f (~qk,~pk, t) (1)

where (~qk,~pk) are the generalized coordinate and momentum of a particle in the phase
space. This factorization reduces the 2dN-dimensional phase space to the phase space of a
single particle. The evolution of the one-particle distribution function is governed by the
Vlasov equation [18]:

∂ f
∂t

+ ~p · ∂ f
∂~q
− ∂ψ(~q, t)

∂~q
· ∂ f

∂~p
= 0 , (2)

where ψ(~q, t) =
∫∫

φ(|~q−~q ′|) f (~q ′,~p ′, t)d~q ′d~p ′ denotes the mean-field potential associ-
ated with the pair potential φ(|~q−~q ′|).

The evolution of f (~q,~p, t) in the phase space is similar to that of an incompressible
fluid—maintaining a constant local density along the flow. Furthermore, the Vlasov
dynamics have an infinite number of invariants known as the Casimirs [19–22]—any local
functional of the distribution function is a Casimir invariant. In particular, a hyper volume
of any density level η of the initial distribution function is a Casimir invariant of the
Vlasov dynamics,

C(η, t) =
∫

δ[ f (~q ,~p , t)− η]dd~q dd~p = C(η, 0) . (3)

The total mass M and the energy of the system E0 are also conserved quantities:∫
dd~q dd~p f (~q,~p, t) = M , (4)

∫
dd~q dd~p

(
~p 2

2m
+

ψ(~q)
2

)
f (~q ,~p , t) = E0 . (5)

In the case of non-neutral plasmas, M would refer to the total charge of the system [23,24].
Finally, both linear and angular momentum are also conserved quantities. However,
for symmetric initial distributions studied in the present paper, their initial values can be
set to zero.

Unlike the collisional Boltzmann equation, which has the Maxwell distribution as
the global attractor, the Vlasov equation does not have an attractor. The relaxation to
the stationary state of the Vlasov equation proceeds through the process of filamentation.
In fact, on a fine-grained scale the relaxation never stops—only on the coarse-grained scale
can we say that the system has reached a stationary state. Any distribution of the form
fss(~q ,~p) ≡ f [εss(~q ,~p)], where εss(~q ,~p) = ~p 2/(2m) + ψss(~q) is the single-particle energy, is
a potential candidate to describe the stationary state (ss). However, predicting a priori the
specific distribution to which a system will relax starting from an arbitrary initial condition
remains a challenge [1].

Long before the empirical work of Navarro, Frenk, and White [4,5], Lynden-Bell
(LB) introduced a very elegant statistical theory of relaxation in systems with long-range
interactions, with particular emphasis on self-gravitating systems [7]. This theory became
known as the Theory of Violent Relaxation. By discretizing the initial particle distribution
into multiple levels within the context of Vlasov dynamics, LB assumed that the evolution
of the density levels is ergodic and that there is a complete mixing of the one-particle
distribution function in the phase space. Under these assumptions, LB argued that on
a coarse-grained scale, the system will evolve to the maximum entropy state allowed
by the conservation of mass, energy, and the Casimir invariants. In particular, for an
initial distribution of one level—the waterbag distribution—the coarse-grained stationary
distribution function is found to be,

f̄ss(~q,~p) =
η0

eβ[εss(~q ,~p)−γ] + 1
, (6)
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where γ and β are the Lagrange multipliers determined by the conserved quantities (Equa-
tions (4) and (5)), and the potential is calculated self-consistently by solving the Poisson
equation,

~∇d
2ψss(~q) = Cd

∫
f̄ss(~q ,~p)dd~p , (7)

where Cd is a constant associated with the dimensionality of the system and ~∇d represents
the Laplacian operator in the d-dimensional space [25].

The form of the distribution proposed by Lynden-Bell (LB) (6) exhibits similarities
with the Fermi–Dirac distribution. However, it is essential to emphasize that we are dealing
with classical “particles”. The exclusion principle associated with fermions, in this case,
has a parallel with the constraint that the evolution of the distribution function, according
to Vlasov dynamics, is analogous to that of an incompressible fluid, meaning that different
levels of the distribution function cannot overlap at any point in the phase space.

At the core of LB’s theory is the fundamental assumption that violent relaxation
induces a rapid phase-space mixing of the levels of the initial distribution function. On a
coarse-grained scale, the one-particle distribution function is expressed as an average over
the density levels present inside the macrocell, as depicted in Figure 1.

Macrocell

p

q

(a)

Microcell

(b)

Figure 1. Schematic representation of a two-dimensional phase space containing µ = 5 × 5 macro-
cells, with each macrocell containing ν = 25 microcells. The one-particle distribution function,
initially with l = 5 levels, is represented by different colors and evolves over time from (a) to (b).
In this representation, each microcell can either remain empty or be filled with a given level ηi, while
the coarse-grained distribution function is determined at the level of each macrocell.

We stress that the equilibrium distribution function proposed by LB exists only at the
level of macrocells, as there is no increase of entropy at the microcell level—fine-grained
Gibbs entropy is one of the Casimir invariants of the Vlasov dynamics. This is similar to
what occurs in short-range systems when analyzed in terms of the N-particle distribution
function in a 2dN-dimensional phase space. The increase of Gibbs entropy takes place only
at the coarse-grained macrocell level since at the microcell level, the Gibbs entropy remains
constant due to Liouville’s theorem. In both cases, this problem can be circumvented by
using Boltzmann entropy, which is defined at the coarse-grained level [26,27]. Nevertheless,
it is worth emphasizing that LB’s statistical approach is equivalent to the traditional method
of maximizing the Gibbs entropy, provided that all the Casimirs are taken into account [22].

When attempting to apply Lynden-Bell’s statistical theory to real-world systems that
involve multiple levels l of the initial one-particle distribution functions, a significant
challenge arises due to the highly nonlinear nature of the problem. In this case, l equations,
similar to Equation (4), are required, one for each level, which substantially increases the
computational complexity. Consequently, obtaining solutions under these general initial
conditions becomes impractical for large l, making it challenging to achieve accurate and
reliable results. Moreover, the system’s sensitivity to initial parameters further compounds



Entropy 2023, 25, 1379 4 of 15

the difficulties, hindering the discovery of the final equilibrium state. As a result, the ap-
plication of Lynden-Bell’s theory has been primarily confined to single-level distribution
functions [28]. While this restricted set of initial conditions offers some valuable insights
into certain aspects of self-gravitating systems, its generality is limited—preventing us
from making conclusions about what will happen with much more complex continuous
initial distributions. To address these challenges, the primary objective of the present
paper is to propose a Monte Carlo (MC) approach that efficiently leads to the equilibrium
state corresponding to the maximum of LB entropy, with all the relevant constraints taken
into account.

2. Monte Carlo Algorithm

We start by discretizing the initially continuous distribution f0(~q,~p) into l levels [29],
where each level i has a density ηi, with 1 ≤ i ≤ l. We designate level l + 1 as the empty
cell, with ηl+1 = 0. Thus, the initial distribution can be expressed as:

f j
0 =

l+1

∑
i=1

nj
i
ηi
ν

(8)

Here, nj
i represents the number of microcells containing level i inside the macrocell j,

centered on (~q,~p). The total number of macrocells is defined as µ = Gq × Gp, where Gq is
the number of position grids, and Gp is the number of momentum grids. At t = 0, each
macrocell centered on (~q,~p) has only one level ηi, with the value closest to that of f0(~q,~p).
Since each microcell can contain only one density level, we have a bound 0 ≤ nj

i ≤ ν, where
ν is the number of microcells in a macrocell, see Figure 1.

The key aspect of the Monte Carlo (MC) technique is to evolve the system to an
equilibrium state consistent with the macroscopic constraints, such as the total energy,
mass, momentum, and the conservation of the total volume occupied by each density
level. In equilibrium, the system can explore all microstates that are consistent with the
constraints. To force the system towards equilibrium, MC moves must respect the detailed
balance condition:

P(o)π(o → n) = P(n)π(n→ o), (9)

where (o) and (n) refer to old and new configurations corresponding to two different
microstates. P is the equilibrium probability that the system is in a given microstate. As can
be seen in Figures 1 and 2, all microstates on the energy shell are equally probable, so that
P = 1 for any microstate.

The transition probability π consists of two steps:

π(o → n) = α(o → n)× acc(o → n), (10)

where α(o → n) represents the proposal of a trial move from one microstate (o) to another
(n), and acc(o → n) denotes the acceptance probability associated with deciding whether
to accept or reject this trial move.

In the MC simulation, various trial moves are possible, one simple example being
the exchange of levels between two microcells. In this case, it is important to note that
α(o → n) = α(n→ o) since we can always swap levels between any two arbitrary micro-
cells (on the energy shell) (see Figure 2). As a result, the acceptance probabilities for both
transitions are equal:

acc(o → n)
acc(n→ o)

= 1, (11)

meaning that a swap between one or more pairs of microcells is always allowed, provided
it conserves the total energy and other macroscopic constraints.

Such a brute force approach is very inefficient since only microstates that are confined
to the energy shell can be moved. Most moves will be rejected because they do not
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conserve the total energy of the system. To enhance the efficiency of such microcanonical
MC methods, Creutz [30] proposed to relax the constraint of exact energy conservation—
allowing the total energy of the system to slightly fluctuate close to its initial value. This
is achieved by introducing an additional degree of freedom for a system to store energy.
Creutz called this additional degree of freedom a “demon”. The first move is only allowed
if it lowers the energy of the system. The excess energy is then stored inside the demon.
In the following move, the difference δE is examined. If the trial move lowers the energy,
it is accepted and the energy gained from such a move is stored inside the demon. On
the other hand, if δE > 0, the move is accepted only if the demon has sufficient energy in
store to compensate for the system’s energy gain. If it does, the move is accepted, and the
quantity δE is subtracted from the demon’s energy store. The MC dynamics is illustrated
in Figure 2.

p

q

I

II

III

Figure 2. Schematic representation of the exchange process in the occupation of microcells in phase
space. Processes I I and I I I illustrate the exchange of two microcells inside different macrocells,
while process I represents the exchange within the same macrocell. Process I I I, on the other hand,
depicts an exchange between different microcells but with the same density, where the empty cell is
considered to have null density, and due to this, it is an irrelevant process.

For application to LB statistics, a simple MC algorithm described above is still very
inefficient. The position of each microcell has to be stored in an array and track must be
kept of all the swaps between the different microcells. Clearly, since the energy and the
coarse-grained distribution function are calculated on the level of macrocells, the details of
which microcell inside the macrocell is occupied by the specific density levels are irrelevant.
The only relevant information is how many density levels of each type are present inside
the macrocell. Based on this observation, we now introduce a more efficient approach for
performing MC at the level of macrocells.

As before, the phase space is divided into µ macrocells, each containing a fixed number
ν of microcells that can either be occupied by a certain level i of the initial distribution or
left empty, as illustrated in Figure 1. Trial moves now involve adding or removing levels
within a specific macrocell, as demonstrated by the processes I I and I I I of Figure 2. Only
process I I is relevant, since, in process I I I, the proposed exchange is between equal levels
and does not affect the coarse-grained distribution function.

To illustrate the algorithm, let us consider an exchange of two distinct levels, denoted
i = a and i = b, between two different macrocells, labeled j = A and j = B, as shown in
processes I I of Figure 2. In this trial move, we will remove a level a from the macrocell A
and place it into macrocell B, and similarly, we will remove a level b from the macrocell B
and place it into macrocell A. This is summarized as follows:
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In macrocell A:
nA

a → nA
a − 1, nA

b → nA
b + 1. (12)

In macrocell B:
nB

b → nB
b − 1, nB

a → nB
a + 1. (13)

Note that the redistribution of levels within the same macrocell does not affect the
energy of the system, since it is calculated only at the level of macrocells. The total
degeneracy W for a given distribution of levels {nj

i} across all the macrocells is, therefore,

W =
µ

∏
j=1

ν!

∏l+1
i=1 nj

i !
. (14)

We should observe that differently from LB’s original work, we adopt Gibbs counting,
and treat the same density levels as indistinguishable [7]. In practice, this does not affect
any of the final results, and makes the combinatorics simpler.

The probability of finding the system in its old configuration, characterized by the
macrocell A with (nA

a , nA
b ), and the macrocell B with (nB

a , nB
b ), will be proportional to:

P(o) ∝ · · · ν!
nA

a !nA
b !

ν!
nB

a !nB
b !
· · · (15)

while after performing the swap, the probability of finding the system in its new configu-
ration, characterized by the macrocell A with (nA

a − 1 , nA
b + 1), and the macrocell B with

(nB
a + 1 , nB

b − 1), will be proportional to:

P(n) ∝ · · · ν!
(nA

a − 1)!(nA
b + 1)!

ν!
(nB

a + 1)!(nB
b − 1)!

· · · . (16)

Note that the choice of density levels that are being proposed for a swap is completely unbi-
ased, performed with equal probability among all the levels that are present within the two
macrocells. Therefore, the probability of choosing a trial move α(o → n) = α(n→ o) = 1.
Substituting this into the detailed balance equation, Equation (9), we find that the accep-
tance probabilities in the forward and reverse directions must satisfy:

acc(o → n)
acc(n→ o)

=
P(n)
P(o) =

nA
a nB

b
(nA

b + 1)(nB
a + 1)

. (17)

Since the maximum acceptance probability is one, following Metropolis [31], we con-
clude that:

acc(o → n) = min

(
1,

nA
a nB

b
(nA

b + 1)(nB
a + 1)

)
. (18)

In this new approach, the trial moves within the same macrocell, depicted by process
I of Figure 2, are no longer necessary since their mixing and degeneracy are taken into
account exactly by the combinatorial factors in Equations (15) and (16). This represents a
significant gain compared to the original MC method. To summarize: we randomly select
two out of the µ macrocells in the system, along with two levels from the available levels
within these macrocells. Next, we generate a random number ζ, uniformly distributed
between 0 and 1, and then check if ζ < acc(o → n). If this condition is met, we accept
the swap; otherwise, we reject it. Note, the choice of trial moves remains symmetric,
α(o → n) = α(n → o), as we continue to choose the levels for a swap independent of
their occupation of the macrocell. Although this MC algorithm represents a significant
improvement over the brute force MC, the fact that ζ < 1 implies that many of the proposed
moves will be rejected. This unnecessary inefficiency arises when we encounter cases where
nA

a ∼ nB
b ∼ 1. In such situations, there are probably other levels (different from a and b) that
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are more appropriate for a swap. This suggests that the choice of proposed moves should
not be completely random, but biased [32] toward levels that have larger occupations
within the macrocells A and B.

To implement this bias, we now select the levels based on their occupation in the
macrocell, rather than choosing them uniformly as we did before. The probability of
choosing level a inside the macrocell A is taken to be proportional to its occupation within
the macrocell nA

a /ν, and similarly for level b inside the macrocell B. The biased choice then:

α(o → n) =
nA

a nB
b

ν2 , (19)

Note that now, α(o → n) 6= α(n→ o) since the choice in the reversed direction is:

α(n→ o) =
(nA

a + 1)(nB
b + 1)

ν2 . (20)

To make this discussion clearer, consider the central macrocell of Figure 2, and let us
call it A. Now, let us associate colors to represent different levels: yellow for level 1, red
for level 2, green for level 3, blue for level 4, pink for level 5, and empty spaces for level
6. Therefore, in macrocell A, we have the following distribution: nA

1 = 0, nA
2 = 0, nA

3 = 2,
nA

4 = 6, nA
5 = 1, and nA

6 = 16, totaling ν = 25.
To randomly select a level within macrocell A, we generate a random number between

0 and ν = 25. If the generated number falls between 0 and 1, we choose level 5 (pink).
If it falls between 1 and 3, the chosen level will be 3 (green). If it falls between 3 and 9,
the chosen level will be 4 (blue). Finally, if the number falls between 9 and 25, the chosen
level will be 6, representing an empty space. This is similar for macrocell B. The probability
of selecting a level a in macrocell A and a level b in macrocell B is then given by Equa-
tion (19). Substituting Equations (19) and (20) together with Equations (15) and (16) into
the expression for the detailed balance Equation (9), we obtain:

acc(o → n)
acc(n→ o)

=
α(n→ o)
α(o → n)

P(n)
P(o) = 1. (21)

Therefore, as long as the levels proposed for a swap are chosen according to their occupation
inside the two macrocells, the swap move is always accepted—assuming, of course, that
the move either lowers the energy of the system or that the demon has enough energy in
store to compensate it [30]. This makes the MC algorithm extremely efficient. Below, we
summarize the MC algorithm:

1. Start the system in a given initial configuration and set the demon energy Ed to 0.
2. Calculate the total energy.
3. Choose two distinct macrocells (the first one can be chosen following some order,

and the second one randomly) labeled A and B.
4. Select two distinct levels proportionately to their presence inside the two macrocells

(biased selection). This is done by generating two random numbers between 0 and ν,
and determining which intervals defined by {nA

i } and {nB
i } they fall into.

5. Perform the trial moves and calculate the change in the total energy of the system:

δE = (ηa − ηb)× (εB − εA).

6. If δE ≤ Ed, accept the move and update the energy of the reservoir as Ed = Ed − δE.
Otherwise, reject the move and go back to step 3.

7. Go through all µ macrocells once (this defines one MC step).
8. Recalculate the potential ψ(~q) by numerically integrating Equation (7) and return

to step 2.
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We start by testing our MC algorithm on simple one- and two-level waterbag dis-
tributions for which the LB entropy function can be maximized exactly. We undertake
this investigation within the framework of the one-dimensional self-gravitating model
(ODSGM), a model that has been extensively studied in the field of stellar dynamics
since the seminal works of Lecar [33] and Hohl [34,35], up to the more recent works of
Miller [36–38]. It has also found applications in cosmological models explored by Joyce and
collaborators [39–41]. Despite its simplification compared to real three-dimensional gravity,
the ODSGM already contains the main aspects of the gravitational problem—long-range
potential [28,42], collective motion, particle-wave interactions, which lead to collisionless
relaxation [23,43,44], etc. For this study, we opt to use the notation (x, v) instead of (~q,~p) to
specify the position of a particle in the phase space. A notable practical advantage of the
ODSGM is the absence of singular particle–particle interaction since the two-body potential
is φ(x, x′) = |x− x′|, facilitating both theory and simulations [39,40].

We begin by studying the equilibrium state to which ODSGM relaxes from an initial
single-level waterbag distribution:

fwb1(x, v) = η1Θ(x1 − |x|)Θ(v1 − |v|), (22)

where Θ(x) represents the Heaviside function, x1 = v1 = 1 and η1 = 1/4. The symmetry
of the distribution results in a null total linear momentum, with the only conserved quantity
beside the total mass M = 1 being the total energy E0. The LB equilibrium is obtained by
numerically solving Equations (6) and (7) with constraints given by Equations (4) and (5).
A perfect agreement between the exact (numerical) solution and the MC simulation is
demonstrated in Figure 3, validating the algorithm presented above. We next perform a
similar calculation for a two-level waterbag distribution:

fwb2(x, v) = (η1 − η2)Θ(x1 − |x|)Θ(v1 − |v|)
+ η2Θ(x2 − |x|)Θ(v2 − |v|).

(23)

where x1 = v1 = 1/2, x2 = v2 = 1, η1 = 0.4 and η2 = 0.2. Once again, we obtain perfect
agreement with simulation results; Figures 3 and 4.

We next look at the one-level and two-level distributions, with zero density at the
center, see Figure 5. For the one-level distribution with the hole at the center we use:

fwb3(x, v) = η1Θ(x1 − |x|)Θ(v1 − |v|)
− η1Θ(x2 − |x|)Θ(v2 − |v|).

(24)

where x1 = v1 = 1, x2 = v2 = 1/2 and η1 = 1/3. For a two-level waterbag:

fwb4(x, v) = η2Θ(x3 − |x|)Θ(v3 − |v|)
− (η2 − η1)Θ(x2 − |x|)Θ(v2 − |v|)
− η1Θ(x1 − |x|)Θ(v1 − |v|)

(25)

where x1 = v1 = 1/3, x2 = v2 = 2/3, x3 = v3 = 1, η1 = 1/6, and η2 = 1/3. We
observe that for these initial distributions, the LB equilibrium states do not have holes in
the center—instead, we see that the central region is most densely populated according to
LB theory (Figure 6). Again, we observe a perfect agreement between the numerical LB
entropy maximization and our MC simulations.
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Figure 3. Equilibrium state for the initial one–level (waterbag) distribution, as defined in Equation (22).
In (a), the density in space is shown on a linear scale, whereas (b) employs a semilog scale. (c,d) show
the equilibrium state for a two–level distribution described by Equation (23). (c) is presented using a
linear scale, while (d) utilizes the semilog scale for the density in space. Solid lines are calculated
using exact LB entropy maximization, while symbols are the results of MC simulation. In MC, we
used µ = 64 × 64 and ν = 128 for both distributions.
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Figure 4. Evolution of the distribution function in MC. (a,b) show the initial and final distributions
for the one–level distribution of Equation (22). (c,d) show the initial and final states, respectively,
for the two–level distribution of Equation (23). The parameters are set as ν = 128 and µ = 64 × 64.
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Figure 5. Evolution of the distribution function in MC. (a,b) show the initial and final distributions for
the one–level initial condition, Equation (24). (c,d) show the initial and final distributions, respectively,
for the two-level initial condition of Equation (25). The MC parameters are: ν = 128 and µ = 64 × 64.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-4 -3 -2 -1  0  1  2  3  4

N
(x

)/
N

0

x

LB
MC (a)

10
-4

10
-3

10
-2

10
-1

10
0

-4 -3 -2 -1  0  1  2  3  4

N
(x

)/
N

0

x

LB
MC (b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-4 -3 -2 -1  0  1  2  3  4

N
(x

)/
N

0

x

(c)

10
-4

10
-3

10
-2

10
-1

10
0

-4 -3 -2 -1  0  1  2  3  4

N
(x

)/
N

0

x

(d)

Figure 6. Equilibrium state for the initial one–level (waterbag) distribution, as defined in in
Equation (24). In (a), the particle density distribution is shown on a linear scale, whereas (b) shows
the same on a semilog scale. For the two–level distribution described by Equation (25), (c) shows the
final equilibrium state on a linear scale (c), and (d) shows the same on a semilog scale. Solid lines
are calculated using exact LB entropy maximization, while symbols are the results of MC simulation.
The MC used µ = 64 × 64 and ν = 128 for both distributions.
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Considering that the validity of our algorithm is now fully established, we are
now poised to leverage this approach for the analysis of continuous initial distributions,
for which the numerical solution of the LB equations is no longer possible. As a demonstra-
tion of the applicability of the MC method, we consider an initial distribution that has a
parabolic profile in both position and velocity:

fcont(x, v) =
9x2v2

4x3
mv3

m
Θ(xm − |x|)Θ(vm − |v|), (26)

with particles confined in a rectangle of |xm| ≤ 1 and |vm| ≤ 1. To perform MC simulations,
this distribution is discretized into l = 20 levels, randomly generated from the range of 0 to
fmax, where fmax corresponds to the highest value of the initial distribution Equation (26).
The results of the equilibrium particle distribution obtained using our MC algorithm are
presented in Figures 7 and 8.

It is interesting to compare the equilibrium distributions predicted by the LB theory
with the results of molecular dynamics (MD) simulations. In the MD simulations, we
start by distributing N particles according to Equation (26) and then evolve the system
using Newton’s equations of motion until a stationary state is reached. Figures 7 and 8
present both the initial and final stationary particle distributions calculated using LB
theory (MC simulations) and MD. We observe that while the initial distributions are
identical, the final stationary state to which the system evolves is very different from the
predictions of LB theory. While LB theory produces a slowly decaying tail in the particle
density distribution function—see Figures 7–9—MD has a very sharp decay consistent with
the resonant core-halo theory [45]. Furthermore, the MD distribution in the core region
clearly shows incomplete relaxation—the particle density remains depleted in the core,
while LB theory predicts a complete population inversion in which higher density levels
predominantly occupy the core region. These findings perhaps are not very surprising
in view of the earlier work on gravitational systems and on systems with long-range
interactions in general [46,47]. Still, there was an expectation that the increased complexity
of the multilevel distribution might help the system to relax to the LB equilibrium. Instead,
we see that relaxation remains incomplete.
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Figure 7. Initial parabolic distribution described by Equation (26) discretized in l = 20 levels.
In the MC simulations we use ν = 1024, µ = 256 × 256. (a) shows the initial particle density
distribution and (b) shows the final equilibrium distribution. (c) shows the equilibrium distribution
on a logarithmic scale. MD simulations were performed with N = 2× 105 particles.
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Figure 8. Initial parabolic distribution described by Equation (26). All parameters are the same as in
Figure 7. (a) illustrates the initial velocity distribution and (b) shows the final velocity distribution
in LB equilibrium. (c) shows the velocity distribution on a logarithmic scale. MD simulations were
performed with N = 2× 105 particles.
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Figure 9. Particle energy distribution N(ε) at equilibrium obtained using MC simulations. After ini-
tial exponential decay, we observed a power–law decay at high energies. All parameters are the same
as in Figure 7.

3. Conclusions

In this paper, we presented a Monte Carlo approach that allows us to obtain the
LB equilibrium state for an arbitrary initial particle distribution. For such continuous
distributions, direct maximization of LB entropy requires an infinite number of Lagrange
multipliers and is not practical for systems of interacting particles. This restricted the
applicability of Lynden-Bell’s theory to initial conditions of a very simple waterbag form,
for which the entropy maximization could be performed numerically. In the present
approach, an arbitrary initial distribution is discretized into density levels which are then
evolved using an efficient Monte Carlo algorithm towards the state that corresponds to the
LB equilibrium.
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It is interesting to note that for continuous initial distributions, the LB equilibrium
particle distribution found using MC simulations shows the presence of algebraically de-
caying tails [48,49]. We examined a range of diverse initial conditions for the distributions
described by Equation (26), as illustrated in Figure 9. In all cases, the energy distribu-
tion shows an initially exponential decay, followed by a power-law tail with exponents
appearing in the range of [2.7–3.5] for the distributions analyzed in the present work.

Unfortunately, we find that the equilibrium particle distribution predicted by the LB
theory is very different from what is observed in the actual MD simulations. While LB the-
ory produces a slowly decaying tail in the particle density distribution function, MD simula-
tions show a very sharp decay of the particle distribution—see Figures 7 and 8—consistent
with the resonant core-halo theory [45]. In the core-halo theory, the mechanism for particle
evaporation arises from the resonant interactions between individual particles and the
collective oscillations. The resonant (separatrix) orbit controls the maximum energy that
any particle can gain from the collective oscillations [1]. Furthermore, particle evaporation
results in Landau damping, which eventually kills all oscillations, producing a stationary
mean-field potential. When this happens, the system becomes integrable [46,47,50], all the
evolution ceases, and it remains trapped in a stationary state. Comparison of the MC results
with the explicit MD simulations indicates that for continuous initial distributions, the
same scenario plays out. Unfortunately, increasing the complexity of initial distributions
does not help systems relax to LB equilibrium.
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