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Abstract: Explainable Artificial Intelligence (XAI) and acceptable artificial intelligence are active
topics of research in machine learning. For critical applications, being able to prove or at least to ensure
with a high probability the correctness of algorithms is of utmost importance. In practice, however,
few theoretical tools are known that can be used for this purpose. Using the Fisher Information
Metric (FIM) on the output space yields interesting indicators in both the input and parameter spaces,
but the underlying geometry is not yet fully understood. In this work, an approach based on the
pullback bundle, a well-known trick for describing bundle morphisms, is introduced and applied to
the encoder–decoder block. With constant rank hypothesis on the derivative of the network with
respect to its inputs, a description of its behavior is obtained. Further generalization is gained through
the introduction of the pullback generalized bundle that takes into account the sensitivity with respect
to weights.

Keywords: pullback bundle; information geometry; machine learning

1. Introduction

Explainable Artificial Intelligence (XAI) is generally described as a collection of meth-
ods allowing humans to understand how an algorithm is able to learn from a database,
reproduce and generalize. It is currently an active, multidisciplinary area of research [1,2]
that relies on several theoretical or heuristic tools to identify salient features and indica-
tors explaining the surprisingly performances of machine learning algorithms, especially
deep neural networks. From a statistical point of view, a neural network is nothing but a
parameterized regression or classification model, that can be described as a random vari-
able whose probability distribution is known conditionally to external inputs and internal
parameters [3]. Unfortunately, even if this approach seems the most natural one, it is not
adapted to XAI as no insight is gained on the learning and inference process. Furthermore,
it seems that there is a contradiction between the statistical procedure that appeals for
models with the smallest possible number of free parameters and the performance of deep
learning relying on thousands to millions weights. On the other hand, attempts have been
made to design numerical [4] or visual [5] indicators aiming at producing a summary of
salient features.

XAI is also related to acceptable AI, that is proving or at least ensuring with a high
probability that the model will produce the intended result and is robust to perturbations,
either inherent to the data acquisition process or intentional. In both cases, it is mandatory
to be able to perform a sensitivity analysis on a trained network. In [6], an approach based
on geometry was taken and the need of a metric on the set of admissible perturbations
enforced. The problem of the so-called adversarial attacks is treated in several papers [7–9]
where mitigating procedures are proposed. Adversarial attacks are a major concern for
acceptable AI, especially in critical application like autonomous vehicles or air traffic control.
From now, most of the research effort was dedicated to the design of such attacks with
the idea of incorporating the fooling inputs in the learning database in order to increase
robustness. The reader can refer, for example, to Fast Gradient Sign methods [10], robust
optimization methods [11] or DeepFool [12,13]. Unfortunately, while these approaches are
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relevant to acceptable AI, they do not provide XAI with usable tools. Furthermore, they
rely on inputs in Rn, or generally in a finite dimensional Euclidean space, which is not
always a valid hypothesis.

There is also a question on why learning from a high dimension data space is possible,
and a possible answer is because data effectively lies on a low dimensional manifold [14,15].
As a consequence, most of the directions in the input space will have a very small impact
on the output, while only a few number of them, namely those who are tangent to the data
manifold, are going to be of great influence [16]. The manifold hypothesis also justifies
the introduction of the encoder–decoder architecture [17] that is of wide use in the field of
natural language processing [18] or time-series prediction [19]. The true underlying data
manifold, if it exists, is most of the time not accessible, although some of its characteristics
may be known and incorporated in the model. In particular, it may be subject to some action
by a Lie group or possess extra geometric properties, like the existence of a symplectic
structure. Specific networks have be designed to cope with such situations [20,21].

In a general setting, little is known about the data manifold and its geometric features,
like metric, Levi-Civita connection and curvature. However, Riemannian properties are
the most important ones as they dictate the behavior of the network under moves in the
input space. Recalling the statistical approach invoked before, it makes sense to model
the output of the network as a density probability parameterized by inputs and weights.
Within this frame, there exists a well-defined Riemannian metric on the output space known
as the Fisher Information Metric (FIM) originating from a second order expansion of the
Kullback–Leibler divergence. The importance of this metric has already been pointed out
in several past works [22,23]. The FIM can be pulled back to the input space, yielding, in
most cases, a degenerate metric that can nevertheless be exploited to better understand
the effect of perturbations [16], or to parameter space to improve gradient-based learning
algorithms [24]. In this last case, however, things tend to be less natural than for the
input space.

In this work, a unifying framework for studying the geometry of deep networks is
introduced, allowing a description of encoder–decoder blocks from the FIM perspective.
The pullback bundle is a key ingredient in our approach.

In the sequel, features and outputs are random variables, thus characterized by their
distribution functions, or their densities in the absolutely continuous case. Within this
frame, a neural network is a random variable:

Y = N (X, W)

X : (Ω, T ,P)→ (E, E)
W : (Ω, T ,P)→ (Θ,F )

(1)

where (Ω, T ,P) is an underlying probability space and (E, E), (Θ,F ) are, respectively, the
input and weight measure spaces Finally, Y is assumed to take its values in the output
measure space (O,O). Most of the time, the network has a layered structure so that the
expression of N can be factored out as:

Y = N (N (. . . , W2), W1) (2)

In many practical implementations, the weights W are deterministic, that is equivalent
to saying that their probability distribution is a Dirac distribution. In this case, a neural
network can be described as a parameterized family of random variables NW : ω 7→
N (X(ω), W). A special case occur when a single decoder is considered [25], that is, a
measurable function:

f = N (·, W) : Rd → Rm, d ≤ m (3)
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where f is a smooth mapping, assumed in [25] to be an immersion; that is, for any x, D fx
has maximal rank d. Conversely, one may consider an encoder

g = N
(
·, W̃

)
: Rn → Rd, d ≤ n (4)

and assume f to be a submersion. In this paper, the geometry of the complete encoder–
decoder network

g ◦ f = N
(
N (·, W), W̃

)
(5)

will be considered, as well as the case d ≥ m, d ≤ n.
The article is structured as follows: In Section 2, the Fisher information metric is

introduced and some formulas, valid when the parameter space is a smooth manifold, are
given. In Section 3, the pullback bundle is defined and applied to the encoder–decoder
case. Finally, a conclusion is drawn in Section 5. The convention of summation on repeated
indices applies in this manuscript.

2. The Fisher Information Metric

In this section, we recall some basic definitions and properties in information geometry.
The foundational ideas can be traced back to [26], but the main developments occur quite
recently. The reader is referred to [27] for a comprehensive introduction. The exposition
below assumes a quite high degree of regularity for the parameterized density families,
which is nevertheless a common situation in practice, especially in the field of machine
learning we are interested in.

2.1. Definitions and Properties

Definition 1. A statistical model is a pair (M, p) whereM is an oriented n dimensional smooth
manifold and (pθ)θ∈M is a parameterized family of probability densities on a measured space
(Ω, T , µ) such that, putting p(θ, ω) = pθ(ω):

• For µ-almost all ω ∈ Ω, the mapping θ 7→ p(θ, ω) is smooth;
• For any θ ∈ M, there exists an open neighborhood Uθ of θ and an integrable mapping

h : Ω→ R+ such that, for any ξ ∈ Uθ , |∂θ p(ξ, ω)| ≤ h;
• The mapping θ → pθ ∈ L1(Ω, µ) is one-to-one;
• The support of pθ does not depend on θ.

Assuming p never vanishes, one can define the score l : M×Ω→ R as:

l(θ, ω) = log p(θ, ω) (6)

For any θ ∈ M: ∫
Ω

pθ(ω)dµ(ω) = 1 (7)

Thus, using the fact that the assumptions made on family pθ allow swapping deriva-
tives and integrals, it becomes:∫

Ω
∂i p(θ, ω)dµ(ω) = 0, i = 1 . . . n (8)

where ∂i denotes the derivative with respect to the i-th component of θ in local coordinates.
So, the score lθ = log pθ satisfies by (8):

E[∂ilθ ]pθ
= 0, i = 1 . . . n. (9)

A simple computation shows that:

E
[
∂ilθ∂jlθ

]
=
∫

Ω

∂i pθ√
pθ

∂j pθ√
pθ

dµ(ω) = 4
∫

Ω
∂i(
√

pθ)∂j(
√

pθ)dµ(ω), i, j = 1 . . . n (10)
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proving that:
gij = E

[
∂ilθ∂jlθ

]
= 〈∂i(

√
pθ), ∂j(

√
pθ)〉L2(Ω,µ) (11)

Let g be the section of TM∗ ⊗ TM∗ defined by:

g = gijdθi ⊗ dθ j (12)

Now, given any tangent vector X = Xi∂i ∈ TθM:

g(θ; X, X) = gijXiX j = 〈∂i(
√

pθ), ∂j(
√

pθ)〉L2(Ω,µ)

= 〈Xi∂i(
√

pθ), X j∂j(
√

pθ)〉L2(Ω,µ)

= 〈Z, Z〉L2(Ω,µ)

(13)

with Z = Xi∂i
(√

pθ

)
. Given the assumptions made on the family pθ , g is a thus a positive

definite symmetric section of TM⊗ TM, hence a Riemannian metric on M called the
Fisher Information Metric (FIM).

Remark 1. The mapping I : θ 7→ √pθ embedsM as a submanifold of the unit sphere in L2
Ω,µ and

the Fisher information metric is just the pullback of the ambient metric in L2
Ω,µ with respect to I .

However, in machine learning applications, it is common to consider parameter spaces for which the
one-to-one assumption for I is non-valid so that g is only positive semidefinite. The study of the
rank of the metric in this case is an important research topic.

It is quite fruitful to consider differential forms on M parameterized by Ω. The
starting point is the definition of parameterized degree 0 forms.

Definition 2. A parameterized 0-form is a mapping f : M×Ω→ R satisfying:

• For almost all ω ∈ Ω, the mapping θ ∈ M→ f (θ, ω) is smooth;
• For all θ0 ∈ Ω, and all integers n, there exists a neighborhood Un,θ0 and an integrable positive

mapping hn,θ0 such that for all θ ∈ Un,θ0 and almost all ω ∈ Ω: |∂n
θ f (θ, ω)| ≤ hn,θ0(ω).

Proposition 1. Let X be a vector field on TM and f a parameterized 0-form in the previous sense.
Then:

X(E[ f ]) = E[X( f )] + E[ f X(l)] (14)

with l(θ, ω) = log p(θ, ω)n.

Proof. E[ f ] is a degree 0 form on TM. If ψ is the flow of X, then:

ψ?E[ f ] =
∫

Ω
f (ψ(t, θ), ω)p(ψ(t, θ), ω)dµ(ω) (15)

The assumptions made on f allowing the swapping of derivatives and integrals, so:

∂

∂t t=0
E[ f ] =

∫
Ω

∂θ f (θ, ω)X(θ)p(θ, ω)dµ(ω) +
∫

Ω
f (θ, ω)

∂θ p(θ, ω)

p(θ, ω)
p(θ, ω)dµ(ω) (16)

Remark 2. Applying Proposition 1 to the constant function f = 1 yields E[X(l)] = 0, a result
already known by Equation (9)

A parameterized degree k differential form on TM can be defined readily by requiring
that the coefficients of the elementary forms dθi1 ∧ · · · ∧ dθik be parameterized differential
forms of degree 0.
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Proposition 2. Let α be a degree k parameterized differential form on TM. Then:

dE[α] = E[dα] + E[dl ∧ α] (17)

Proof. It is enough to consider a form α(θ, ω) = f (θ, ω)dθi1 ∧ · · · ∧ dθik . Then:

dE[α](θ) =
n

∑
j=1

E
[
∂θj f

]
dθj ∧ dθi1 ∧ · · · ∧ dθik +

n

∑
j=1

E
[

f ∂θj l
]
dθj ∧ dθi1 ∧ · · · ∧ dθik (18)

since:

dα =
n

∑
j=1

(
∂θj f

)
dθj ∧ dθi1 ∧ · · · ∧ dθik (19)

dl ∧ α =
n

∑
j=1

f
(

∂θj l
)

dθj ∧ dθi1 ∧ · · · ∧ dθik (20)

the claim follows.

Proceeding the same way as in Proposition 1, and using Cartan’s homotopy formula,
we obtain:

Proposition 3. Let X be a vector field on TM and α a degree k parameterized differential form.
Then

LX(E[α]) = E[iXdα] + E[diXα] + E[(iXdl) ∧ α] (21)

When α = dl, Equation (21) reads as:

LXE[dl] = E
[
iXd2l

]
+ E[d(iXdl)] + E[(iXdl) ∧ dl] (22)

Since E[dl] = 0, it becomes:

E[d(iXdl)] = −E[(iXdl) ∧ dl] (23)

Given two vector fields X, Y:

iYE[(iXdl) ∧ dl] = E[(iXdl)(iYdl)] = g(X, Y) (24)

with g the Fisher metric. Thus:

Proposition 4.
g(X, Y) = −E[iYd(iXdl)] (25)

Remark 3. In coordinates, iYd(lXdl) = ∂ijX jYi + ∂jl∂iX jYi, and after taking the expectation:

g(X, Y) = −E
[
∂ijl
]
X jYi (26)

This is a well-known result in the Rn case.

Let ∇ be an affine connection on TM. The same computation as above yields:

Proposition 5. Let X be a vector field on TM and α a degree k parameterized differential form.
Then:

∇XE[α] = E[∇Xα] + E[(iXdl) ∧ α] (27)

When α = dl, we recover E[∇Xdl](Y) = −g(X, Y), showing that while the param-
eterized Hessian ∇dl depends on the connection ∇, it is not the case of its expectation.
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When Ω =M = Rn, µ = dx1dx2 . . . dxn, the Fisher metric is known to be twice the sec-
ond order term in the Taylor expansion of the Kullback–Leibler divergence, which can
be proved easily by iterating derivatives. More generally, let ∇ be a connection and let
θ : ] − ε, ε[→ M, ε > 0 be a smooth curve with θ0 = θ(0), X = θ′(0). Recall that the
Kullback–Leibler divergence between two probability densities p, q is defined as:

KL(p, q) = Ep[log(p/q)] =
∫

log
(

p(x)
q(x)

)
p(x)dx (28)

The mapping:

t ∈]− ε, ε[ 7→ ξ(t) = KL
(

pθ0 , pθ(t)

)
= Epθ0

[
lθ0(t)− lθ(t)

]
(29)

is smooth, so Taylor formula applies for t close enough to 0:

ξ(t) =
n

∑
i=1

ξ(i)(0)
i!

ti + o(tn) (30)

With:

ξ(i)(0) = Epθ0

X(X(. . . X(l)))︸ ︷︷ ︸
i times

 = Epθ0

X(X(. . . dl(X)))︸ ︷︷ ︸
i−1 times

 (31)

If the curve t→ θ(t) is a geodesic for ∇, then:

X(dl(X)) = (∇Xdl)(X) + dl(∇XX) = (∇Xdl)(X) (32)

And, by recurrence:

ξ(i)(0) = Epθ0

[(
∇(i−1)

X dl
)]

(X). (33)

The first derivative ξ(1)(0) is readily computed as:

−E
[
dlθ0

]
(X) = 0. (34)

The second derivative ξ(2)(0) can be obtained using ∇ as :

−E
[
∇Xdlθ0

]
(X) = gθ0(X, X). (35)

Since g is symmetric, g(X, Y) = (g(X + Y, X + Y)− g(X−Y, X−Y))/4, thus (35)
characterizes g as θ0. Higher-order terms can be computed by repeatedly applying Proposition 5
and are expressed thanks to the quantities:

E
[
(iXdl) ∧∇(i)

X dl
]
(X). (36)

An interesting case occurs when the Fisher metric is non-degenerate and ∇lc is its
associated Levi-Civita connection. Normal coordinates at θ0, denoted by xi, i = 1 . . . N, are
given by taking an orthonormal basis, with respect to the Fisher metric, (v1, . . . , vN) and
letting [28] (p. 72):

xi
(

expθ0
tjvj

)
= ti (37)

Using the xi, i = 1 . . . N system of coordinates in place of θ, and noting that θ0 cor-
responds to the origin in normal coordinates, the KL divergence can be approximated at
order 2 by:

KL(p0, px) =
1
2

xixj (38)
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where x =
(

x1, . . . , xN).
2.2. The Fisher Information in Machine Learning

In machine learning applications, when the output is a probability distribution, then
the Kullback–Leibler divergence is a natural measure for goodness-of-fit. Assuming that
the database is given in the form of an iid sample of couples (Xi, Yi)i=1...N , then one can
introduce the error function:

E(W) =
N

∑
i=1

KL(Yi,N (Xi, W)) (39)

That may be approximated by:

Ẽ(W) = −
N

∑
i=1

1
2

g
(

Yi;
−−−−−−−→
YiN (Xi, W),

−−−−−−−→
YiN (Xi, W)

)
(40)

where the notation
−→
PQ stands for the tangent vector at P such that a geodesic (for ∇lc) θ

with θ(0) = P, θ′(0) =
−→
PQ is such that θ(1) = Q. Taking the derivative with respect to

W yields:
∂Ẽ
∂W

= −
N

∑
i=1

g
(

Yi;
∂N (Xi, W)

∂W
,
−−−−−−−→
YiN (Xi, W)

)
(41)

with ∂N (Xi ,W)
∂W being a tangent vector at Yi.

We recall the musical isomorphism [ : TM→ TM? defined by:

X[(Y) = g(X, Y) (42)

and use it to rewrite (41) as:

∂Ẽ
∂W

= −
N

∑
i=1

(
∂N (Xi, W)

∂W

)[(−−−−−−−→
YiN (Xi, W)

)
(43)

In this form, having a critical point of the energy Ẽ with respect to W is equivalent
to the vanishing of a totally symmetric multilinear form on TM⊕ TM?, the generalized
tangent bundle ofM.

Finally, if ψ : N → M is a smooth mapping, one can take the pullback the Fisher
metric onM to obtain a semi-definite symmetric bilinear form on N :

ψ?g(η; X, Y) = g(ψ(η); ψ′(η)X, ψ′(η)Y) (44)

When ψ is an embedding, ψ?g is a Fisher metric onN with pψ(η), η ∈ N as underlying
densities. This is the case considered in [25].

As an example of a pullback metric, we are going to investigate the case of the von
Mises–Fisher distribution (VMF) on Sn−1 with density:

pκ,µ(x) =
κn/2−1

(2π)n/2 In/2−1(κ)
exp(κ〈x, µ〉) (45)

where κ ≥ 0 is the concentration parameter, µ ∈ Sn−1 is the location parameter and Ik is the
modified Bessel function of the first kind of order k. The Fisher metric in the embedding
space Rn can be deduced from the second moment E

[
xxt] since lκ,µ = log

(
pκ,µ

)
= f (κ) +

〈x, µ〉. If κ is assumed to be constant, then:

E
[
∂µlκ,µlt

κ,µ

]
= E

[
xxt] (46)
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Although the expression for E
[
xxt] has been given in [29], we present here an al-

ternative proof based on the fact that for any integer n, Sn−1 is a suspension of Sn−2. If
x = (x1, . . . , xn), then xxt is a matrix whose (i, j) entry is xixj. By the rotation invariance of
the VMF, µ can be selected as the first vector of an orthonormal basis, with respect to which
x is expressed in components as x = (x1, . . . , xn). If we specialize the first component, then,
if i 6= 1, j 6= 1:∫

Sn−1
xixj pκ,µ(x)dx = cκ

∫ π

0
exp(cos θ) sinn−2(θ)

∫
Sn−2

ξiξ jdσn−2(ξ) (47)

with xi = sin θξi, i = 1 . . . n− 1 and σn−2 the Lebesgue measure on Sn−2. If i 6= j, then the
integral vanishes by symmetry, otherwise:∫

Sn−2
ξiξ jdσn−2(ξ) =

∫ π

0
cos2(ψ) sinn−3(ψ)

∫
Sn−3

dσn−3dψ

=
∫ π

0
cos2(ψ) sinn−3(ψ)dψA

(
Sn−3

) (48)

with A
(
Sn−3) the area of the n− 3-sphere, which is given by the general relation:

A(Sn) =
2π

n+1
2

Γ
(

n+1
2

) (49)

Now, observing that [30]:∫ π

0
cos2(ψ) sinn−3(ψ)dψ = B

(
3
2

,
n
2
− 1
)

(50)

with B the beta function, the overall expression becomes, after using (49):

(2π)n/2Γ
( n

2 − 1
)

In/2(κ)κ
n/2−1

κn/2Γ(n/2− 1)(2π)n/2 In/2−1(κ)

=
1
κ

In/2(κ)

In/2−1(κ)

(51)

When i = j = 1, then the expression for the second moment becomes:∫ π

0
exp(κ cos θ) cos2(θ) sinn−2(θ)dθA

(
Sn−2

)
=∫ π

0
exp(κ cos θ)

(
1− sin2(θ)

)
(θ) sinn−2(θ)dθA

(
Sn−2

) (52)

The integral is a difference of two terms, each of which can be simplified as before
to yield: (

1− n
κ

) In/2(κ)

In/2−1(κ)
(53)

This procedure can easily be applied to an arbitrary moment, each of the integral
involved being expressible using In and the Beta function.

Remark 4. Since µ is not a parameterization of the unit sphere, the Fisher metric defined that way
is related to an ambient metric in Rn, defined only on the unit sphere.

An obvious embedded dimension n− 2 submanifold of Sn−1 is obtained by taking a
unit vector ν and computing the intersection of Sn−1 with an hyperplaneH defined by:

x ∈ H ⇔ 〈x, ν〉 = α α ∈ [0, 1] (54)
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An elementary computation proves that the intersection locus is a n− 2 sphere con-
tained inH:

|x− αν|2 = 1− α2 (55)

Without loss of generality, ν can be taken as
(
1 0 . . . 0

)
and the embedding can

be written easily as:(
x1 . . . xn−1

)
7→
(
α λx1 . . . λxn−1

)
, λ =

√
1− α2 (56)

The pullback metric is just the original one scaled by 1− α2. The loss functions related
to the VMF distribution are discussed in [31].

3. Pullback Bundles

In this section, a neural network with weights W is a mapping N (·, W) : I → O,
where I (i.e., O) is the input (i.e., output) manifold of dimension n (i.e., m). Both manifolds
are assumed to be smooth, and also the mapping NW . This last assumption is valid when
the activation functions are smooth, which is the case for sigmoid functions, but not for the
commonly used ReLu function. However, smooth approximations to the ReLu are easy to
construct with an arbitrary degree of accuracy, so the framework introduced below can be
still applied.

As mentioned in the introduction, O is further assumed to be a statistical model 1
with Fisher metric g. This setting is the one of a neural network whose output is a random
variable with conditional density in a family pθ , θ ∈ O.

When the weights are kept fixed, the only free parameters are the inputs and the
network is fully described by the mapping:{

N (·, W) : I → O
x 7→ N (·, W) = pθ(x)

(57)

For the ease of notation, the mapping N (·, W) will be abbreviated by NW(·). When
the activation functions in the network are smooth, NW(·) is a smooth mapping and its
derivative will be denoted by dNW(· · · ). With this convention, the pullback metric of g by
NW(·), denoted g̃, is defined by:

g̃(X, Y) = g(dNW(X), dNW(Y)) (58)

Unless the networkN is a decoder, g̃ is generally degenerated and does not provide I
with a Riemannian structure, so an ambient metric h on I is assumed to exist. The triple
(I , h, g̃) is called the data manifold of the network. The kernel of g̃, denoted ker g̃, is the
distribution in TI consisting of vectors X such that g̃(X, ·) is the zero mapping. At a point
x ∈ I , the vectors in TxI belonging to ker g̃ give directions in which the output of the
network will not change up to order 1. Figure 1 represents the case of a one dimensional
output space and a 2-sphere input space. Since the dimension of the output is less than the
one of the input, some moves in the data manifold will not induce any change at the output.

Unless the dimension of ker g̃ is constant, this distribution does not define a foliation.
However, this is true locally in the neighborhood of points in I such that dNW(·) has
maximal rank. Finally, if E Oπ is an r-vector bundle on O, then its pullback by
NW(·) will be denoted in short by ENW . We recall that if E has local charts:

(Vi, ξi), ξi : Vi ×Rr → π−1(Vi), i ∈ I

and I has local charts
(
Uj, φi

)
, j ∈ J, then ENW has local charts:
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(
Wji = Uj ∩N−1

W (Vi), ψji

)
, ψji : Wji →Wji ×Rr

ψji(x) = ξi ◦ f ◦ φj

(59)

The pullback bundle enjoys a universal property that is in fact the main reason for
introducing it in our context.

Figure 1. Kernel of the pullback metric.

Proposition 6. Let
(
Ẽ, π̃, I

)
(i.e., (E, π,O)) be a vector bundle on I (i.e., O)). For any bun-

dle morphism (η1, η0), there exists a unique bundle morphism (η̃1, Id) such that the following
diagram commutes:

Ẽ Eη0 E

I I O

η̃1
π̃

η1

η̃0

πη0 π

η0

(60)

where πη0 : (x, v) 7→ x and η̃0 : (x, v) 7→ (η0(x), v).

This proposition is a classical one and its proof can be found in many textbooks.
The one we give below is very simple, using only local charts.

The above construction is constructive and thus gives a practical mean of computation.
For a network with fixed weights, e.g., a trained one, the derivative dNW can be efficiently
computed by back propagation, so the bundle morphism:

TI TO

I O

dNW

πI πO

NW

(61)

has a practical meaning.
Introducing the pullback bundle gives the diagram:

TI TNWO TO

I I O

dNW

πI πNW

ÑW

πO

NW

(62)

The bundle mapping dNW to TNWO is then the association:

(x, v) ∈ Rm ×Rn 7→ (x, dNW · v) ∈ Rn ×Rn (63)

The pullback bundle is thus a mean of representing the action of the network on
tangent vectors to the data manifold. As an example, the construction of adversarial attacks
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given in [32,33] can be revisited in this context, extending it to the general setting of network
with manifold inputs.

The general problem of building an adversarial attack is, informally, to find, for an
input point in the data manifold, a direction in which a perturbation will have the most
important effect on the output, hopefully fooling the network. Following [33], we define:

Definition 3. Let h be a Riemannian metric on the input space. An optimal adversarial attack at
x ∈ I with budget ε > 0 is a solution to:

max
v∈TxI ,h(v,v)≤ε

g̃(v, v) (64)

Using (38), this optimization program can be viewed as a local approximation to the
one based on the Kullback–Leibler divergence:

Definition 4. A Kullback–Leibler optimal adversarial attack at x ∈ I with budget ε > 0 is a
solution to:

max
y∈I ,h(x,y)≤ε

KL(N (x, W),N (y, W)) (65)

The metric g on TO can be pulled back to TNW by letting:

gNW (x; v, v) = g( f (x); v, v) (66)

Due to the special form of the criterion, the optimal point is on the boundary, so that
finally, the optimal adversarial attack problem may be formulated as:

Definition 5. An optimal adversarial attack at x ∈ I with budget ε > 0 is a solution to:

max
v∈UTxI

ε2gNW (dNWv, dNWv) (67)

Where UTI stands for the unit sphere bundle with respect to the metric h. Please note
that due to bilinearity, the problem can be solved for ε = 1, then let the optimal vector be
scaled by the original ε. From standard linear algebra, if Gx is the matrix of the bilinear
form gNW at x and Hx the one of h, then one can find unitary matrices A, B and diagonal
matrices Λ, Σ such that:

Hx = AtΛA, Gx = BtΣB (68)

Any vector v in UTxI can be written as:

V = AtΛ−1/2w, wtw = 1 (69)

So that, finally, the original problem can be rewritten as:

max
w,wtw=1

wt Mt Mw, M = Σ1/2BdxNW AtΛ−1/2 (70)

which is solved readily by taking w to be the unit eigenvector of M associated with the
largest eigenvalue. This is the solution found in [33] when Hx = Id.

In many cases, as the above example indicates, it is more convenient to work uniquely
in the input space, thus justifying the introduction of the pullback bundle TNWO. From
now, we are going to adopt this point of view.

Remark 5. Please note that a section in TNwI is generally not related to a section of the form (63)
in either TO or TI due to the fact that dxNW may not be a monomorphism or an epimorphism.
The next proposition gives condition for the existence of global sections in TO associated with global
sections in TNWO.



Entropy 2023, 25, 1450 12 of 16

Proposition 7. In the case of a decoding network, when NW is an embedding, there is a natural

embedding of bundles TI TNWOi such that the image of (x, v) is (x, dNWv). The pullback
bundle then splits as:

TNWO = i(TI)⊕ F (71)

where F has rank n−m.

Be careful that in this case, a section of the pullback bundle will not define a global sec-
tion in TO since some points of the output space may have no preimage by NW . However,
by the extension lemma [34] (Lemma 5.34, p. 115), local (global if NWI is closed) smooth
vector fields on TO exist, extending it.

Proof. If NW is an embedding, NW(I) is a submanifold of O and in an adapted chart,
a vector field in TNW(I) can be written as v = ∑n

i=1 vi∂i, where the ∂i, i = 1 . . . n are the
first n coordinate vector fields. It thus pulls back to a section ṽ of the same form in TNWO.
Now, since dNW is injective, ṽ is the image of a unique section in TI , hence the claim.

Proposition 8. If ker dNW has constant rank r, then there exists a splitting TI = ker dNW ⊕ F,
TNWO = im dNW ⊕ G and bundle isomorphism F → im dNW that coincides with dNW on
the fibers.

Proof. By Theorem 10.34, [34] (p. 266), ker dNW is a subbundle of TI and im dNW a
subbundle of TNWO. In local charts, the morphism dNW gives rise to the decomposition:

ker dNW ⊕Rr im dNW ⊕Rm−rdNW (72)

with dNW an isomorphism where restricted to Rr. Passing to local sections yields
the result.

An important case is the one of submersions, corresponding to encoders in machine
learning. In this case, r = m and dNW establishes a bundle isomorphism between F and
TNWO. The pullback of Fisher–Rao metric g on TO gives rise to a metric gNW on TNWO,
but only to a degenerate metric on TI that can, nevertheless, be quite well understood,
as indicated below.

Definition 6. On the input bundle TI , the symmetric tensor g̃ is defined using the splitting
TI = ker dNW ⊕ F, by:

g(X, Y) = 0, X ∈ ker dNW , Y ∈ TI
g(X, Y) = gNW (dNW X, dNWY), X, Y ∈ F

(73)

Proposition 9. There exists a symmetric (1, 1)-tensor on I , denoted by Θ, such that, for any
tangent vectors (X, Y) ∈ TI :

h(ΘX, Y) = g̃(X, Y) (74)

Proof. From standard linear algebra, there exists an adjoint tdNW to dNW , defined by:

gNW (dNWv, dNWv) = h
(tdNWv, dNWv

)
(75)

with, in local coordinates:
tN j

i = hil Nk
l gNW

ij (76)

where N (i.e., tN ) is the matrix associated with dNW (i.e., tdNW) and, as usual, hil =
(
h−1)

il .
The (1, 1)-tensor Θ is then the product tdNWdNW .

Remark 6. Θ is defined even if dNW is not full rank.
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Remark 7. All the relevant information concerning dNW is encoded in Θ. As a consequence,
the geometry of an encoder is described by this tensor, hence also the one of an encoder–decoder block.

Remark 8. The tensor Θ has expression gpjN
j
i Np

k in a local orthonormal frame, hence is symmetric.

Definition 7. Let∇ be a connection on TI . Its dual connection∇? is defined by the next equation:

∇Zh(X, Y) = h(∇ZX, Y) + h(X,∇?
ZY) (77)

where Z is any tangent vector in TI and X, Y are vector fields.

Definition 8. A (1, 1)-tensor Θ is said to satisfy the gauge equation [35] if, for all tangent
vectors Z:

∇?
ZΘ = Θ∇Z (78)

Proposition 10. If Θ satisfies the gauge Equation (78), then the (0, 2)-tensor defined by:

(X, Y) 7→ h(ΘX, Y) (79)

is ∇ parallel.

Proof. For any vector fields X, Y, and any tangent vector Z:

∇?
Zh(ΘX, Y) = h(∇?

ZΘX, Y) + h(ΘX,∇ZY)
= h(Θ∇ZX, Y) + h(ΘX,∇ZY)

(80)

hence the claim.

Θ, being symmetric, admits a diagonal expression in a local orthonormal local frame
(X1, . . . , Xn). When there exists a connection ∇ such that ∇?

ZΘX = Θ∇ZX for any vector
fields X, Z, parallel transport of the Xi, i = 1 . . . n shows that the eigenvalues are constant
and the eigenspaces preserved. The existence of a solution to the gauge equation thus
greatly simplifies the study of an encoder, as a local splitting of the input manifold exists.
The reader is referred to [35] for more details. In fact, the tensor Θ is defined even if for
general networks and the splitting may exist in this setting. This is the case when the
rank of dNW is locally constant, hence when it is maximal. A practical computation of Θ
can be obtained through the singular value decomposition, as Proposition (74) indicates.
A numerical integration of the distribution given by the first singular vectors gives rise to a
local system of coordinates, defining in turn a connection satisfying the gauge equation
(the existence of a global solution has a cohomological obstruction that is outside the scope
of this paper).

Finally, we introduce below a construction that takes into account the weight influence.
As mentioned in Section 2, the derivative of the network with respect to its weights is
adequately described as a 1-form, thus a section of T?O. In fact, when the inner layers of the
network are manifolds, the parameters are no longer real values and a suitable extension has
to be introduced. One possible approach is to take a connection ∇ on the layer manifold L.
Considering a point p ∈ L, the exponential exp∇ defines a local chart centered at p. Given
a point q in the injectivity domain of exp∇, one can obtain its coordinates as log∇p q = ~pq
and the activation of a neuron with input q as α(~pq), with α a 1-from in T?L. In this general
setting, a manifold neuron will be defined by its input in an exponential chart, a 1-form
corresponding to the weights in the Euclidean setting and an activation function. Its free
parameters are thus a couple (q, α) ∈ TL⊕ T?L. This particular vector bundle is known as
the generalized tangent bundle.
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Recalling (43), it is worth to study the pullback of the generalized bundle TO ⊕
T?O. The generalized pullback bundle is then TNWO⊕ T?NWO, whose local sections are
generated by the pullback local sections of the form:

(x, v(NW(x)), α(NW(x))) (81)

Please note that the pullback can be performed on any layer, internal or input. Most of
the previous derivations can be carried out on the generalized bundle, which must be thus
considered as a general, yet tractable framework for XAI.

4. A Numerical Example

In this example, the input data are the handwritten digits from the MNIST database.
A neural network with the next architecture was coded in torch 2 and trained on the dataset:

• First layer: convolutional, kernel size of 3, nonlinearity sigmoid;
• Second layer: convolutional, kernel size of 3, nonlinearity sigmoid;
• Pooling layer;
• Two linear layers;
• Softmax layer.

The input metric is Euclidean, the output one is the Fisher metric of the multinomial
distribution with ten classes, that is given by the matrix:

p−1
1 0 . . . 0

0 p−1
2

. . . 0
...

...
...

...
0 . . . 0 p−1

9

+
1

p10

(
1 . . . 1
...

...
...

)
(82)

Since the output space has dimension 9, the pullback bundle also has dimension 9. At an
input point x, a point in the pullback bundle is a couple (x, v) with v a vector from
R9 at output point NW(x). On the other hand, the image of the input tangent bundle
(simply a vector space in our case) has points (x, dNWu) with u an input vector. We are
thus considering a bundle mapping (x, dNWu) 7→ (x, dNWu) where the right-hand term
has values in the pullback bundle, equipped with the output Fisher metric. Tensor Θ is
computed via singular value decomposition, already implemented in torch. We selected
the rotation rate of the singular vector associated with the largest singular value as an
indicator of the complexity of the decision process in the neighborhood of an input point.
The code was adapted from https://github.com/eliot-tron/CurvNetAttack (accessed on
12 September 2023). A detection of outliers from a sample of 1000 points was performed.
A visual analysis reveals that they correspond to poorly drawn digits, as indicated in
Figure 2 where the two digits with the highest curvature indicator are plotted:

0 25

0

20

0 25

0

20

Figure 2. Samples with the highest rotation rate.

The first one is labeled “9”, which is quite obvious for a human operator, although the
final stroke is vertical, while the second is labeled “7”, easily confused with a “1”.

5. Conclusions and Future Work

In this paper, several important constructions originating from information geometry
were surveyed and some new ones introduced. The pullback bundle on a layer allows to

https://github.com/eliot-tron/CurvNetAttack
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describe the behavior of a network with respect to the Fisher information metric, and a
simple description can be obtained when a gauge equation is satisfied. One important
feature of this construction is its ability to fit in a general framework where layers take their
inputs on a manifold.

Future work involves a companion paper describing computational procedures and
examples from real case studies. An study of the properties of the pullback generalized
bundle is also in progress. Finally, the case of networks with non constant rank dNW must
be considered. It is believed that they give rise to singular foliations.
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