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Abstract: Nested linear coding is a widely used technique in wireless communication systems for
improving both security and reliability. Some parameters, such as the relative generalized Hamming
weight and the relative dimension/length profile, can be used to characterize the performance of
nested linear codes. In addition, the rank properties of generator and parity-check matrices can also
precisely characterize their security performance. Despite this, finding optimal nested linear secrecy
codes remains a challenge in the finite-blocklength regime, often requiring brute-force search methods.
This paper investigates the properties of nested linear codes, introduces a new representation of
the relative generalized Hamming weight, and proposes a novel method for finding the best nested
linear secrecy code for the binary erasure wiretap channel by working from the worst nested linear
secrecy code in the dual space. We demonstrate that our algorithm significantly outperforms the
brute-force technique in terms of speed and efficiency.

Keywords: wiretap channel; generalized Hamming weights; dimension/length profile; nested linear
codes; equivocation; optimal secrecy code; two-edge LDPC codes; dual codes

1. Introduction

The wiretap channel introduced by Wyner in [1] and later generalized by Csiszár
and Körner in [2] is the most fundamental channel model that has been used to study
broadcast security problems in the context of information theory. One version of this
channel model is depicted in Figure 1, where the confidential communication occurring
over a discrete memoryless main channel is observed by an eavesdropper who has access
to a noisy version of the channel input. Later, in [3], Ozarow and Wyner introduced the
wiretap channel type II, wherein the eavesdropper is able to select the positions of revealed
bits, and they provided a secure coding technique based on coset codes. These channel
models have been studied by many authors from the perspectives of security, reliability,
and coding construction [4–6].
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Bob’s Decoder

Eve’s Decoder

𝑋𝑛 𝑌𝑛

𝑍𝑛

𝑀𝑘 ෡𝑀𝑘

෡𝑀𝑘

Message Reliable

Secure

Figure 1. The wiretap channel model.

In recent years, coset coding has emerged as an important coding technique in the
context of the finite-blocklength regime [7–9]. In this regime, the design of the code plays a
critical role in achieving high communication rates while balancing the tradeoff between
complexity and performance. The effectiveness of coset coding in the finite-blocklength
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regime has been demonstrated in a wide range of applications, including wiretap channels,
broadcast channels, and multiple-access channels [10–14].

The nested linear code construction was first presented in [15] to generate a diluted
version of the original coset code. Later, in [16,17], the authors proposed a secure error-
correcting code based on the nested code construction for the wiretap channel type II,
and in [18] the authors considered nested codes based on low-density parity-check (LDPC)
codes for the original wiretap channel when both the eavesdropper and main channels are
binary erasure channels (BECs).

Generalized Hamming weights (GHW) and the dimension/length profile (DLP),
which were first introduced in [19,20], respectively, were two of the first parameters of linear
block codes that could be used to characterize the performance of the original linear coset
codes, especially over a wiretap channel of type II. Numerous papers have investigated
these parameters on various linear codes [21–26]. Later, the authors of [16,27] extended
these two parameters to nested coding constructions and defined two new formats for them:
the relative generalized Hamming weight (RGHW) and relative dimension/length profile
(RDLP), which can be used to characterize the security and error-correction performance
of nested linear codes. Further studies have shown that with the rank properties of
generator and parity-check matrices, the performance of linear codes can also be precisely
characterized [28–30]. In [29], we utilized rank properties to create and develop a tool for
analyzing finite-blocklength wiretap codes based on coset coding over erasure channels,
known as an equivocation matrix.

Designing the most secure nested linear codes, referred to as nested linear secrecy
codes, to achieve optimal performance in the-finite blocklength regime is still a challenging
task, and there is currently no single solution for creating the best codes in this scenario.
Identifying these optimal codes would facilitate a comparison of the tradeoffs between
complexity and performance for different codes, providing a benchmark for the optimality
of other wiretap code designs.

1.1. Our Contributions

This paper explores the characteristics of nested linear codes in a wiretap channel
model where both the main and eavesdropper channels are BECs. A novel approach is
proposed to find the optimal nested linear secrecy codes by using a dual relationship
between nested linear codes and their dual codes. Essentially, we demonstrate that instead
of searching for the best code directly, it can be found by starting with the worst nested
linear secrecy code from the dual space, which is easy to identify. The results demonstrate
an efficient and fast technique for finding optimal nested linear secrecy codes.

The main contributions of this work can be summarized as follows:

1. New representation of RGHW: We introduce a new representation of the relative
generalized Hamming weight (RGHW) by analyzing the rank properties of parity-
check matrices. This innovative approach enables us to accurately predict the security
performance of nested linear codes based on rank properties.

2. Equivalence condition evaluation: A comprehensive evaluation of the equivalence
codes for nested linear codes is conducted, along with an exploration of its associated
properties.

3. Exploration of equivocation curves: We explore and evaluate the equivocation curves
of nested linear codes. Notably, we discover that these curves can exhibit both convex
and concave characteristics simultaneously, a novel observation in the field. This
discovery presents an exciting opportunity to concentrate on codes that effectively
balance both secrecy and reliability constraints.

4. Efficient algorithm for best code identification: The main contribution of this paper
lies in the development of an algorithm that efficiently identifies the best nested linear
secrecy codes. This algorithm surpasses conventional methods in terms of speed and
effectiveness.
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These contributions not only enrich our understanding of nested linear codes but also
enhance their design and deployment for diverse applications.

1.2. Organization of the Paper

The rest of the paper is organized as follows. Section 2 consists of preliminary details
about the channel model and nested linear coding structure. Section 3 introduces a new
expression of the generalized Hamming weight that can be used to quantify the perfor-
mance of nested linear codes. We also present some properties of nested linear codes in
this section. Section 4 describes the behavior of equivocation curves of the nested linear
codes. The novel algorithm for finding the best nested linear secrecy codes is explained in
Section 5. Section 6 presents a numerical example. In Section 7, we evaluate the complexity
of our proposed algorithm. Finally, in Section 8, we present our conclusion.

2. Preliminaries
2.1. Notation

In this paper, capital letters represent random variables and matrices, lowercase
letters represent realizations of these random variables, and calligraphic letters indicate
the discrete alphabets associated with the random variables. The distributions p(x) and
p(y|x) are probability mass functions. The length of vectors is denoted by superscripts,
and sets used as subscripts on matrices specify sub-matrices that include only the columns
indexed in the set, i.e., (H1)U is the sub-matrix of H1 made up of only the columns with
indices in the set U. All vectors are row vectors, and all codes are binary. The notation J1, γK
represents a series of integers ranging from 1 to γ, where γ ≥ 1. The set Rn represents
all possible revealed-bit patterns over n transmitted bits by containing all subsets of J1, nK,
whereas the set J\r indicates the set difference operation and is often read as J delete r.

2.2. Channel Models

Consider the wiretap channel model in Figure 1. The channels between Alice and Bob
and Alice and Eve can be any discrete memoryless channels, but for the purposes of this
work, we assume that both channels are BECs, with erasure probabilities of εm and εe for
the main and eavesdropper channels, respectively. In this model, Alice wants to transmit a
secret message Mk, which is assumed to be chosen uniformly at random from the alphabet
M = Fk

2, to Bob through the main channel and wishes to keep it secret as much as possible
from a passive eavesdropper (Eve). To achieve this, Alice converts Mk into an n-bit binary
codeword Xn. The encoding is an invertible one-to-many mapping. This means that no
more than one message can be mapped into the same codeword, but each message can be
encoded to one of several possible codewords. Bob and Eve observe a noisy version of the
transmitted codeword Xn through each of their channels, which are denoted by Yn and Zn,
respectively. Thus, Yn = Zn = {0, 1, ?}n.

There are two main constraints when utilizing coding over this type of wiretap channel.

1. Reliability constraint for Bob: Pr(M 6= M̂) < δr;
2. Security constraint for Eve: I(M; Zn) < δs.

Here, δr and δs are the desired secrecy and reliability levels, respectively, which can be
defined by the system designer. Concisely, the encoding function that maps secret message
Mk to codeword Xn should be such that Bob can decode Mk from Yn reliably, and at the
same time, Eve receives as little information as possible about Mk from Zn. The level of
secrecy achieved by a code can be quantified by either the average equivocation

H(Mk|Zn) = ∑
z∈Z

p(zn)H(Mk|Zn = zn), (1)

or the average leakage
I(Mk; Zn) = H(Mk)−H(Mk|Zn). (2)
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Both of these information-theoretic functions are used to evaluate the performance of a
wiretap code in terms of its secrecy. As a result, in this scenario, it is preferable to minimize
the average leakage I(Mk; Zn) or maximize the average equivocation H(Mk|Zn), while
also enhancing Bob’s error-correction capabilities, which can be achieved by reducing
H(Mk|Yn).

2.3. Nested Linear Codes

The fundamental concept behind the nested linear coding approach is to partition the
main code into sub-codes and employ n− k overhead bits to aid in secrecy or reliability
as desired. The information rate between Alice and Bob is R = k/n. Let the number of
overhead bits assigned to reliability and secrecy be α and l, respectively, and let

n = k + α + l. (3)

Let C0 be an (n, k + l) linear block code and C1 be an (n, l) linear block code. Then, the
nested linear code (C0, C1) is defined, where C0 is a fine code with rate R0 and C1 is a coarse
code with rate R1, where R1 ≤ R0, satisfying

C1 ⊆ C0, (4)

which means that each codeword of C1 is also a codeword of C0. Let the l × n matrix G1
be the generator matrix, and the (n− l)× n matrix H1 be the parity-check matrix for C1.
The generator matrix G0 is defined as follows:

G0 =

[
G′

G1

]
, (5)

where G′ is comprised of k linearly independent rows from Fn
2 that are not in C1 and

make G0 a full-rank matrix. The parity-check matrix H1 also consists of two sub-matrices
such that

H1 =

[
H′

H0

]
, (6)

where H0 is α× n and forms a basis for the dual space of the rowspace of G0. The dimension
of the sub-matrix H′ is k× n. It is important to note that according to the algebraic properties
of nested linear codes, G0(H0)

T = 0 and G1(H1)
T = 0.

The encoding process begins by selecting an auxiliary message m′ uniformly at random
from Fl

2 and then computing

xn =
[
m m′

]
G0 =

[
m m′

][G′

G1

]
(7)

= mG′ ⊕m′G1, (8)

where m is a k-bit secret message. Now, the fine code C0 is randomly partitioned into 2k

disjoint subsets (cosets). The term mG′ selects the coset, and the term m′G1 selects the
specific codeword from the corresponding coset at random.

Bob uses the following decoding approach to retrieve Mk from Yn. First, Bob recovers
as many erased bits as possible using the parity-check matrix H′ and obtains an estimated
version X̂n of Xn [31]. Assuming X̂n = Xn, then Bob’s decoder computes the syndrome S
of X̂n as

s = x̂(H0)
T = mG′(H0)

T ⊕m′G1(H0)
T (9)

= mG′(H0)
T . (10)

It is possible to choose matrices such that G′(H0)
T is the k× k identity; therefore, s = m [32].
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To achieve reliability and/or security, both codes C0 and C1 need to meet specific
requirements. In this case, the fine code is primarily responsible for ensuring reliability,
while the coarse code is utilized for security purposes. The following section will explore
different properties of nested linear codes and examine several parameters that measure
the performance of such codes.

3. Performance Parameters

This section explores practical metrics to measure the performance of nested linear
codes and examines their properties. Consider the (n, n− l) and (n, n− k− l) dual codes
of C1 and C0 and call them C⊥1 and C⊥0 , respectively. C⊥1 uses H1 as the generator matrix
and G1 as the parity-check matrix. Hence, the nested linear code (C⊥1 , C⊥0 ) is the dual code
of (C0, C1). In the dual space, C⊥1 serves as the fine code, and C⊥0 is the coarse code. The
information rate of the nested linear code in both spaces will not change and remains k/n.
However, the secrecy and reliability overhead bits will change in the different spaces. In the
dual space, α and l represent the number of security and reliability bits, respectively [30].

3.1. RGHW and RDLP

As previously stated, RGHW and RDLP are extended versions of the GHW and DLP,
which can be utilized to characterize the security performance of nested linear codes over
the wiretap channel of type II. Let J be a subset of J1, nK. A new representation for the
RGHW of the nested linear codes can be given as follows.

Proposition 1. The τth relative generalized Hamming weight of the nested code (C0, C1) can be
written as

Mτ = min
1≤τ≤R0−R1

{|J| : rank((H1)J)− rank((H0)J) ≥ τ} (11)

= n−max{|r(zn)| : log2N0[r(zn)]− log2N1[r(zn)] ≥ τ}, (12)

where r(zn) is a revealed-bit pattern over the erasure channel and N0[r(zn)] and N1[r(zn)] are the
number of codewords in C0 and C1, respectively, that have zeros for all bit locations in the indexed
set r(zn).

Proof. In [33], we showed that

H(M|Zn = zn) = log2N0[r(zn)]− log2N1[r(zn)], (13)

Since |r(zn)| represents the maximum number of bits that can be revealed while still
maintaining at least τ bits of equivocation, the total number of bits minus the maximum
revealed bits must equal the minimum number of bits that must be leaked to reveal at
least τ bits of information, and the expression (12) is valid. Thus, Equations (11) and (12)
represent two equivalent expressions for the τth relative generalized Hamming weight of
the nested linear code.

3.2. Rank Properties and the Equivocation Matrix

Let r(zn) = {i : zi 6= ?}, where zi is the observation of the ith bit of the codeword x
over the eavesdropper’s BEC and “?” denotes an erased bit. Also, let I = J1, nK. According
to the results of [30,33], we showed that the exact equivocation for the observation zn over
a binary erasure channel (BEC), given the coding scheme presented in Section 2.3, is

H(M|Zn = zn) = k− rank [(G0)r(zn)] + rank [(G1)r(zn)] (14)

= rank [(H1)I\r(zn)]− rank [(H0)I\r(zn)]. (15)

Thus, in terms of code design for security and reliability, a revealed-bit pattern r(zn)
is secure if and only if rank((G0)r(zn)) = rank((G1)r(zn)). Furthermore, for reliability,
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the message information is obtained if and only if rank((G0)r(zn))− rank((G1)r(zn)) = k.
The following definition is from [30].

Definition 1. The (k + 1)× (n + 1) equivocation matrix A for the linear block code C is a matrix
where each entry (ae,µ) counts the number of revealed-bit patterns of size µ that maintain e bits of
equivocation.

There are (n
µ) different patterns that can be used to reveal µ bits of n transmitted

codeword bits over the erasure channel, and the bottom left entry of A is a0,0.

3.3. Equivalence of Nested Linear Codes

Lemma 1. Let (C∗0 , C∗1 ) and (C~0 , C~1 ) be two nested linear codes with generator matrices G∗0 and
G~

0 , respectively. These two nested linear codes are equivalent if there exist two invertible scrambling
matrices F1 and F2 and permutation matrix P, such that

G~
0 =

[
F1 0
0 F2

]
× G∗0 × P, (16)

where F1 and F2 are k× k and l × l full-rank matrices, respectively, and 0 is a zero matrix.

Note that, in general, codes are equivalent if the sets of codewords are the same up to
the permutation of bit order in the codewords.

Proof. We know that the space spanned by the rows of G∗1 is the same as the space spanned
by the rows of F2G∗1 (and similarly for the space spanned by the rows of G′∗ and F1G′∗).
The multiplication by P changes only the order of bits in codewords and the mapping of
specific messages to specific codewords but achieves equivalence.

Lemma 2. If generator matrices G∗0 and G~
0 correspond to respective equivalent nested codes

(C∗0 , C∗1 ) and (C~0 , C~1 ), then the RGHW, RDLP, and equivocation matrices for the two codes are
identical.

Proof. According to Lemma 1, two nested linear codes (C∗0 , C∗1 ) and (C~0 , C~1 ) are equivalent
if G∗0 can be converted into G~

0 using simple linear operations over rows and/or column
pivots. These basic operations produce the same set of codewords from the new generator
matrices up to a consistent bit permutation in the codeword sets. Thus, (11) and (12) are
the same for both codes for all τ, and the equivalence for the RDLP is similarly trivial.
For the equivalence of equivocation matrices, every r(zn) for code (C∗0 , C∗1 ) maps to a unique
revealed-bit pattern for (C~0 , C~1 ) of the same size such that (14) is equivalent.

Previous research, including [16,17], has analyzed the bounds on the RGHW and
RDLP of nested linear codes (C0, C1) to aid in constructing nested linear secrecy codes.
Furthermore, studies such as [29,30] enable comparisons between the performance of
nested linear codes on specific sizes. Even with these results, the challenge of finding
optimal nested linear secrecy codes remains unsolved and requires a brute-force search.

4. Concavity and Convexity of Equivocation Curves

The equivocation quantifies Bob and Eves’ uncertainty about the secret message Mk

after observing Yn and Zn, respectively. We may want to maximize the equivocation for
security constraints or minimize it for reliability limitations, depending on the system
requirements. In the noiseless main channel model where reliability constraints are not
considered and all overhead bits are allocated for security purposes, the equivocation of
the nested linear code (C0, C1) is always a concave function of ε [32]. However, when both
reliability and security are important, such as in the case of a noisy main channel, our
simulation results indicate a different behavior compared to the noiseless main channel case.
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Lemma 3. Consider the nested linear code (C0, C1) of rate R0 and R1, respectively. Assume that
this pair of linear codes is used to transmit a k-bit message m over the binary erasure wiretap channel.
The equivocation curve that can be achieved by nested coding construction can be concave, convex,
or both as a function of ε.

The proof follows directly from Theorem 2.7.4 [34] and is included here for completeness.

Proof. H(M) is a concave function of p(m), and

I(Mk; Zn) = I(Zn; Mk) = H(Zn)−H(Zn|Mk) (17)

= H(Zn)−∑
m

p(m)H(Zn|Mk = m). (18)

If p(z|m) is fixed, then p(z) is a linear function of p(m); hence, H(Zn) is also a concave
function of p(m), and the second term of (17) is a linear function of p(m). The difference is
then a concave function of p(m). Moreover, the conditional entropy H(Zn|Mk) of p(z|m)
for a fixed p(m) will be concave, and the difference of two concave functions can either be
concave, convex, or both.

Simulation results show that there are indeed three distinct equivocation curve behav-
iors for nested linear codes (C0, C1), as follows:

• Convex equivocation curve: These codes are appropriate for situations when δr is
small; thus, Alice may purposefully use a nested linear code of this nature to improve
Bob’s ability to correct errors.

• Concave equivocation curve: If δs is small, these codes give Alice the ability to keep
data as secure as possible from the eavesdropper.

• Convex/concave equivocation curve: The more desirable and interesting codes are
those that provide both reliability for Bob and confusion for Eve, in scenarios where
Bob and Eve experience erasure with different rates. These codes can effectively
balance both constraints as required, resulting in a convex/concave equivocation
curve.

Simulations of (1) were completed using (14) and considering all possible erasure patterns
r(zn). Curves were plotted as a function of the erasure probability ε, noting that p(zn) =
εn−|r(zn)|(1− ε)|r(z

n)|. This examination of the behavior of equivocation curves enhanced
our comprehension of nested linear codes, unveiling the dual relationship between error
correction capabilities and security attributes. Furthermore, our simulations demonstrated
that the number of overhead bits allocated to security or reliability can have a significant
impact on the shape and number of the equivocation curves. In particular, increasing the
number of overhead bits allocated to security (l) can lead to an increase in the number
of concave curves. This observation is consistent with the fact that adding more security
overhead bits to the code will result in a higher level of confusion for the eavesdropper.
Similarly, increasing the number of overhead bits allocated to reliability (α) can lead to an
increase in the number of convex curves and affect their shape, as more reliability overhead
bits will provide Bob with better error correction capabilities. Overall, our results highlight
the importance of carefully balancing the allocation of overhead bits between security and
reliability to achieve the desired level of secrecy and reliability for the system. Additionally,
we showed that there exist codes that can balance both restrictions effectively (codes with
convex/concave equivocation curves).

These types of codes are represented, respectively, with red, green, and blue equivoca-
tion curves in Figure 2 for the n = 5, k = 2, l = 2, and α = 1 case, and in Figure 3 for the
corresponding dual case, where l and α change their responsibilities, which means that the
number of overhead bits allocated to security will be α = 2, and the number of overhead
bits allocated to reliability will be l = 1. This change in the allocation of overhead bits
results in a different set of equivocation curves. The probability of erasure, ε, refers to both
εm and εe to show performance for all users on the same plot.
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Figure 2. Equivocation curves of all nested linear codes versus ε (the nested linear codes designed
for n = 5, k = 2, l = 2, and α = 1). The green pair of codes are good for security purposes, and the
red pair of codes are suitable for reliability.
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Figure 3. Equivocation curves of all nested linear codes when n = 5, k = 2, l = 1, and α = 2 (referring
to the dual nested linear codes).

5. Finding the Best Nested Linear Secrecy Codes

In this section, we propose a coding construction algorithm to generate the best
nested linear secrecy code according to the equivocation by taking advantage of the dual
relationship between nested linear codes. In essence, we show that the difficult search for
the best code can be computed instead by the easy search for the worst nested linear secrecy
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code in the dual space. The concept of the worst and best refers to nested linear codes with
the lowest and highest security level, respectively, among all possible nested linear codes
for a particular size. The general algorithm is provided here, and an example is given in
Section 6.

Algorithm 1. This algorithm demonstrates how to construct the best nested linear secrecy codes
(C0, C1) through the construction of the worst nested linear secrecy codes (C⊥1 , C⊥0 ) using the
subsequent steps:

• The first phase:

– Generate the worst secrecy code (C⊥0 (n, α)) with generator matrix H0. The general
schematic of the worst H0 can be found in (30) in Section 6.

– Generate H′ by searching k random vectors from Fn
2 with the following considerations:

* For most patterns of revealed bits r(zn), the rank of (H1)r(zn) should be as large as
possible compared to the rank of (H0)r(zn).

* H1 should remain a full-rank matrix.

• The second phase:

– The best generator matrix G1 for security code C1(n, l) is equal to the basis of the dual
space of the rowspace of H1.

– Choose k rows from a basis of the dual space of H0 as G′, with a consideration of the
following:

* For most patterns of r(zn), the rank of (G0)r(zn) should be equal to the rank of
(G1)r(zn).

* G0 remains a full-rank matrix.

Proof. According to our result in [30], it can be deduced that minimizing the equivocation
in the dual space of the nested linear codes leads to the maximization of equivocation in
the original space of the nested linear code.

In particular, we have:

H(M) = rank [(G0)r(zn)] + rank [(G1)r(zn)]︸ ︷︷ ︸
I(Mk ;Zn=r(zn))

+ (19)

rank [(H1)I\r(zn)] + rank [(H0)I\r(zn)]︸ ︷︷ ︸
H(Mk |Zn=r(zn))

, (20)

or, equivalently,

H(M) = rank [(G0)r(zn)] + rank [(G1)r(zn)]︸ ︷︷ ︸
H(Mk |Zn=I\r(zn))

+ (21)

rank [(H1)I\r(zn)] + rank [(H0)I\r(zn)]︸ ︷︷ ︸
I(Mk ;Zn=I\r(zn))

. (22)

Therefore, by constructing the nested linear code that minimizes the equivocation
in the dual space, we can generate the best nested linear secrecy code within the code
space.

This algorithm can be better understood with reference to an example; hence, the
results of this algorithm for a specific size are shown in Figure 4, and the details of this
example are given in the next section.



Entropy 2023, 25, 1456 10 of 15

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4. The best nested linear secrecy code when n = 5, k = 2, l = 2, and α = 1, along with the
worst nested linear code for secrecy in the dual space.

6. Numerical Example

Consider the nested code (C0, C1) with the rate R0 = 4/5 and R1 = 2/5, respectively.
In other words, n = 5, k = 2, l = 2, and α = 1. In this example, the information rate is
equal to R = 2/5. Let

G0 =

[
G′

G1

]
=


0 1 0 1 0
1 0 0 1 1
1 0 0 0 1
0 1 0 1 1

, (23)

and

H1 =

[
H′

H0

]
=

 0 1 0 1 0
1 1 0 0 1
0 0 1 0 0

. (24)

The RGHW and equivocation matrix for this nested code are equal to

Mτ(C0, C1) = {1, 2} (25)

A =

 1 5 9 5 0 0
0 0 1 5 4 0
0 0 0 0 1 1

, (26)

and for the dual nested code are equal to

Mτ(C⊥1 , C⊥0 ) = {2, 4} (27)

A⊥ =

 1 1 0 0 0 0
0 4 5 1 0 0
0 0 5 9 5 1

. (28)

Figure 2 illustrates the equivocation curves of all unique nested linear codes in this
specific size. It should be noted that the number of green equivocation curves is greater
than the number of red equivocation curves because in this example we assume that two
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of the three overhead bits are assigned to security (l = 2) and just one bit is assigned to
reliability (α = 1). If we evaluate nested linear codes in the dual space when l = 1 and
α = 2, we can see that the number of equivocation curves for nested codes that provide an
error-correction capability is greater than the number for nested codes that offer a security
capability (green equivocation curves). Figure 3 shows the equivocation curves for dual
nested linear codes.

We now aim to determine how we can identify the optimal nested linear secrecy code
(C0, C1) at this specific size using the algorithm outlined in Algorithm 1. To start, we need
to build the generator matrix H0 for code C⊥0 with the worst rank properties. We know that
H0 must be a full-rank matrix with the most zero columns, which results in a zero rank in
most collections of columns. Hence, H0 is

H0 = [1 0 0 0 0]. (29)

In general,
H0 = [Vα×α 0

¯α×n−α], (30)

where V and 0
¯

are the identity and zero matrices, respectively. Then, we need to generate
H′ by searching k random vectors from Fn

2 , with the consideration of the specific criteria as
mentioned in Algorithm 1. Let

H1 =

[
H′

H0

]
=

 0 1 1 0 1
1 1 0 1 0
1 0 0 0 0

. (31)

In the second phase, we can generate G1 from the dual space of H1, which is equal to

G1 =

[
0 1 1 1 0
0 0 1 0 1

]
. (32)

Now, we need to select k rows from the basis of the dual space of H0 as follows:
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, (33)

Additionally, we must be sure that G0 is a full-rank matrix and

rank((G0)r(zn)) = rank((G1)r(zn)) (34)

as much as possible for most patterns of r(zn), so

G0 =

[
G′

G1

]
=


0 1 0 0 0
0 0 1 0 0
0 1 1 1 0
0 0 1 0 1

. (35)

The generator matrix G0 outperforms other generator matrices in terms of security
performance. The equivocation matrix of this example is equal to (26), and Figure 4 depicts
the equivocation curves of the worst nested linear secrecy codes in the dual space and the
best nested linear secrecy codes in the code space.

In the following section, we will analyze the computational complexity of our proposed
algorithm for finding the optimal nested linear secrecy code and compare it with the
computational complexity of traditional approaches (the brute-force method).
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7. Computational Complexity Analysis

The number of distinct generator matrices G0 that can be chosen such that the resulting
matrix is full-rank can be calculated as

(n−α)−1

∏
i=0

(2n − 2i), (36)

where n is the number of codeword bits and α is the number of overhead bits allocated
to the reliability. This equation gives the total number of different nested linear codes
(C0, C1) for a given size, which for the example explored in Section 6 is 624,960. However,
not all of these nested linear codes are unique. Based on Lemma 1, some nested linear
codes may be equivalent and have the same performance, while others are unique and
cannot be transformed into each other through equivalent operations on generator matrices.
Therefore, the total number of unique nested linear codes can be lower than the total number
of different nested linear codes. For the example in the previous section, the number
of unique generator matrices G0 is 256, which is much smaller than the total number
of different nested linear codes. However, finding equivalent codes itself is a complex
problem, and it is not guaranteed that we can always identify all equivalent codes.

The traditional approach to finding the best nested linear secrecy codes involves a
brute-force search over all possible generator matrices G0, which are (k + l) × n. This
means that for a given size of nested linear code, all possible generator matrices must
be formed and their performance calculated. Then, all codes must be compared based
on their equivocation to find the best nested linear secrecy code. Using this approach,
2(k+l)n generator matrices must be formed. Lemma 1 can be used to identify equivalent
generators, but all of them must be examined at some level. In contrast, our proposed
approach fixes the matrix H0 in the dual space and only requires a search for different
patterns of the matrix H′, which is k × n, with the consideration of the two restrictions
explained in Algorithm 1. We can throw out a number of H′ candidates due to the fixed
form of H0, e.g., H′ matrices with any number of zero columns and/or H′ matrices that do
not result in a full-rank H1. This significantly reduces the search space and computational
complexity compared to the traditional approach. Fewer than 2kn H′ matrices must be
compared.

In summary, our proposed approach of searching for the worst code instead of the
best code was shown to be easier and more efficient, requiring fewer resources. This is
because the generator matrix of the worst linear code C⊥0 has as many zero columns as
possible, making it easier to construct. This improvement in efficiency compared to the full
brute-force search method could have important implications for the design of reliable and
secure communication systems in practical settings.

On a personal laptop, it is possible to find best codes up to blocklength 12 with little
issue, and we show in Figure 5 the results for the best and worst nested linear secrecy codes
with n = 12, k = 6, l = 3, and α = 3. The best and worst equivocation matrices for this
example are given in Figure 6.

Note that although there is a marked increase in efficiency for identifying best codes
by first finding worst codes in the dual space, Algorithm 1 still requires a brute-force search
in choosing the elements of H′. Thus, for larger code sizes, we still have limitations in
finding best codes. In Figure 7, we present performance curves for one set of candidate
codes when n = 40, k = 20, l = 10, and α = 10. The candidate was found by choosing
random columns to fill out H′ and checking for full rank, as depicted in Algorithm 1. We
leave the identification of large optimal codes as an open problem.
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Figure 5. The best nested linear secrecy code when n = 12, k = 6, l = 3, and α = 3, along with the
worst nested linear secrecy code in the dual space.

Abest =



1 12 64 186 279 202 56 0 0 0 0 0 0
0 0 2 34 207 437 379 117 0 0 0 0 0
0 0 0 0 9 152 402 384 125 0 0 0 0
0 0 0 0 0 1 87 255 253 84 0 0 0
0 0 0 0 0 0 0 36 108 108 36 0 0
0 0 0 0 0 0 0 0 9 27 27 9 0
0 0 0 0 0 0 0 0 0 1 3 3 1


.

Aworst =



1 3 3 1 0 0 0 0 0 0 0 0 0
0 9 27 27 9 0 0 0 0 0 0 0 0
0 0 36 108 108 36 0 0 0 0 0 0 0
0 0 0 84 253 255 87 1 0 0 0 0 0
0 0 0 0 125 384 402 159 9 0 0 0 0
0 0 0 0 0 117 379 437 207 34 2 0 0
0 0 0 0 0 0 56 202 279 186 64 12 1


,

Figure 6. The equivocation matrices Aworst and Abest for the worst and best nested linear secrecy
codes, respectively, when n = 12, k = 6, l = 3, and α = 3.
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Figure 7. The best nested linear secrecy code for the parameters n = 40, k = 20, l = 10, and α = 10,
as well as the worst nested linear secrecy code in the dual space.
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8. Conclusions and Future Study

In this study, we analyzed the properties of nested linear codes in the presence of a
noisy wiretap channel model and derived a new expression for the relative generalized
Hamming weight of these codes. We showed that there are three distinct behaviors in terms
of equivocation in this coding scheme. Moreover, we proposed a code design algorithm
to find the worst nested linear secrecy code, which is constructed by identifying the code
with the lowest security in the dual space. Our results demonstrated that this approach is
more efficient and quicker in producing optimal nested linear secrecy codes compared to
brute-force methods.

Overall, the findings of this paper contribute to the development of reliable and secure
communication systems in practical settings. The ability to efficiently design secure nested
linear codes can enhance the privacy and security of communication channels, which is
of great importance in various applications, such as wireless communication, network
security, and cryptography. Future work could explore the applicability of our proposed
algorithm to larger blocklengths and investigate its performance in other channel models.
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