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Abstract: The mean square synchronization problem of the complex dynamical network (CDN) with
the stochastic link dynamics is investigated. In contrast to previous literature, the CDN considered
in this paper can be viewed as consisting of two subsystems coupled to each other. One subsystem
consists of all nodes, referred to as the nodes subsystem, and the other consists of all links, referred to
as the network topology subsystem, where the weighted values can quantitatively reflect changes in
the network’s topology. Based on the above understanding of CDN, two vector stochastic differential
equations with Brownian motion are used to model the dynamic behaviors of nodes and links,
respectively. The control strategy incorporates not only the controller in the nodes but also the
coupling term in the links, through which the CDN is synchronized in the mean-square sense.
Meanwhile, the dynamic stochastic signal is proposed in this paper, which is regarded as the auxiliary
reference tracking target of links, such that the links can track the reference target asymptotically
when synchronization occurs in nodes. This implies that the eventual topological structure of CDN is
stochastic. Finally, a comparison simulation example confirms the superiority of the control strategy
in this paper.

Keywords: stochastic complex dynamical network; mean square synchronization; dynamics of links;
control strategy

1. Introduction

Complex dynamical networks (CDNs) have received a lot of attention due to their wide
application in transportation networks, telephone networks, internet networks, and many
other real networks [1]. As a typical collective behavior exhibited in CDNs, synchronization
has been seen as one of the most significant dynamical behaviors, and many interesting
results have been reported, such as [2–7]. For example, in [7,8], the effect of the coupling
strength between nodes and links on synchronization is investigated. It is shown that
scintillating coupling enhances the synchronization of nodes in the network as well as how
to determine the critical coupling strength.

From the perspective of graph theory, a typical CDN can be seen as the combination
of nodes and links, where all the links show the layout of nodes and represent the network
topology geometrically. This inspires us to consider all the links wholly as the dynamic
subsystem, which is coupled with the other subsystem consisting of all the nodes. This
suggests that a CDN can be thought of as a composite system with two subsystems, one
is called the nodes subsystem (NS) and the other is the network topology subsystem
(NTS), where the weighted values of links are viewed as the state variables of the NTS.
According to the above view for the CDN, the NTS not only reflects the wholly dynamic
change of network topology quantitatively but also affects the dynamic behaviors of NS
via the coupling relationship between the NS and NTS [9–11]. In particular, the NTS can
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help the NS to achieve synchronization [9,10]. In other words, synchronization in the
above literature is seen as the typical collective behavior of nodes with the link dynamics.
However, the literature mentioned above ignores the effects of stochastic elements on
the CDN.

It is worth noting that in real networks, the stochastic phenomena can be seen every-
where, which is often considered as the disturbance or noise acting on the network [12–19].
For example, in a neuronal network, each neuron is considered as a node, and the synapses
between neurons are considered as links. From a neurophysiological point of view, bio-
logical neurons (nodes) are inherently random because the neural network receives the
same stimulus repeatedly, but their responses are not the same [17]. The synapses (links)
between neurons (nodes) also have randomness, which is caused by multiplicative noise
at the synapses (links) [18,19]. Noise can enhance or weaken the transmission of neuro-
transmitters between neurons, so randomness plays an important role in biological neural
networks. Similarly, in the communication transmission network, the links reflect the
transmission between signals, which is often affected by network bandwidth, conduction
medium, measurement noise, and other factors, which can result in the random loss or
incomplete information. The above examples show that the noise has a crucial effect on
both nodes and links. Therefore, it is better to consider both the effect of stochastic factors
on nodes and links in CDN to reflect the essential properties of real systems as much
as possible.

Therefore, controlling the CDN with stochastic disturbance and noise to achieve
synchronization has become a hot issue in the existing literature [20–28]. For example, the
problem of node synchronization control in dynamical networks with stochastic disturbance
is discussed in [20]. A mean-square asymptotic synchronization criterion for stochastic
complex networks with mixed time lags and multiple random perturbations is developed
in [21]. In [22], the node dynamic equation with stochastic disturbance and time lag is
established in the discrete system. Based on this, a controller is designed to make the CDN
realize synchronization in the mean-square sense. However, the above results ignore the
dynamics of NTS and certainly do not consider the influence of stochastic noise on NTS.

This paper, which was motivated by the above discussion, focuses on the impact of
stochastic noise on the NS and NTS and proposes a control strategy that would allow all
nodes to attain synchronization in the mean-square sense. In other words, two stochastic
differential equations depict the dynamics of NS and NTS, where the NTS plays the
auxiliary role in helping the NS achieve synchronization via the coupling relation between
NS and NTS. It is worth noting that in this paper, the CDN consists of the NS and NTS, and
the weights of the links are the state variable in NTS. However, in practical engineering
applications, it is difficult to obtain accurate measurements of the weighted values of NTS
due to technical constraints and measurement costs. That is to say, the state variable of
the NTS is unavailable in the control strategy. In this case, if only the state variables of
nodes can be available, how to synthesize the control strategy for the CDN with stochastic
disturbance to achieve the above synchronization is worth discussing.

Motivated by the aforementioned discussions, this paper’s innovation focuses on three
primary points:

• (i) Two stochastic differential equations are used to model the dynamics of nodes and
links. In particular, the stochastic differential equation is used to model the dynamics
of the links, which is rare in existing studies.

• (ii) The synchronization control method consists of not only the controller in the nodes
but also the coupling term in the links. The stochastic complex dynamic network is
synchronized in the mean-square sense under the action of these two components.

• (iii) The topology of the final network is stochastic and this result is unique in the
existing literature. This is because when the nodes achieve synchronization, the links
also track the stochastic auxiliary reference tracking target (ARTT). Compared with the
existing literature, the key to the above innovation is that stochastic noise is introduced
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into the dynamic model of the links. This increases the analysis difficulty of CDN
achieving the synchronization.

The remainder of the paper is structured as follows. The model for the dynamic
changes of nodes and links involving the stochastic noise effect, and containing some
required assumptions and lemma, is provided in Section 2. The control objective and the
control strategy are provided in Section 3. To demonstrate the viability of the recommended
control strategy, a numerical simulation is presented in Section 4. Finally, the conclusion is
provided in Section 5.

Notation 1. diag{a1, a2, · · · , an} represents a diagonal matrix with diagonal elements a1, a2, · · · , an;
col{·} indicates the column vector; E{·} denotes the mathematical expectation operator relative
to a given probability measure P; ‖·‖ denotes the norm in Euclidean space of “·”; ⊗ represents
the Kronecker product; Rn represents n-dimensional Euclidean space; Rm×n represents m × n
real matrices; IN denotes the identity matrix of the N order; Ones(N, 1) represents a matrix of
dimension N × 1 with all elements of 1; rand(1) is a function that is used to generate a random
number uniformly distributed in the interval [0, 1). (Ω, F, {Ft}t≥0, P) indicates a complete prob-
ability space with a natural filtration {Ft}t≥0 satisfying the usual conditions (i.e., the filtration
contains all P-null sets and is right-continuous). We denote by LF0

p((−∞, 0]; Rn) the family of all
F0−measurable C((−∞, 0]; Rn)−valued random variables ζ = {ζ(r) : −∞ < r ≤ 0}, such that

sup
−∞<r≤0

E{|ζ(r)|p} < ∞.

2. Model Description and Control Design

Consider a complex dynamical network (CDN) composed of N nodes with stochastic
effects, where the dynamic equation of the ith node is

dzi(t) = {Azi + hi(zi) + αΓ̃Λ(z)ξi + ui}dt + g(zi, ξi, t)dω(t), i = 1, 2, · · · , N (1)

where zi = zi(t) = col{zi1, zi2, · · · , zin} ∈ Rn denotes the state vector of the ith node at
time t; z = [z1

T(z1), z2
T(z2), · · · , zN

T(zN)]
T ∈ RnN ; the real constant matrix A ∈ Rn×n; the

continuous nonlinear vector function hi(zi) ∈ Rn; α > 0 indicates the coupling strength;
the internal coupling matrix is defined as Γ̃=diag{a1, a2, · · · , an} ∈ Rn×n, aj > 0, j =

1, 2, · · · , n; the internal coupling function Λ(z) ∈ Rn×N . ξi = (ξi1, ξi2, · · · , ξiN)
T ∈ RN , i =

1, 2, · · · , N represents the outgoing link vector of the ith node [9], ξij denotes the weight
of the link between the ith node and jth node, ui ∈ Rn is the control input of the ith
node, g(zi, ξi, t) ∈ Rn is a vector function representing the intensity of random noise, ω(t)
is a standard one-dimensional Brown motion defined on a complete probability space.
dω(t) ∈ R1 is interpreted as white noise, which is used to depict a class of “noise” or
“disturbance” in dynamical systems and satisfies E{dω(t)} = 0, E{dω2(t)} = dt. In this
paper, we investigate the system suffering from this “noise”, referred to as an Itô stochastic
system.

Remark 1. Inspired by [25,27], this paper considers Equation (1) as the dynamic equation of the ith

node. In [27], the ith node’s dynamic equation is expressed as dzi(t) = {hi(zi) +
N

α ∑
j=1

ξijΓ̃zj(t) +

ui}dt + g(zi, t)dω(t), i = 1, 2, · · · , N. It is worth noting that the link ξij is taken as ξij > 0
(constant or time-varying values) when the ith node and jth node are linked together; otherwise,
ξij = 0. The link ξij considered in this paper has dynamical behavior; that is, the dynamic change of
link ξij is modeled by a differential equation, similar to the nodes. In addition, in [9], the ith node’s
dynamic equation is dzi(t) = {Azi + hi(zi) + αΓ̃Λ(z)ξi + ui}dt, which is the equation obtained
when the stochastic noise intensity g(zi, ξi, t) = 0 in this paper. Here, although the dynamic
behavior of the links is taken into account, we ignore the effect of stochastic factors on network
dynamics.
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Inspired by [9], we consider the following dynamical equation for the ith outgoing
link vector ξi in the CDN with stochastic efforts

dξi(t) = {A2ξi + Φ2(z, t)zi}dt + ḡ(zi, ξi, t)dω(t) (2)

where A2 ∈ RN×N is the real constant matrix, Φ2(z, t) ∈ RN×n is a function matrix
representing the internal coupling relationship between nodes and links, ḡ(zi, ξi, t) ∈ RN is
the vector function representing random noise intensity.

Remark 2. (i) The connection relationship between the ith node and all other nodes is denoted by ξi,
which is called the outgoing link vector of the ith node. If a matrix Ξ = [ξi j]N×N depicts the entire
network’s topology, then ξi is the ith column of matrix Ξ, which provides a clearer demonstration
of each node zi connected to other nodes. Unlike the dynamic equation of links in [9], which is
dξi(t) = {A2ξi + Φ2(z, t)zi}dt, this paper considers the influence of stochastic factors on the state
of links. (ii) In this paper, we consider two differential equations to model the dynamics of nodes and
links separately. This modeling method is based on the perspective of this paper; that is, CDNs are
coupled by nodes and links, and the dynamic change of either one of them will affect the other. At the
same time, stochastic factors are taken into account, not only in the nodes but also in the links.

Setting h(z) = [h1
T(z1), h2

T(z2), · · · , hN
T(zN)]

T ∈ RnN , u = [u1
T , u2

T , · · · , uN
T ]T ∈

RnN , ξ = ξ(t) = [ξ1
T , ξ2

T , · · · , ξN
T ] ∈ RN2

, g(z, ξ, t) = [g(z1, ξ1, t)T , g(z2, ξ2, t)T , · · · ,
g(zN , ξN , t)T ]T ∈ RnN , ḡ(z, ξ, t) = [ḡ(z1, ξ1, t)T , ḡ(z2, ξ2, t)T , · · · , ḡ(zN , ξN , t)T ]T ∈ RN2

and
using the Kronecker product ⊗, the above equations for the dynamics of the nodes (1) and links (2)
can be integrated as follows:

d(z) = {(IN ⊗ A)z + h(z) + α[IN ⊗Λ(z)]ξ + u}dt + g(z, ξ, t)dω(t) (3)

d(ξ) = {(IN ⊗ A2)ξ + (IN ⊗Φ2(z, t))z}dt + ḡ(z, ξ, t)dω(t) (4)

Remark 3. Stochastic disturbance is a significant factor in causing network instability and poor
performance in real-world applications [13]. Therefore, this modeling method, which considers
stochastic perturbation in dynamic equations of both nodes and links, is closer to the real network.

Consider a given bounded differentiable reference signal s∗(t) in the nodes, which is disturbed
by the same noise intensity as nodes zi(t); that is

d(s∗) = f ∗(s∗, ξ∗, t)dt + g(s∗, ξ∗, t)dω(t) (5)

where s∗ ∈ Rn, f ∗(s∗, ξ∗, t) ∈ Rn can be given arbitrarily, g(s∗, ξ∗, t) ∈ Rn, ξ∗ is the ARTT
of the links. Let z∗ = χ ⊗ s∗(χ = Ones(N, 1)), f ∗(z∗, ξ∗, t) = χ ⊗ f ∗(s∗, ξ∗, t) ∈ RnN ,
g(z∗, ξ∗, t) = χ⊗ g(s∗, ξ∗, t) ∈ RnN ; thus, Equation (5) can be rewritten as

d(z∗) = f ∗(z∗, ξ∗, t)dt + g(z∗, ξ∗, t)dω(t) (6)

Meanwhile, in order to assist the nodes in achieving asymptotic state synchronization, the
ARTT ξ∗ of the links considered in this paper satisfies the following stochastic differential equation:

d(ξ∗) = {(IN ⊗ A2)ξ
∗ + (IN ⊗Φ2(z, t))z∗}dt + ḡ(z∗, ξ∗, t)dω(t) (7)

where ξ∗ ∈ RN2
, ḡ(z∗, ξ∗, t) ∈ RN2

.

Remark 4. Since the layout of the network topology plays a non-negligible role in realizing state
synchronization of the nodes, the topology consisting of all the links considered in this paper is
laid out according to the specified topology signal ξ∗, which can assist the nodes in achieving
synchronization. That is, in the final time, when the nodes achieve state synchronization, the layout
of the links is presented as the topology ξ∗.
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Two assumptions are given for Equations (1) and (2) to develop our main results in
the future:

Assumption 1. For a continuous nonlinear vector function hi(t), there exists a known function
τi(t) ≥ 0, such that ‖hi(t)‖ ≤ τi(t) holds, i = 1, 2, · · ·N. In addition, matrices A and A2, and
noise intensity functions g(z, ξ, t) and ḡ(z, ξ, t) are known, and Λ(z) is known and bounded. It

can be seen that ‖h(t)‖ = [∑N
i=1 ‖hi(t)‖2]

1
2 ≤ [∑N

i=1 ‖τi(t)‖2]
1
2

∆
= τ(t).

Assumption 2. In the dynamic equation of the links, A2 is Hurwitz.
From Assumption 2, we know that for any given positive definite matrix Q̄2, there is one and

only one positive definite matrix P̄2 with suitable dimension, such that the following Lyapunov
equation holds

A2
T P̄2 + P̄2 A2 = −Q̄2 (8)

Similarly, there exists a matrix K, such that A1 = A− K is Hurwitz. Thus, similarly, the
following Lyapunov equation can only be satisfied by one positive definite matrix P̄1 for each given
positive definite matrix Q̄1.

A1
T P̄1 + P̄1 A1 = −Q̄1 (9)

Let P1 = IN ⊗ P̄1, P2 = IN ⊗ P̄2, Q1 = IN ⊗ Q̄1, Q2 = IN ⊗ Q̄2 and P1, P2, Q1, and
Q2 are positive definite matrices. By applying the Kronecker product, the following equations can
be obtained

(IN ⊗ A1)
T P1 + P1(IN ⊗ A1) = −Q1 (10)

(IN ⊗ A2)
T P2 + P2(IN ⊗ A2) = −Q2 (11)

Definition 1 ([6]). Think about the stochastic complex dynamical network described by (1) and
(2) (or (3) and (4)), if lim

t→+∞
E{‖zi(t)− s∗(t)‖2} = 0 holds, i = 1, 2, · · · , N, then the stochastic

complex dynamical network is said to be asymptotically synchronized in the mean square.

Remark 5. Based on the above symbols, it is clear that lim
t→+∞

E{‖zi(t)− s∗(t)‖2} = 0, i =

1, 2, · · · , N implies lim
t→+∞

E{‖z(t)− z∗(t)‖2} = 0.

Lemma 1 ([28,29]). Assuming f is a nonnegative function defined on [0,+∞), and it is Lebesgue-
integrable and uniformly continuous on [0,+∞), then lim

t→+∞
f (t) = 0.

3. Design of Controller

We introduce the synchronization error vector ei(t) = zi(t) − s∗(t), e = e(t) =
[eT

1 , eT
2 , · · · , eT

N ]
T ; we can see that the node synchronization error vector e = e(t) =

z(t)− z∗(t) and the tracking error vector eξ=eξ(t) = ξ(t)− ξ∗(t) for the links.
Control objective. We consider the stochastic complex dynamical network composed

of (1) and (2). For a given reference signal z∗(t), we design the controller u in nodes and
the coupling term Φ2 in links, such that the synchronization error lim

t→+∞
E{‖e(t)‖2} =

lim
t→+∞

E{‖z(t)− z∗(t)‖2} = 0 holds. That is, the stochastic complex dynamic network

achieves asymptotic synchronization in the mean square.
The controller u for nodes in Equation (3) and the coupling term Φ2(z, t) for links in

Equation (4) are constructed as follows to fulfill the aforementioned control objective.

u = −(IN ⊗ K)e− (IN ⊗ A)z∗ − α(IN ⊗Λ(z))ξ∗ + f ∗(z∗, ξ∗, t) + v1 (12)
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v1 =

{
− P1e
‖P1e‖τ(z), e 6= 0

0, e = 0
(13)

Φ2(z, t) = −αP2
−1Λ(z)T P1 (14)

Remark 6. The control strategy for the aforementioned control objective is given by Equations (12)–(14).
In the process of the control strategy designing, the information we use is the node state z, reference
signals z∗ and ξ∗, and some known information in Equations (1) and (2). It should be noted that
we cannot use the state information of the links since it is challenging to precisely obtain the links’
state. For example, in the winding system, the speed of the motors (nodes) can be easily measured by
sensors, while the tension (links) between the motors is hard to measure correctly by the suitable
sensors. u is called the controller of the nodes, which is composed of three parts. The first part
−(IN ⊗ K)e is the error feedback term, where K is the gain matrix, which can be obtained by solving
Equation (9), the second part −(IN ⊗ A)z∗ − α(IN ⊗Λ(z))ξ∗ + f ∗(z∗, ξ∗, t) is the term related
to the reference signals, where z∗, ξ∗ and f ∗ contain information about the stochastic effect. This is
different from the controllers designed in [9] that do not take the stochastic effect into account. The
third part v1 is called the robust term, which aims to overcome the uncertainty h(z) in Equation
(3). In addition, we did not use stochastic information when designing the coupling term Φ2 in
Equation (14).

Therefore, according to Equations (3) and (6), the dynamic equation of the nodes’ synchroniza-
tion error can be derived:

de(t) = dz(t)− dz∗(t)

= [(IN ⊗ A)z + h(z) + α(IN ⊗Λ(z))ξ + u]dt + g(z, ξ, t)dω(t)

− [ f ∗(z∗, ξ∗, t)dt + g(z∗, ξ∗, t)dω(t)]

= [(IN ⊗ (A− K))(z− z∗) + h(z) + α(IN ⊗Λ(z))(ξ − ξ∗) + (IN ⊗ K)z

+ (IN ⊗ (A− K))z∗ + α(IN ⊗Λ(z))ξ∗ + u− f ∗(z∗, ξ∗, t)]dt

+ [g(z, ξ, t)− g(z∗, ξ∗, t)]dω(t)

= [(IN ⊗ A1)e + h(z) + α(IN ⊗Λ(z))eξ + (IN ⊗ K)z + (IN ⊗ A1)z∗

+ α(IN ⊗Λ(z))ξ∗ + u− f ∗(z∗, ξ∗, t)]dt + [g(z, ξ, t)− g(z∗, ξ∗, t)]dω(t)

= {(IN ⊗ A1)e + α(IN ⊗Λ(z))eξ + h(z) + v1}dt + [g(z, ξ, t)− g(z∗, ξ∗, t)]dω(t)

= f1dt + g1dω(t) (15)

Let f1 = (IN ⊗ A1)e+ α(IN ⊗Λ(z))eξ + h(z)+ v1 and g1=g(z, ξ, t)− g(z∗, ξ∗, t). Mean-
while, the dynamic equations of the tracking error of the links according to Equations (4) and (7) are
derived as follows:

deξ(t) = dξ(t)− dξ∗(t)

= [(IN ⊗ A2)ξ + (IN ⊗Φ2(z, t))z]dt + ḡ(z, ξ, t)dω(t)

− [{(IN ⊗ A2)ξ
∗ + (IN ⊗Φ2(z, t))z∗}dt + ḡ(z∗, ξ∗, t)dω(t)]

= [(IN ⊗ A2)(ξ − ξ∗) + (IN ⊗Φ2(z, t))(z− z∗)

+ (IN ⊗ A2)ξ
∗ + (IN ⊗Φ2(z, t))z∗ − {(IN ⊗ A2)ξ

∗

+ (IN ⊗Φ2(z, t))z∗}]dt + [ḡ(z, ξ, t)− ḡ(z∗, ξ∗, t)]dω(t)

= {(IN ⊗ A2)eξ + (IN ⊗Φ2(z, t))e}dt + [ḡ(z, ξ, t)− ḡ(z∗, ξ∗, t)]dω(t)

= f2dt + g2dω(t) (16)

Let f2 = (IN ⊗ A2)eξ + (IN ⊗Φ2(z, t))e and g2 = ḡ(z, ξ, t)− ḡ(z∗, ξ∗, t).
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Assumption 3 ([5,30]). The noise intensity functions g and ḡ satisfy the Lipschitz condition; that
is, there are constants δ1 > 0, δ̄1 > 0, δ2 > 0, δ̄2 > 0, such that the following inequalities are
satisfied:

trace[(g(z, ξ, t)− g(z∗, ξ∗, t))T(g(z, ξ, t)− g(z∗, ξ∗, t))]

≤ δ1‖z− z∗‖2 + δ̄1‖ξ − ξ∗‖2 = δ1‖e‖2 + δ̄1
∥∥eξ

∥∥2 (17)

and

trace[(ḡ(z, ξ, t)− ḡ(z∗, ξ∗, t))T(ḡ(z, ξ, t)− ḡ(z∗, ξ∗, t))]

≤ δ2‖z− z∗‖2 + δ̄2‖ξ − ξ∗‖2 = δ2‖e‖2 + δ̄2
∥∥eξ

∥∥2 (18)

Theorem 1. Consider the CDN with stochastic perturbations consisting of (1) and (2) (or (3) and
(4)), and assume that Assumptions 1–3 and λmin(Q1) > δ1λmax(P1) + δ2λmax(P2), λmin(Q2) >
δ̄1λmax(P1) + δ̄2λmax(P2) are satisfied, then by applying the control strategy to the CDN, the syn-
chronization error lim

t→+∞
E{‖z(t)− z∗(t)‖2} = 0 holds; that is to say, the CDN is asymptotically

synchronized in the mean square.

Proof of Theorem 1. Consider the positive definite function V(t, e, eξ) = V1(t, e)+V2(t, eξ) =

eT(t)P1e(t)+ eT
ξ (t)P2eξ(t), where V1 = V1(t, e) = e(t)T P1e(t) and V2 = V2(t, eξ) = eT

ξ (t)P2eξ(t).
Let β = λmin(Q1) − δ1λmax(P1) − δ2λmax(P2)and γ = λmin(Q2) − δ̄1λmax(P1) − δ̄2λmax(P2).
The derivatives of V(t, e, eξ) is d(V) = d(V1) + d(V2). Using the Itô differential formula

d(V1)=LV1(t, e)dt + VT
1e
(t, e)g1dω(t) (19)

d(V2)=LV2(t, eξ)dt + VT
2eξ
(t, eξ)g2dω(t) (20)

where

LV1 =
∂V1

∂t
+ (

∂V1

∂e
)T f1 +

1
2

trace[g1
TV1eeg1]

= 2(eT P1) f1 + trace[g1
T P1g1]

= 2eT P1[(IN ⊗ A1)e + α(IN ⊗Λ(z))eξ + h(z) + v1] + trace[g1
T P1g1] (21)

and

LV2 =
∂V2

∂t
+ (

∂V2

∂eξ
)T f2 +

1
2

trace[g2
TV2eξ eξ

g2]

= 2(eξ
T P2) f2 + trace[ḡT P2 ḡ]

= 2(eξ
T P2)[(IN ⊗ A2)eξ + (IN ⊗Φ2(z, t))e] + trace[g2

T P2g2] (22)
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According to Assumption 3, we can deduce

LV = LV1 + LV2

= 2eT P1[(IN ⊗ A1)e + α(IN ⊗Λ(z))eξ + h(z) + v1]

+ 2(eξ
T P2)[(IN ⊗ A2)eξ + (IN ⊗Φ2(z, t))e] + trace[g1

T P1g1 + g2
T P2g2]

= 2eT P1(IN ⊗ A1)e + 2eT P1[α(IN ⊗Λ(z))eξ + h(z) + v1]

+ 2eξ
T P2[(IN ⊗ A2)eξ ] + 2eξ

T P2[(IN ⊗Φ2(z, t))e] + trace[g1
T P1g1 + g2

T P2g2]

= 2eT P1(IN ⊗ A1)e + 2eξ
T P2[(IN ⊗ A2)eξ ]

+ 2eT P1[α(IN ⊗Λ(z))eξ + h(z) + v1] + 2eξ
T P2[(IN ⊗Φ2(z, t))e]

+ trace[g1
T P1g1 + g2

T P2g2]

= eT(P1(IN ⊗ A1) + (IN ⊗ A1)
T P1)e + eξ

T(P2(IN ⊗ A2) + (IN ⊗ A2)
T P2)eξ

+ 2eT P1(h(z) + v1) + trace[g1
T P1g1 + g2

T P2g2]

≤ −eT(Q1)e− eξ
T(Q2)eξ + 2eT P1(h(z) + v̄)

+ λmax(P1)trace[g1
T g1] + λmax(P2)trace[g2

T g2]

≤ −eT(Q1)e− eξ
T(Q2)eξ + λmax(P1)δ1(‖e‖2 +

∥∥eξ

∥∥2
) + λmax(P2)δ2(‖e‖2 +

∥∥eξ

∥∥2
)

≤ −λmin(Q1)‖e‖2 − λmin(Q2)
∥∥eξ

∥∥2
+ λmax(P1)(δ1‖e‖2 + δ̄1

∥∥eξ

∥∥2

+ λmax(P2)(δ2‖e‖2 + δ̄1
∥∥eξ

∥∥2
)

=− (λmin(Q1)− δ1λmax(P1)− δ2λmax(P2))‖e‖2

− (λmin(Q2)− δ̄1λmax(P1)− δ̄2λmax(P2))
∥∥eξ

∥∥2

=− β‖e‖2 − γ
∥∥eξ

∥∥2

=− β‖z(t)− z∗(t)‖2 − γ‖ξ(t)− ξ∗(t)‖2 (23)

where β > 0 and γ > 0, thus E{L(V)} ≤ −βE{‖z(t)− z∗(t)‖2} − γE{‖ξ(t)− ξ∗(t)‖2}.
For any t ≥ 0, by using Equation (23), we have

E{V(t)} − E{V(0)}= E{V1(t)−V1(0)}+ E{V2(t)−V2(0)} =
∫ t

0
E{LV(s)}ds

≤− β
∫ t

0
E{‖z(s)− z∗(s)‖2}ds− γ

∫ t

0
E{‖ξ(s)− ξ∗(s)‖2}ds (24)

This implies that∫ t

0
E{‖z(s)− z∗(s)‖2}ds ≤ 1

β
E{V1(0)} −

1
β

E{V1(t)} ≤
1
β

E{V1(0)} (25)

∫ t

0
E{‖ξ(s)− ξ∗(s)‖2}ds ≤ 1

γ
E{V2(0)} −

1
γ

E{V2(t)} ≤
1
γ

E{V2(0)} (26)

Thus
∫ t

0 E{‖z(s)− z∗(s)‖2}ds < +∞ and
∫ t

0 E{‖ξ(s)− ξ∗(s)‖2}ds < +∞.
Furthermore, obtaining E{‖z(t)− z∗(t)‖2} and E{‖ξ(t)− ξ∗(t)‖2} as uniformly con-

tinuous on [0,+∞) is not difficult. Then, according to Lemma 1, we can obtain
lim

t→+∞
E{‖z(t)− z∗(t)‖2} = 0 and lim

t→+∞
E{‖ξ(t)− ξ∗(t)‖2} = 0, which means that the

CDN with stochastic perturbations is asymptotically synchronized in the mean square.
This completes the proof of Theorem 1.

Remark 7. lim
t→+∞

E{‖z(t)− z∗(t)‖2} = 0 and lim
t→+∞

E{‖ξ(t)− ξ∗(t)‖2} = 0 imply that when

the nodes achieve synchronization, the NT tracks the given reference signal; that is, the NT is laid
out according to the ξ∗(t) and this layout is stochastic. This is novel in the existing literature.
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4. Simulation Example

Considering the CDN composed of the N underactuated surface ship, the kinematics
equation of each ship is expressed as follows [31]:

ṡi =
d1

m1
si +

m2

m1
wivi +

1
m1

τsi (27)

v̇i =
d3

m3
vi +

m1 −m2

m3
siwi +

1
m3

τvi (28)

ẇi =
d2

m2
wi +

m1

m2
sivi (29)

where si, vi, wi denote the speed of surge, yaw, and sway of the ith ship. The control inputs
are the surge force τsi and the yaw moment τvi ; parameters mi, di, i = 1, 2, 3 are positive
constants, which denote the ship’s inertia and damping.

In this paper, we consider the synchronization of the surge speed and the yaw speed,
and we do not require the sway speed (it is sufficient to keep bounded), so we define the

state variable zi =

[
si
vi

]
. Equations (27) and (28) can be written as

żi = Azi + hi(z, t) + ui (30)

where A =

[ −d1
m1

0
0 −d3

m3

]
, hi(z, t) =

[ m2
m1

wivi
m1−m2

m3
siwi

]
, ui =

[
1

m1
0

0 1
m3

][
τu
τr

]
.

Inspired by [9], we consider the given communication protocol
N
∑

j=1
ξ jiΓ̃Λ(z), where

ξ ji represents the communication strength between the jth ship and the ith ship, and its
dynamic equation is determined by Equation (2). In addition, considering the influence of
stochastic factors as in [21], Equation (30) can be modified as follows:

dzi = {Azi + hi(t) + α
N

∑
j=1

ξ jiΓ̃Λ(z) + ui}dt + g(zi, ξi, t)dω(t) (31)

Furthermore, the links’ dynamic equation ξ is selected as Equation (4). The steps for
simulation in Matlab are as follows (n = 2, N = 10):

Step 1 Determine the initial state of the nodes z(0) and the links ξ(0), respectively;
z(0) = [z1(0)T , z2(0)T , · · · , zN(0)T ] ∈ R20, zi(0) = rand(2, 1), i = 1, 2, · · · , N, ξ(0) =
rand(100, 1).

Step 2 Determine the matrix functions A, hi(t), Γ̃, Λ(z), g(zi, ξi, t) and α in Equation (31).
According to the parameters m1 = 0.5160 kg, m2 = 14.4300 kg, m3 = 0.5160 kg, d1 =
12.1800 kg/s, d2 = 207.8720 kg/s, d3 = 0.4512 kg/s, wi = (1.5 + 0.1 sin(it))m/s of the
ship in [31], A, hi(t) can be determined. In addition, we select Γ̃ = diag{a1, a2}, Λ(z) =

col{cos(zi1), cos(zi2)}, g = 0.1col{ei1, ei2}, τ(z) =

√
N
∑

i=1
[(m2

m1
wivi)

2
+ (m1−m2

m3
siwi)

2
]. In

order to avoid chance in parameter selection, ai and α are chosen as a1 = rand(1), a2 =
rand(1), α = rand(1). Let m(zi, t) = Azi(t) + hi(zi) + αΓ̃Λ(z)ξi + ui in Step 4.

Step 3 Determine the matrix functions A2 and ḡ(z, ξ, t) in Equation (4). According to

Assumption 2, A2 is Hurwitz. Thus, let A2 = σB
[

b1 0
0 b2

]
B−1, where B is a randomly

generated invertible matrix of the N order, and bi = −rand(1), σ is an adjustable parameter
and is chosen as σ = 0.5, ḡ = 0.1eξ .

Step 4 Solving Equation (31), by using finite difference methods:
T = 2;
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N = 2000;
dt = T/N;
for i = 1:N
t(i + 1) = t(i) + dt;
dω= sqrt(dt) * randn();
z(i + 1) = z(i) + m(z(i), t(i)) ∗ dt + g(z(i), t(i)) ∗ dω;
end
Step 5 Give the reference signal of the nodes s∗ and choose f ∗(s∗, ξ∗, t) = [1, 1]T . At

the same time, the auxiliary reference tracking target (ARTT) of the links is chosen as
Equation (7).

Step 6 Substitute the above parameters and matrices into the synthesized control strat-
egy (12)–(14), which ensures the stochastic complex dynamical network is asymptotically
synchronized in the mean square sense.

In order to highlight the benefits of the control strategy designed in this paper, the node
synchronization error is compared with that when using the controller in [9]. In addition,

the norm ‖e(t)‖ =
√

N
∑

i=1
‖ei(t)‖2 of errors is adopted in the comparison simulation.

From the simulation results in Figures 1–5, the following observations can be drawn.
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(a) (b)

Figure 1. (a) Synchronization error e(t) of surge and yaw speeds (synchronization error of the
nodes) of ships without control strategy; (b) synchronization error e(t) of surge and yaw speeds
(synchronization error of the nodes) of ships with a control strategy.

(i) From Figures 1 and 2, it can be seen that without the control strategy, neither the
synchronization error of nodes nor the tracking error of links tends to zero, while both
errors tend to zero after the control strategy is applied, which means that the nodes achieve
synchronization and the links track the given reference signals with the control strategy
proposed in this paper.

(ii) From Figures 3 and 4, it is evident that the reference signals of the nodes and
links are bounded. At the same time, the state curves of nodes and links with a control
strategy tend to be the same as their reference signals. In particular, when the nodes achieve
synchronization, the network topology also tracks the given stochastic reference signal
ξ∗(t). That is, the final network layout is stochastic, which is rare in the existing results.

(iii) Figure 5 uses the synchronization error norm to compare the effectiveness of
the controller in [9] and the controller proposed in this paper, where the controller in [9]
does not consider stochastic factors, while the controller proposed in this paper contains
stochastic information. It can be observed that the synchronization error norm tends to
approach zero when using the controller proposed in this paper, while the controller in [9]
does not. This indicates that the controller containing stochastic information designed in
this paper is more suitable to realize node synchronization than the controller in [9].
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Figure 2. (a) Tracking error eξ(t) of communication strength (tracking error of the links) between
ships without control strategy; (b) tracking error eξ(t) of communication strength (tracking error of
the links) between ships with a control strategy.
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Figure 3. (a) Reference signals z∗(t) of surge and yaw speeds (reference signals of nodes) of ships;
(b) the state z(t) of surge and yaw speeds (state of nodes) of ships with a control strategy.

Figure 4. (a) The reference signals ξ∗(t) of the communication strength (reference signals of links)
between ships; (b) the state ξ(t) of the communication strength (state of links) between ships with a
control strategy.
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Figure 5. The synchronization error norm ‖e(t)‖ of surge and yaw speeds (synchronization error
norm of the nodes) of ships with a control strategy in Gao2021 [9] and this paper.

5. Conclusions

In this paper, two vector differential equations are used for modeling the dynamics
of nodes and links, accounting for the influence of stochastic factors. Unlike existing
studies, we also consider the influence of stochastic factors in the links. The control strategy
designed in this paper includes nodes controllers and coupling term in the links, and the
combined effects of the two parts make the nodes realize synchronization. In addition,
when the nodes reach synchronization, the links are laid out according to the specified
reference signals, and this layout is stochastic. Inspired by the synchronization of nodes, it is
interesting to consider the synchronization of links in CDNs with stochastic perturbations.
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