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Abstract: We suggest a method to improve quantum correlations in cavity magnomechanics, through
the use of a coherent feedback loop and magnon squeezing. The entanglement of three bipartition
subsystems : photon-phonon, photon-magnon, and phonon-magnon, is significantly improved by
the coherent feedback-control method that has been proposed. In addition, we investigate Einstein-
Podolsky-Rosen steering under thermal effects in each of the subsystems. We also evaluate the
scheme’s performance and sensitivity to magnon squeezing. Furthermore, we study the comparison
between entanglement and Gaussian quantum discord in both steady and dynamical states.
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1. Introduction

Entanglement and Einstein–Podolsky–Rosen (EPR) steering are two quantum re-
sources in the field of quantum information processing and communication. Quantum
entanglement plays a crucial role in various quantum information processing tasks, such
as quantum teleportation [1], superdense coding [2], telecloning [3] and quantum cryp-
tography [4]. Many schemes have been proposed over the past decades for processing
quantum information such as spins [5,6], ions [7–10], atoms [11–15], photons [16–22],
and phonons [23,24]. Besides, quantum steering is a concept closely related to entanglement
and was introduced by Schrödinger in the context of the EPR parado [25,26] and it can be
asymmetric (one-way), and symmetric (two-way) [27]. Quantum steering is a form of quan-
tum correlation that lies between the concepts of entanglement and Bell nonlocality and
stronger than entanglement [28] but weaker than the violation of Bell’s inequality [29] and
can be observed in various quantum systems, including optomechanical systems [30,31]. It
has applications in various areas such as quantum key distribution [32,33], where it can be
used to verify the security of the communication channel.

In recent years, magnons, which are quanta of collective spin excitations in materials
like yttrium iron garnet (Y3Fe5O12, YIG) [34–37], have gained significant attention in recent
years due to their desirable properties such as high spin density, low damping rate, and tun-
ability. The field of cavity magnomechanics has emerged as a robust platform for studying
magnons, where a YIG sphere or similar ferrimagnetic crystal is coupled with a microwave
cavity [38,39]. In cavity magnetomechanics, a magnetostrictive force mediates the interac-
tion between a ferromagnet’s (or ferrimagnet’s) vibratory deformation mode and a magnon
mode (spin wave). Additionally, it interacts magnetically with a microwave cavity mode
to communicate. The magnetostrictive interaction for huge ferromagnetic materials can
be compared to radiation pressure as a dispersive interaction. In this case, the mechanical
mode’s frequency is substantially lower than the magnon’s frequency [40,41].
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In this paper, we consider coherent feedback technique [42–44] to enhance the entan-
glement and steerability in a cavity magnomechanics consisting of a cavity containing
YIG sphere with the magnon self-Kerr nonlinearity as illustrated in Figure 1. The use of
a feedback model in the cavity magnomechanical system with magnon squeezing allows
to actively control and optimize the system’s behavior for specific applications. The non-
linearity in the system plays a central role in enabling the coupling between magnons
and phonons, making it possible to manipulate and enhance squeezing effects and has
been extensively studied in the field of quantum optics and quantum information sci-
ence [45–47]. As a result, feedback models are valuable tools in the study of quantum
effects and quantum technologies, where precise control of quantum states is essential
for various applications. The YIG sphere, with its magnon self-Kerr nonlinearity, implies
that the nonlinearity arises from the interaction between magnons within the YIG material.
We find a significant enhancement of quantum correlations via magnon squeezing which
is generated by using the magnon self-Kerr nonlinearity [48,49]. The magnon self-Kerr
nonlinearity [50–54] can be achieved by coupling the magnon mode to a superconducting
qubit [55]. In order to quantify the quantum entanglement of three bipartitions subsystems,
we take into account the logarithmic negativity [56,57]. The steerability of the subsystem
A by the first subsystem B is used to quantify the steerability between two modes. In the
presence of the magnon self-Kerr nonlinearity, we explore the strengthening of nonclassical
correlations via coherent feedback method. By employing the coherent feedback technique
and evaluating the Gaussian quantum discord, we can investigate how the nonclassical
correlations are enhanced and their robustness against thermal effects when β = π. This
analysis allows us to explore the role of the feedback technique and the impact of magnon
self-Kerr nonlinearity on the system’s quantum correlations, both in steady and dynamical
states [58].

Figure 1. Schematic diagram of a single-mode cavity with a feedback loop and a YIG sphere with
magnon self-Kerr nonlinearity. In order to improve the magnomechanical coupling, the magnon
mode is directly driven by a microwave source, which is how the magnons are represented by the
collective motion of numerous spins in a macroscopic ferrimagnet. The cavity is also driven by an
electromagnetic field through an asymmetric beam splitter (BS) with amplitude ψE . We denote the
transmission and reflection coefficients by ψ and τ respectively, and the phase shift generated by
the reflectivity of the output field on the mirrors by β [44,59]. The photons and magnons of the
cavity are coupled by dipole magnetic interaction, and the magnons and phonons are coupled by
magnetostrictive interaction. A microwave field (not shown) is implemented to improve magnon-
phonon coupling. The magnetic field of the cavity mode (along the x-axis), the driving magnetic field
(in the y-direction), and the bias magnetic field (in the z-direction) are all common perpendiculars at
the sphere YIG. Through an asymmetric beam splitter (BS), a laser light field entering the cavity is
split asymmetrically. The output field is completely reflected on the M mirror, and the beam splitter
sends some of the output field into the cavity.



Entropy 2023, 25, 1462 3 of 13

The paper is organized as follows. In Section 2, we give the explicit expression of the
Hamiltonian and the corresponding nonlinear quantum Langevin equations of the system.
In Section 3, we provide the linearized quantum Langevin equations for the system. We
present a method in Section 4 to quantify entanglement for two-mode continuous-variable
(CV) systems, Gaussian quantum steering and Gaussian quantum discord. The results and
discussions are given in Section 5. Concluding remarks are given in Section 6.

2. Model

We consider a cavity magnomechanics driven by a single coherent laser source and
a microwave cavity with coherent feedback as depicted in Figure 1, where a YIG sphere
with 250 µm diameter (Ref. [40]) is placed inside the cavity and is used to couple magnons
(collective excitations of spins in a magnetic material) with cavity photons. The coupling
between magnons and cavity photons in this system occurs through the magnetic dipole
interaction. The magnetostrictive interaction mediates the coupling between the magnons
and cavity phonons. This coupling leads to the magnon-induced deformation of the YIG
sphere’s geometric structure and the formation of vibrational modes, as well as the reverse
effect where the vibrational modes of the sphere influence the magnons and cavity photons,
and vice versa [60]. It’s worth noting that the influence of radiation pressure is considered
to be insignificant in this system due to the small size of the YIG sphere compared to the
microwave wavelength. In Figure 1, an asymmetric beam splitter is used to divide an
input laser beam with frequency ω0 and amplitude E into two parts. The beam splitter has
reflection and transmission coefficients denoted as τ and ψ, respectively. These coefficients
are real and satisfy the relation ψ2 + τ2 = 1, indicating that no energy is absorbed within
the beam splitter itself. Based on the beam splitter properties, the transmitted portion of
the input laser beam has an amplitude of ψE , while the reflected portion has an amplitude
of −τE . The transmitted part of the input laser beam, with an amplitude of ψE , is used
to pump a cavity. A cavity typically consists of two mirrors facing each other, forming
an optical resonator. The cavity’s output field represents the light that escapes the cavity
through one of the mirrors. In this setup, a portion of the cavity’s output field is sent back
into the cavity using a totally reflecting mirror, denoted as M, and the asymmetric beam
splitter. The totally reflecting mirror M reflects all incident light back with an amplitude
equal to its incident amplitude. The beam splitter, being asymmetric, will transmit a portion
of the light incident upon it and reflect the remaining part. By sending a portion of the
cavity’s output field back into the cavity, the setup can create an optical feedback loop,
allowing for additional interactions and manipulations of the laser beam within the cavity,
as depicted in Figure 1.

The Hamiltonian of the system has the form (with h̄ = 1)

H = ωaa†a + ωbb†b +
ωm

2
(q2 + p2) + ξ(b†b)2 + gbb†bq + ga(a + a†)(b + b†)

+ iΩ(b†e−iω0t − beiω0t) + ψE(a†e−iω0t + aeiω0t). (1)

Here we have represented the annihilation (creation) operators of the cavity and magnon
modes by a (a†) and b (b†) ([O, O†] = 1, O= a, b) whereas q and p ([q, p] = i) stands for
the mechanical mode’s dimensionless position and momentum quadratures with ωa, ωb,
and ωm are the resonance frequencies for the cavity, magnon, and mechanical modes,
respectively.

Magnon squeezing refers to the phenomenon in which the quantum fluctuations of
magnons, which are collective excitations of spins in a magnetic material, are reduced
below the standard quantum limit. The self-Kerr term ξ(b†b)2, plays a crucial role in
producing magnon squeezing. The coefficient ξ represents the self-Kerr coefficient, which
determines the strength of the self-interaction of magnons. This nonlinearity leads to an
interaction between different magnon modes, which can generate squeezing. The self-Kerr
term ξ(b†b)2 can induce squeezing by modifying the quantum state of the magnons. In such
systems magnon frequency mainly depends upon both the gyromagnetic ratio κ as well as
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the external bias magnetic field H i.e., ωb = κH. Moreover, we can significantly improve
the magnomechanical interaction by directly driving the YIG sphere with a microwave
source [50,61]). In the strong coupling regime, the decay rates of the cavity and magnon
modes denoted as γa and γb are significantly greater than the coupling rate ga between
the magnon and microwave, ga > γa, γb. In the rotating-wave approximation (RWA) of
the system at the drive frequency (ω0), we have simplified ga(a + a†)(b + b†)→ ga(ab† +
a†b) (valid when ωa, ωb � ga, γa, γb, which is easily satisfied [40]). The parameter Ω =√

5
4 κ
√

NB0 denotes the Rabi frequency as described in [62], where κ/2π = 28 GHz/T and
the total number of spins N = ρV where V is the sphere’s volume and ρ = 4.22× 1027 m−3

is the spin density of the YIG. With the approximation of low-lying excitations, 〈b†b〉 � 2Ns,
where s = 5

2 denote the spin number of the ground state Fe3+ ion in YIG. In that case,
the quantum Langevin equations (QLEs) can be used to describe the system’s entire
dynamics in the presence of coherent feedback and noise as

ȧ = −(i∆ f b + γ f b)a− igab− iψE + (2γa)
1
2 ain

f b,

ḃ = −(i∆b + γb)b− igaa− igbbq− 2iξb†bb + Ω +
√

2γbbin,

q̇ = ωm p,

ṗ = −ωmq− γm p− gbb†b + φ, (2)

where ∆b = ωb −ω0 + ξ, γm is the mechanical damping rate, γ f b = γa(1 − 2τ cos β)
is the modified cavity decay rate and ∆ f b = ∆a − 2γaτ sin β is the effective detuning
with ∆a = ωa − ω0. The operator ain

f b describes the effective input noise operator in the
presence of coherent feedback and corresponding description is based on input-output
theory [63]. Specifically it can be written as ain

f b = τeiβaout + ψain, where ain is the in-
put noise operator associated with microwave mode with only non-zero correlations
〈ain†(t)ain(t′)〉 = na(ωa)δ(t− t′) and 〈ain(t)ain†(t′)〉 = (na(ωa) + 1)δ(t− t′). The corre-
sponding correlation functions for the effective input noise operator ain

f b for the microwave
mode can be written as

〈ain
f b(t) ain†

f b (t
′)〉 = ψ2|1− τeiβ|2[na(ωa)+1] δ(t−t′),

〈ain†
f b (t) ain

f b(t
′)〉 = ψ2|1− τeiβ|2na(ωa) δ(t−t′). (3)

Moreover, bin and φ represent the noise sources associated with the magnon and mechanical
modes, respectively. These noise operators have zero mean and are characterized by specific
correlation functions with the following correlation functions [64]

〈bin(t) bin†(t′)〉 = [nb(ωb) + 1] δ(t−t′), (4)

〈bin†(t) bin(t′)〉 = nb(ωb) δ(t−t′), (5)

〈φ(t)φ(t′) + φ(t′)φ(t)〉/2 ' γb[2nm(ωm)+1]δ(t−t′). (6)

The mechanical quality factorQ = ωm/γm � 1 is large for a Markovian approximation [65],

where nj(ωj) =
[
exp

( h̄ωj
kBT
)
−1
]−1

(j = a, b, m) are the equilibrium mean thermal photon,
magnon, and phonon number, respectively.

3. Linearization of Quantum Langevin Equations

The Heisenberg–Langevin in Equation (2) are non-linear in nature and generally
cannot be solved analytically in most cases. One common approach to solve analytically is
to use a linearization scheme, which involves re-writing the mode operators as a sum of the
steady state average and the quantum fluctuation operator as O = 〈O〉+ δO (O= a, b, q, p).
This allows us to treat the system perturbatively by neglecting second-order fluctuation
terms. For a strongly driven magnon mode (|〈b〉| � 1) and a cavity field with large
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amplitudes |〈a〉| � 1, the steady-state solutions can be obtained by solving the resulting
equations as

〈b〉 =
Ω− iga〈a〉
i∆̃b + γb

, (7)

〈a〉 = − iga〈b〉+ iψE
i∆ f b + γ f b

(8)

and for |∆̃b|, |∆ f b| � γ f b, γb, one gets

〈b〉 '
iΩ∆ f b − iψE
g2

a − ∆̃b∆ f b
, (9)

where ∆̃b = ∆b + gb〈q〉 + 2ξ|〈b〉|2 is the effective magnon-drive detuning including
the frequency shift due to the magnomechanical interaction with ξ ≡ −2iξ〈b〉2, and
Gb = i

√
2gb〈b〉 is the effective magnomechanical coupling raFigurete, where 〈q〉 = − gb

ωm
〈b〉2.

The linearized QLEs describing the quadrature fluctuations δXa = (δa + δa†)/
√

2,
δYa = i(δa† − δa)/

√
2, δXb = (δb + δb†)/

√
2, δYb = i(δb† − δb)/

√
2, δq and δp can be

written in compact matrix form as

u̇(t) = Lv(t) + µ(t), (10)

with v(t) =
[
δXa(t), δYa(t), δXb(t), δYb(t), δq(t), δp(t)

]T is vector of quadrature fluctuation

operators, µ(t) =
[√

2γaXin
a (t),

√
2γaYin

a (t),
√

2γbXin
b (t),

√
2γbYin

b (t), 0, φ(t)
]T is the vector

of input noise operators, and the drift matrix L can be given by

L =



−γ f b ∆ f b 0 ga 0 0
−∆ f b −γ f b −ga 0 0 0

0 ga −γb + ξ ∆̃b −Gb 0
−ga 0 −∆̃b −γb − ξ 0 0

0 0 0 0 0 ωm
0 0 0 Gb −ωm −γm

. (11)

The system reaches its stable and steady-state condition only if the real parts of all eigen-
values of the drift matrix L are negative [66]. The drift matrix in Equation (11) is provided
under the condition where |∆̃b|, |∆ f b| � γ f b, γb. Furthermore, it is mentioned that later it
will be shown that |∆̃b|, |∆ f b| ' ωm � γ f b, γb [as shown in Figure 1]. These conditions
are considered optimal for the presence of all bipartite entanglements in the system. It
is important to note that Equation (7) is intrinsically nonlinear due to the presence of
∆̃b, which itself depends on |〈b〉|2. However, for a given value of ∆̃b (one can straightfor-
wardly achieve the value of ∆̃b) and, consequently, the value of Gb by adjusting the bias
magnetic field.

4. Entanglement, Steerability and Discord

The continuous variable (CV), three-mode Gaussian steady-dynamical state of the
system’s quantum fluctuations is entirely described by a 6× 6 covariance matrix (CM) V , is
written as [67]

V̇(t) = LV(t) + V(t)LT +K, (12)

with Vij =
1
2 〈vi(t)vj(t′) + vj(t′)vi(t)〉 (i, j = 1, 2, ..., 6) and K = diag

[
γaψ2|1− τeiβ|2(2na +

1), γaψ2|1− τeiβ|2(2na + 1), γb(2nb + 1), γb(2nb + 1), 0, γm(2nm + 1)
]

is the diffusion ma-
trix, which is defined through 〈µi(t)µj(t′) + µj(t′)µi(t)〉/2 = Kijδ(t− t′). The initial state
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of the system is considered in the vacuum state. The covariance matrix σAB of two modes
A and B may be written as

σAB =

(
A C
CT B

)
. (13)

The 2× 2 sub-matrices A and B in Equation (13) represent the autocorrelations of the two
modes, while the 2× 2 sub-matrix C in Equation (13) defines the cross-correlations of the
two modes. Quantifying and characterizing quantum correlations in multipartite quantum
systems, such as in cavity magnomechanics, is indeed a challenging task. Various measures
have been proposed to quantify entanglement, which is one form of quantum correlation.
One commonly used measure for continuous variable (CV) systems is the logarithmic
negativity, EN [56,57]

EN = max[0,− log(2Λ−)], (14)

with Λ− =
√
X − (X 2 − 4 det σAB)1/2/

√
2 being the covariance matrix’s smallest sym-

plectic eigenvalues, which correspond to the partially transposed state of the two modes,
with X = detA + detB − 2 det C. If the logarithmic negativity (EN) is greater than 0,
the two subsystems are entangled. On the other hand, if the smallest symplectic eigenvalue
(Λ− ≥ 1/2), then the state is separable. The quantum steering quantifier is a further
quantum correlation quantifier that is crucial in cavity magnomechanics. The steerability
of Bob (B) by Alice (A) (A → B) for a (nA + nB) mode Gaussian state can be quantified
by [27]

SA→B(σAB) = max
[

0,
1
2

ln
(

detA
4 det σAB

)]
, (15)

The steerability of Alice by Bob [SB→A(σAB)] can be obtained by swapping the roles of
A and B. It is interesting to note that while a steerable state is always a non-separable
state, the reverse is not always true. Thus we have two possibilities between A and B:
(i) if SA→B = SB→A = 0 Alice can’t steer Bob and vice versa even if they are entangled
(i.e., no-way steering), (ii) if SA→B > 0 and SB→A = 0 or SA→B = 0 and SB→A > 0
as one-way steering, i.e., Alice can steer Bob but Bob can’t steer Alice and vice versa,
and (iii) if SA→B = SB→A > 0 Alice can steer Bob and vice versa (i.e., two-way steering).
In addition, the measurement of Gaussian Steering is always bounded by the entanglement.
In addition to examining the two mode Gaussian state’s asymmetric steerability, we also
present steering asymmetry, given by

S(AB) = |SA→B − SB→A|. (16)

The quantum correlations (nonclassical correlations) beyond entanglement in bipartite
system can be measured via the Gaussian quantum discord [58]

D = z
(√

detA
)
− z(ν+)− z(ν−) + z(ε), (17)

where z(x) = (x + 1
2 ) ln(x + 1

2 )− (x− 1
2 ) ln(x− 1

2 ), ν+ and ν− are the symplectic eigenval-
ues which write as

ν± =

√
Γ±

√
Γ2 − 4 det σAB

2
, (18)

where Γ = detA+ detB + 2 det C and ε is defined by

ε =

√
detA+ 2

√
detAdetB + 2 det C

1 + 2
√

detB
. (19)

If D is greater than 1, two modes’ quantum states cannot be separated. Additionally,
the two modes may be in a separable state or an entangled state if the condition 0 ≤ D < 1
is met.
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5. Results and Discusion

In this section, we show the results and discuss the evolution of quantum correla-
tions of the system by considering experimentally accessible parameters reported in [62]:
ωa/2π = 10 GHz, ωm/2π = 10 MHz , γm/2π = 100 Hz, γa/2π = γb/2π = 1 MHz,
ga/2π = Gb/2π = 3.2 MHz, and at low temperature T = 10 mK. Gb = 2π × 3.2 MHz
implies the drive magnetic field B0 ≈ 3.9× 10−5 T for gb ≈ 2π × 0.2 Hz, corresponding to
the drive power P = 8.9 mW.

We present in Figure 2, the entanglement in the steady state of the three bipartitions,
Eab (between the cavity and magnon mode), Ebm (between the magnon and mechanical
mode) and Eam (between the cavity and mechanical mode) versus the detunings ∆a and
∆̃b in the presence of coherent feedback loop with the magnon self-Kerr nonlinearity. We
observe, that the entanglement is very strong (Eab > 1.3, Ebm > 0.8 and Eam > 1.3) in
comparison with the results in Ref. [62]. The maximum value of entanglement of the three
bipartitions is improves via coherent feedback loop and the magnon self-Kerr nonlinearity
when β = π. We remark, when ∆a = −ωm and ∆̃b = 0.9ωm the entanglement Eab and Eam
are maximum while Ebm ≈ 0.2.

Figure 2. (a) Density plot of bipartite entanglement between photon and magnon modes Eab,
(b) magnon and phonon modes Ebm and (c) cavity and phonon modes Eam as function of nor-
malized detunings ∆a/ωm and ∆̃b/ωm for τ = 0.9, Gb/2π = 3.2 MHz, T = 10 mK, β = π and
ξ = γa. See text for the other parameters.

In Figure 3 we plot there bipartite entanglements Eab, Ebm and Eam as a function of
the reflectivity τ and β. We remark that the entanglement is increasing with τ and β and
it robust when β = π. Moreover, the entanglement is achieved its maximum value when
γ f b = γa(1 + 2τ).

Figure 3. (a) Density plot of bipartite entanglement between photon and magnon modes Eab,
(b) magnon and phonon modes Ebm, and (c) cavity and phonon modes Eam versus the reflectiv-
ity parameter τ and phase β for ∆̃b = 0.9ωm, Gb/2π = 3.2 MHz, ∆a = −ωm, and ξ = γa. See text for
the other parameters.

In Figure 4 we plot the entanglements of the three bipartitions Eab, Eam and Ebm versus
different parameters. We remark that the existing of genuine tripartite entanglement when
all bipartite entanglement are non-vanishing as illustrated in Figure 4. We notice, the entan-
glement is robust against temperature as depicted in Figure 4a and survive above 3 K. We
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observe that the entanglement of all the subsystem is diminishes due to decoherence phe-
nomenon [68]. Moreover, the entanglement between photon-magnon and photon-phonon
persists for temperature T > 3 K and T ≈ 2.5 K respectively, whereas, the entanglement be-
tween magnon-phonon vanishes at lower temperatures (T ≈ 0.2 K) even this temperature is
the maximum achieved in the Ref. [62]. One can say that the entanglement between photon-
magnon and photon-phonon is stronger than the entanglement between magnon-phonon.
The entanglement between photon-magnon and magnon-phonon increases with increasing
the magnon self-Kerr nonlinearity coefficient ξ, instead the entanglement between photon-
phonon decreases as illustrated in Figure 4b. The entanglement Eab ≈ 0.25 for ξ = 107 Hz
in comprising Eab ≈ 0.125 in comparison with the results in Ref. [62]. We remark in
Figure 4c the enhancement of all three bipartitions entanglement by coherent feedback
technique. The maximum value reached by entanglement between photon-magnon and
photon-phonon is more significant than the one obtained in Ref. [62].

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15
0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

4.0

Figure 4. (a) Plot of photon and magnon modes (Eab), cavity and phonon modes (Eam) and magnon
and phonon modes (Ebm) as a function of temperature T (see the (a)), self-Kerr coefficient ξ (see the
(b)) and reflectivity parameter τ (see the (c)). We take Gb/2π = 4.8 MHz, ∆a = −ωm and ∆̃b = 0.9ωm.
The reflectivity parameter is τ = 0.98 and τ = 0.4 in (a) and (b) respectively. In (b,c) the temperature
is T = 10 mK and in (a–c) the magnon self-Kerr nonlinearity coefficient is ξ = γa. See text for the
details of the other parameters.

In Figure 5, we plot for each bipartite the entanglement, the Gaussian steering SA→B,
SB→A and the asymmetric steering versus the temperature T. The entanglement and
steerability diminish quickly with temperature due to the decoherence phenomenon. We
note, the one way quantum steering is more robust than two way quantum steering and
it survive for a larger value of temperature T. The entangled state is not always steerable
state instead steerable state must be entangled i.e., when SA→B = SB→A > 0 and EN > 0
is the witnesses of existence of Gaussian two-way steering, such that the subsystem of
two subsystem are entangled but are steerable only from A to B and from B to A [27] and
no-way steering appears when SA→B = SB→A = 0 and EN > 0 as depicted in Figure 5c.
The measurement of Gaussian steering is always bounded by the entanglement EN as also
discussed in [69]. Finally, the asymmetric steering SA is always less than ln(2), which
is maximal when the state is nonsteerable in one-way i.e., SA→B > 0 and SB→A = 0 or
SA→B = 0 and SB→A > 0 and it decreases with increasing steerability in either way [27].
In Figure 5a the steering from the photon mode to the magnon mode Sa→b has a similar
behavior to EN it decreases from its maximum value to zero when T > 3 K. Besides, one-
way steering appears when T > 0.2 K, i.e., Sa→b > 0 and Sb→a = 0 as expected in Figure 5a.
Moreover, the steering from the magnon mode to the photon mode Sb→a is diminishes
quickly to remains zero for T > 0.2 K as depicted in Figure 5a. Otherwise, when the
temperature T < 0.2 K, the two-way steering occurs between optical mode and the magnon
mode, i.e., Sa→b > 0 and Sb→a > 0 (S(ab) = 0). The steerability between photon mode
and the phonon mode is always remains one-way steering, i.e., Sa→m > 0 (Sm→a = 0)
when T > 0.2 K as implemented in Figure 5b. The steerability between the magnon mode
and phonon mode approximately remains two-way and Sb→m > Sm→b when T < 0.10 K
and no-way steering (Sb→m = 0 and Sm→b = 0 (S(bm) = 0) when T > 0.10 K as shown
in Figure 5c.
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Figure 5. Plot of bipartite entanglement, Gaussian quantum steering and asymmetric quantum
steering between (a) photon and magnon modes Eab, Sa→b and Sb→a and S(ab), (b) cavity and
phonon modes Eam, Sa→m, Sm→a and S(am), and (c) magnon and mechanical modes Ebm, Sb→m,
Sm→b and S(bm), as a function of the temperature T.The parameters are Gb/2π = 4.8 MHz, β = π,
τ = 0.98, ξ = γa, ∆̃b = 0.9ωm and ∆a = −ωm. See text for the details of the other parameters.

Figure 6 shows the steady state entanglement and Gaussian quantum discord be-
tween the two modes with respect to temperature T. We remark that when T increases,
the entanglement and Gaussian quantum discord between the two modes indeed degrade.
This degradation can be attributed to the increased thermal noise and the resulting deco-
herence effects. Interestingly, even when the entanglement between the modes vanishes,
the Gaussian quantum discord can still remain non-zero. Quantum discord quantifies the
nonclassical correlations beyond entanglement and can persist in systems with vanish-
ing entanglement. The disappearance of entanglement and the persistence of non-zero
quantum discord reflect the fragility of entanglement under the influence of environmental
degradation. Entanglement is a delicate quantum resource that requires careful control and
isolation from the effects of the environment to maintain its coherence.
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Figure 6. (a) Plot of bipartite entanglement Eab and Gaussian quantum discord Dab between photon
and magnon modes (b) Eam and Dam between cavity and phonon modes and (c) Ebm and Dbm
between magnon and mechanical modes as a function of the temperature T. The parameters are
Gb/2π = 4.8 MHz, β = π, τ = 0.2, ξ = γa, ∆̃b = 0.9ωm and ∆a = −ωm. See text for the details of the
other parameters.

In Figure 7, we show the dynamics evolution of the entanglement and quantum
discord between the two modes. We note that in a region, the negativity logarithmic is
vanishing (EN = 0 for separable state) as expected in Figure 7, in contrary the Gaussian
quantum discord D is non zero. This means that the Gaussian quantum discord is an
important indicator about the quantum correlations. Besides, D is less than one (D < 1)
when EN = 0. Stationary entanglement between the two modes is achieved when EN
remains constant with time.
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Figure 7. (a) Time evolution of bipartite entanglement Eab and Gaussian quantum discord Dab
between photon and magnon modes, (b) Eam and Dam between cavity and phonon modes and
(c) Ebm and Dbm between magnon and mechanical modes. The parameters are Gb/2π = 4.8 MHz,
T = 10 mK, β = π, τ = 0.2, ξ = γa, ∆̃b = 0.9ωm and ∆a = −ωm. See text for the details of the
other parameters.

6. Conclusions

In conclusion we have studied how coherent feedback loop improves the quantum
correlations between three bipartite subsystems in the presence of the magnon self-Kerr
nonlinearity in cavity magnomechanics systems. We quantify steerability by using Gaus-
sian quantum steering and reveals that the Gaussian steering is limited by entanglement,
indicating that the modes that can be steered are strictly entangled. However, it is im-
portant to note that the entangled modes are not necessarily steerable, meaning that the
presence of entanglement does not guarantee the ability to control or steer the system. This
implies that the relationships between steerability and entanglement in the considered
system are closely interconnected. The entanglement serves as a resource that enables steer-
ing, but the ability to steer depends on additional factors beyond entanglement alone.We
have found that there is a one-way steering between photon-magnon and photon-phonon,
but the steerability between magnon-phonon is always two-way. Additionally, we have
also observed that entanglement and steerability are robust against the temperature ef-
fects, with entanglement persisting above 3 K for photon-magnon, and approximately
2.5 K for photon-phonon. This suggests that these quantum properties can be maintained
even at relatively high temperatures. Furthermore, we have studied the entanglement
and Gaussian quantum discord in both steady and dynamical states and have shown that
Gaussian quantum discord goes beyond entanglement, demonstrating the presence of
quantum correlations that are not solely attributable to entanglement. However, we have
also noted that, entanglement, steerability and Gaussian quantum discord, are fragile to
thermal effects, implying that they are sensitive to changes in temperature. Our proposed
scheme to enhance entanglement, which opens up possibilities for various applications in
quantum information processing. This suggests that our work has potential implications
for improving the performance of quantum communication and computation systems.
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