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Abstract: Noise suppression algorithms have been used in various tasks such as computer vision,
industrial inspection, and video surveillance, among others. The robust image processing systems
need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data
that represent the image captured are altered, which is translated into a loss of information. In this
way, there are required procedures to recover data information closest to the real scene. This research
project proposes a Denoising Vanilla Autoencoding (DVA) architecture by means of unsupervised
neural networks for Gaussian denoising in color and grayscale images. The methodology improves
other state-of-the-art architectures by means of objective numerical results. Additionally, a validation
set and a high-resolution noisy image set are used, which reveal that our proposal outperforms other
types of neural networks responsible for suppressing noise in images.

Keywords: denoising vanilla autoencoder; images; noise

1. Introduction

Currently, there is a growing interest in the use of artificial vision systems for applica-
tion in daily tasks such as industrial processes, autonomous driving, telecommunication
systems, surveillance systems, and medicine, among others [1]. Recent developments in
the field of artificial vision have stimulated the need to make increasingly robust systems
to meet established quality requirements, which is an essential part of why systems fail to
cover these types of requirements, mainly in data acquisition. Among image acquisition
systems, there are several factors that can alter the result of the capture, including failures
in the camera sensors, adverse lighting conditions, electromagnetic interferences, noise gen-
erated by the hardware, etc. [2]. All of these phenomena are described using distribution
models and are known, in a general way, as noise. The procedure in the image processing
field to try to diminish the effect of the noise is known as the pre-processing stage in
any image processing system. In recent years, various algorithms have been developed
in denoising images, and recently, a new field has taken much interest in the scientific
community. In this way, deep learning methods emerge [3,4].

Deep learning methods particularly present an inherent ability to overcome the de-
ficiencies contained in some traditional algorithms [5]; however, despite their significant
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improvements compared to traditional filters, deep learning methods have practical limita-
tions to their credit, which fall in high computational complexity. Although, as previously
mentioned, various methods have focused on noise suppression, in this work, autoencoders
are proposed, which are neural networks capable of replicating an unknown image by
applying convolutions whose weights were adjusted with previous training [6–8]. This re-
search project highlights the importance of using autoencoders because they do not require
high computational complexity, demonstrating noticeable improvement compared to other
types of deep learning architectures, such as the Denoising Convolutional Neural Network
(DnCNN) [9], the Nonlinear Activation Free Network for Image Restoration (NAFNET) [10],
and the Efficient Transformer for High-Resolution Image Restoration (Restormer) [11].

The rest of this paper is structured as follows. In Section 2, the theoretical background
work is described. The proposed model is described in Section 3. The experimental setup
and results are discussed in Section 4. Finally, the conclusions of this research work are
given in Section 5.

2. Background Work

In recent years, noise suppression has become a dynamic field within the domain of
image processing. This is due to the fact that as technological advances emerge, a greater
understanding of the scene in which a vision system is interacting is required [12]. For the
suppression of noise, several processing techniques have been proposed. These techniques
are known as filters that depend on the noise present in the image and are mainly classified
into two types.

2.1. Spatial Domain Filtering

Spatial filtering is a traditional method for noise suppression in images. These filters
suppress noise by being applied directly to the corrupted image. They can generally be
classified into linear and non-linear. Among the most common filters are:

• Mean Filter: For each pixel, there are samples with a similar neighborhood to the
pixel’s neighborhood, and the pixel value is updated according to the weighted
average of the samples [13].

• Median Filter: The use of this filter is that the central pixel of a neighborhood is
replaced by the median value of the corresponding window [14].

• Fuzzy Methods: This type of filter is different from those mentioned above since it is
mainly constituted by fuzzy rules with which it is possible to preserve the edges and
fine details in an image. Fuzzy rules are used to derive suitable weights for neighbor-
ing samples by considering local gradients and angle deviations. Finally, directional
processing is used with which it improves the precision of the same filter [15].

2.2. Transform Domain Filtering

Transform domain filtering is a very useful tool for signal and image processing due
to its extensive analysis of multiple resolutions, sub-bands, and location in the time and
frequency domains. An example of this type of filtering is the Wavelet method, which is
performed based on the frequency domain and attempts to distinguish the signal from
noise and preserve said signal in the noise suppression process. As a first step, a wave
base is selected to determine the decomposition of its layers to later select the level of
decomposition, establishing a threshold in all the sub-bands for all levels [16].

2.3. Artificial Intelligence

A new method of processing images has emerged, called artificial intelligence. To
address the issue of noise suppression, it is necessary to distinguish between artificial
intelligence, machine learning, and deep learning, because people tend to use these terms
synonymously, but there exists a subtle difference. Artificial intelligence involves machines
that can perform tasks with characteristics of human intelligence, such as understanding
language, recognizing objects, gestures, sounds, and problem solving [17,18]. Machine
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learning is a subset that belongs to artificial intelligence. The function is to obtain better
performance in the learning task. The algorithms used are mainly statistical and probabilis-
tic ones, making the machines improve with experience, allowing them to act and make
decisions based on the input data [19]. Finally, deep learning is a subset of machine learning
that uses techniques and algorithms of automatic learning that have high performance in
different problems of image recognition, sound recognition, etc., since the basic functioning
and structure of the brain and the visual system of animals are imitated [20].

There are two types of deep learning: the first type is supervised, learning which takes
a direct approach using labels on learning data to build a reasonable understanding of how
machines make decisions, and the second is unsupervised learning, which takes a very
different approach by learning by itself how to make decisions or perform specific tasks
without the need to contain labels in a database [21].

Autoencoders

Autoencoders are unsupervised neural networks, and the main function of autoen-
coders is that the input and the output are the same [22]. This is taken as an advantage
against other models because, in each training phase of the neural network, the output is
compared with the original image version, and through a calculation error, the weights
found in each of the layers that make up the autoencoder are adjusted. This adjustment
is carried out by means of the backpropagation method. There are different types of
autoencoders, which are:

• The Vanilla Autoencoder (VA) comprises only three layers: the encoding layer, in
charge of reducing the dimensions of the input information; the hidden layer, better
known as latent space, in which are the representations of all characteristics learned by
the network; and the decoding layer, which is in charge of restoring the information
to its original input dimensions, as shown in Figure 1 [23].

Figure 1. Architecture of the vanilla autoencoder.

• The Convolutional Autoencoder (Conv AE) makes use of convolution operators and
extracts useful representations from the input data, as shown in Figure 2. The in-
put image is sampled to obtain a latent representation and is forced to learn that
representation [24].

Figure 2. Architecture of the convolutional autoencoder.

• The Denoising Autoencoder (DA) is a robust modification of Conv AE that changes the
input data preparation. The information the autoencoder is trained in is divided into
two groups: original and corrupted. In order for the autoencoder to learn to denoise
an image, the corrupted information is sent to the input of the network to be processed.
Once the information is in the output, it is compared with the original [25]. This type
of autoencoder is capable of generating clean images from noisy images, ignoring the
type of noise present as well as the density in which the image was affected.
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3. Proposed Model

The proposed model is based on the suppression of Gaussian noise in both RGB and
grayscale (GS) images. Figure 3 shows the architecture of the proposed Denoising Vanilla
Autoencoder (DVA) algorithm, which consists of a selection stage where, if the image to
which the processing is going to be submitted is of the RGB type, a multimodal model
is applied, and if it is a GS image, a unimodal model is applied. This is described by
Equation (1).

Figure 3. Architecture of the proposed denoising vanilla autoencoder.

The advantage of combining two types of autoencoder architectures (VA and DA) is
that by only having one encoding layer and one decoding layer, the reconstructed pixels
do not have many alterations, which could translate into a loss of information, and at the
same time, they are capable of remove noise present in images. The use of the autoencoder
also allows us to have a lower computational load, which, in turn, improves both training
and processing times once the network models are generated.

X′ =
{

unimodal c = 1 i f XGS
multimodal c = 3 i f XRGB

, (1)

where X′ is the image processed by DVA, and c is the number of channels in the corrupted
image.

X ∈ Rw,h,c, W ∈ Rm,n,c,k, (2)

where X is the corrupted image with dimensions width w, height h, and channels c, and W
is the matrix weight with dimensions width m, height n, channels c, and k kernels.

(X ∗W)(i,j,c) = ∑
m

∑
n

∑
k
(x(i+m−2,j+n−2,c) · w(m,n,c,k)) + bc, (3)

where (X ∗W)(i,j,c) is the intensity of the result of the k convolutions in the position (i, j, c),
b is the bias.

Y(i,j,c) = f (X ∗W)(i,j,c) (4)
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where Y(i,j,c) is the result of the activation function ReLu f in the position (i, j, c).

f =

{
0 f or Y(i,j,c) < 0

Y(i,j,c) f or Y(i,j,c) ≥ 0
, (5)

Z(i,j,c) = max
{

Y(i+p,j+q,c), Y(i+1+p,j+q,c), Y(i+p,j+1+q,c), Y(i+1+p,j+1+q,c)

}
(6)

where Z is the encoded image by maxpooling, p =
{

0, 1, 2, · · · , w
2 − 1

}
, and q =

{0, 1, 2, · · · , h
2 − 1} are the strides.

Z′(i,j,c) = f (Z ∗W ′)(i,j,c) (7)

where Z′(i,j,c) is the result of the second convolutional layer and activation function, and
W ′ is another matrix weight.{

Y′(i+p,j+q,c), Y′(i+1+p,j+q,c), Y′(i+p,j+1+q,c), Y′(i+1+p,j+1+q,c)

}
= Z′(i,j,c) (8)

where Y′ is the dencoded image by upsampling.

X′(i,j,c) = (Y′ ∗W′′)(i,j,c) (9)

where X′ is the final result of the processing, and W ′′ represents another matrix weight.
For the multimodal model, the image is separated into its three different components

(red, green, blue), and each component is processed independently, with models trained
for each type of channel (Equations (2)–(9)) so that once the result is obtained, the three
new ones are concatenated. The components generate a new image in which the noise
is smoothed out. Within the unimodal model, a single trained model is applied. The
main reason why a multimodal model was trained for RGB-type images is because the
noise, being completely random and defined by a Gaussian probability, means that each
channel is affected differently. In this case, processing the three channels of the image in
the same way can cause the final smoothing to not be carried out properly and contain a
greater number of corrupted pixels. Figure 4a shows the original histogram of the Lenna
image, and Figure 4b shows how the image behaves when corrupted with Gaussian noise
with density σ = 0.20. This example is perceived as the red channel tends to increase the
intensity of its pixels, and in the case of both the green channel and the blue channel, their
intensities tend to decrease.

(a) Histogram of the original Lenna image. (b) Histogram of corrupted Lenna image.

Figure 4. Difference between histogram of original Lenna image and histogram of corrupted
Lenna image.

The DVA process is described in detail in Algorithm 1. Once the processing through
the DVA is finished, we analyze the histogram of the resulting image, which is shown in
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Figure 5, perceiving how the DVA restores the intensities of the pixels contained in each of
the channels to a certain extent. In this sense, the DVA is capable of restoring the image;
however, it is not an optimal processing due to the nature of the noise since the same noise
causes significant loss of information in the images, which the DVA tries to bring closer to
the images. The intensities of the corrupted pixels are an ideal panorama.

Algorithm 1: Process image using DVA.
Data: Noisy Image = X
Result: Denoising Image = X′

read number of channels of X;
if number of channels = 3 then

Separate channels of X;
Apply multimodal RGB to each channel of X;
Concatenate channels;

else
Apply unimodal GS to X;

end
The denoising image X′ is created;
return X′

Figure 5. Histogram of the result of the corrupted image of Lenna processed by DVA.

Network Training

For the multimodal model, the “1 million faces” database was used, of which only
7000 images were used [26], which were resized in a dimension of 420 × 420 pixels. The
same database was duplicated to generate the noise database. The 7000 images were
divided into batches of 700 in which each batch was corrupted with a different noise
density. The noise densities used are {0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. Once
the two databases were obtained, the DVA training was carried out. The databases were
divided into 80% for the training phase and 20% for the validation phase. In the case of the
unimodal model, the original database was converted to GS, and the database with noise
was created by repeating the above procedure.

The network was trained on an NVIDIA GeForce RTX 3070 (8GB) GPU. The hyperpa-
rameters used were seed = 17, learning rate = 0.001, shuffle = true, optimizer = Adam, loss
function = MSE, epochs = 100, batch size = 50, and validation split = 0.1. Figure 6 shows the
learning curves for the training and validation phase throughout the 100 epochs, showing
us that the proposed architecture did not suffer from overtraining for both the unimodal
model (Figure 6a) and the multimodal model (Figure 6b).
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(a) Learning curve obtained in the training with GS images.

(b) Learning curves obtained in the training with RGB images.

Figure 6. Learning curves obtained during the training of the DVA.

4. Experimental Results

The evaluation of the DA was carried out through the use of various images both in
RGB and in GS of different dimensions. These images are unknown to the network in order
to verify the proper functioning of the same. The evaluation images are shown in Figure 7.
Each evaluation image was corrupted with Gaussian noise with densities from 0 to 0.50 in
intervals of 0.01.

Airplane Baboon Barbara Cablecar Goldhill Lenna Mondrian Peppers

512 × 512 512 × 512 720 × 576 512 × 480 720 × 576 512 × 512 960 × 720 512 × 512

Figure 7. Testing images.

To gain a better perspective of the proper functioning of the proposed algorithm,
comparisons were made with three other neural networks that differ in their structure but
whose objective is noise smoothing. Table 1 shows the visual comparisons of the results
obtained by the DVA and the other neural networks used to validate the algorithm for the
Lenna image in GS. Table 2 shows the same comparisons for the Lenna image but this time
in RGB. It should be noted that an approach was made to a region of interest to have a
better perspective of the work of each of the networks on the image in question. In addition
to the visual comparisons, evaluation metrics were used, such as:

• Mean Square Error (MSE): Calculate the mean of the differences between the original
images and the processed images squared.

MSE =
1

MN

M

∑
i=1

N

∑
j=1

(x(i,j) − y(i,j))
2, (10)

where x and y are the images to compare, (i, j) is the coordinates of the pixel, and M
and N are the size of the images.
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• Root Mean Squared Error (RMSE): Commonly used to compare the difference between
the original images and the processed images by directly computing the variation in
pixel values [27].

RMSE =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

(x(i,j) − y(i,j))2, (11)

• Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS): Used to compute the
quality of the processed images in terms of normalized average error of each band of
processed image [28].

ERGAS = 100
dh
dl

√
1
n

n

∑
i=1

RMSE2

µ2
i

, (12)

where dh
dl is the ratio of pixel between hue and light, n is the number of bands, and µi

is the mean of the ith band.
• Peak Signal-to-Noise Ratio (PSNR): A widely used metric that is computed by the

number of gray levels in the image divided by the corresponding pixels in the original
images and the processed images [29].

PSNR = 10log10
(2b − 1)2
√

MSE
, (13)

where b is the number of the bits in the image.
• Relative Average Spectral Error (RASE): Characterizes the average performance of a

method in the considered spectral bands [30].

RASE =
100
µ

√
1
n

n

∑
i=1

(RMSE2)(Bi), (14)

where µ is the mean radiance of the n spectral bands, and Bi represents ith band of the
image.

• Spectral Angle Mapper (SAM): Computes the spectral angle between the pixel, the
vector of the original images, and the processed images [31].

SAM = cos−1 ∑n
i=1 x(i,j)y(i,j)√

∑n
i=1 x2

(i,j)

√
∑n

i=1 y2
(i,j)

, (15)

• Structural Similarity Index (SSIM): Used to compare the local patterns of pixel intensi-
ties between the original images and the processed images [32].

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (16)

where µx and µy are the mean of the images, respectively; σxy is the covariance between
the images to compare; C1 = (k1L)2 and C2 = (k2L)2 are two variables to stabilize the
division with low denominators; L is the dynamic range of the pixel values; K1 << 1;
and K2 << 1.

• Universal Quality Image Index (UQI): Used to calculate the amount of transformation
of relevant data from the original images into the processed images [33].

UQI =
4σxyµxµy

(σ2
x + σ2

y )(µ
2
x + µ2

y)
, (17)

Table 3 exemplifies the PSNR results obtained by each neural network used in the
validation GS images, and Table 4 exemplifies the PSNR results obtained in the same way
but for RGB images.
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Table 1. Comparative visual results to GS image.

Original GS Image

Noisy Images

σ = 0 σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.30 σ = 0.40 σ = 0.50

DVA results

DnCNN results

Restormer results

Nafnet results
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Table 2. Comparative visual results to RGB image.

Original RGB Image

Noisy Images

σ = 0 σ = 0.10 σ = 0.15 σ = 0.20 σ = 0.30 σ = 0.40 σ = 0.50

DVA results

DnCNN results

Restormer results

Nafnet results
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Table 3. Comparative results of PSNR in GS images.

GS Image Density Noisy Image DVA DnCNN Restormer Nafnet

Airplane GS

0 inf 26.545 71.197 36.987 32.961
0.10 11.859 23.729 22.305 22.137 10.312
0.15 10.610 23.014 20.097 20.818 7.995
0.20 9.841 22.378 18.705 20.128 8.717
0.30 8.896 20.938 16.859 19.132 9.407
0.40 8.338 20.474 15.833 18.476 8.043
0.50 7.959 19.312 15.109 17.937 7.823

Baboon GS

0 inf 17.478 33.966 26.414 10.021
0.10 11.298 19.010 20.203 17.560 8.926
0.15 10.221 18.103 19.277 16.634 9.159
0.20 9.592 18.596 18.676 16.003 8.892
0.30 8.824 18.222 17.654 15.294 8.761
0.40 8.377 17.913 16.975 14.827 8.840
0.50 8.066 17.702 16.480 14.476 8.861

Barbara GS

0 inf 23.640 39.198 32.285 8.417
0.10 11.469 21.795 21.669 17.472 8.846
0.15 10.336 21.309 20.191 16.120 9.119
0.20 9.673 20.119 19.171 15.245 8.514
0.30 8.837 20.160 17.726 14.150 8.054
0.40 8.330 19.672 16.762 13.450 8.051
0.50 8.029 18.975 16.241 13.083 8.124

Cablecar GS

0 inf 25.853 67.160 36.974 31.302
0.10 12.069 22.686 20.751 17.113 7.295
0.15 10.800 22.084 19.047 15.690 6.993
0.20 9.951 21.032 17.636 14.640 7.270
0.30 8.910 20.558 15.981 13.406 7.123
0.40 8.290 19.643 14.945 12.686 6.887
0.50 7.872 18.765 14.216 12.198 6.826

Goldhill GS

0 inf 27.997 52.056 39.720 33.700
0.10 11.595 24.867 22.684 17.541 7.818
0.15 10.450 23.896 20.744 15.958 8.031
0.20 9.722 23.346 19.390 14.898 7.954
0.30 8.857 22.313 17.686 13.676 7.718
0.40 8.335 21.505 16.637 12.948 7.716
0.50 7.971 20.774 15.874 12.460 7.640

Lenna GS

0 inf 30.196 72.566 38.527 35.414
0.10 11.383 24.344 23.652 18.997 8.645
0.15 10.284 23.743 21.720 17.578 9.051
0.20 9.619 22.941 20.332 16.749 8.815
0.30 8.825 21.901 18.565 15.609 8.394
0.40 8.350 21.074 17.501 14.968 8.531
0.50 8.049 20.650 16.899 14.571 8.566

Mondrian GS

0 inf 20.117 59.524 31.921 30.121
0.10 12.534 19.672 18.876 16.526 5.621
0.15 11.070 20.003 17.094 14.994 5.678
0.20 10.075 19.170 15.790 13.970 5.581
0.30 8.842 18.086 14.121 12.713 5.426
0.40 8.094 16.578 13.068 11.969 5.475
0.50 7.581 16.204 12.323 11.446 5.447

Peppers GS

0 inf 25.598 62.046 38.161 34.348
0.10 11.479 24.303 23.371 18.504 8.340
0.15 10.353 23.010 21.187 16.975 8.754
0.20 9.667 22.402 19.909 16.064 8.560
0.30 8.829 21.752 18.033 14.940 8.160
0.40 8.363 21.193 17.149 14.347 8.159
0.50 8.023 20.383 16.363 13.838 8.258
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Table 4. Comparative results of PSNR in RGB images.

RGB Image Density Noisy Image DVA DnCNN Restormer Nafnet

Airplane RGB

0 inf 26.215 55.638 36.502 32.961
0.10 14.576 24.082 22.852 23.812 10.312
0.15 13.342 23.365 20.843 22.569 7.995
0.20 12.526 22.461 19.449 21.548 8.717
0.30 11.525 21.899 17.694 20.237 9.407
0.40 10.922 21.228 16.665 19.421 8.043
0.50 10.503 19.762 15.926 18.798 7.823

Baboon RGB

0 inf 21.614 25.291 23.442 10.021
0.10 14.043 19.171 19.781 17.699 8.926
0.15 12.981 18.895 18.917 16.758 9.159
0.20 12.314 18.704 18.245 16.122 8.892
0.30 11.488 18.475 17.324 15.377 8.761
0.40 10.961 18.144 16.665 14.828 8.840
0.50 10.653 17.850 16.297 14.521 8.861

Barbara RGB

0 inf 27.412 39.115 31.285 29.037
0.10 14.269 21.742 21.857 18.259 16.990
0.15 13.134 21.271 20.416 17.002 8.152
0.20 12.425 21.059 19.426 16.145 8.285
0.30 11.553 20.518 18.128 15.050 7.846
0.40 11.033 20.157 17.285 14.348 7.867
0.50 10.663 19.707 16.726 13.854 8.348

Cablecar RGB

0 inf 22.794 52.131 34.426 30.961
0.10 14.652 21.977 20.843 18.035 10.152
0.15 13.293 21.563 18.983 16.419 7.520
0.20 12.411 20.120 17.758 15.419 7.403
0.30 11.284 20.164 16.115 14.106 6.997
0.40 10.612 19.757 15.146 13.304 6.878
0.50 10.143 19.036 14.452 12.725 6.985

Goldhill RGB

0 inf 32.649 51.974 36.456 32.535
0.10 14.323 23.988 22.748 19.003 8.023
0.15 13.149 23.362 20.968 17.287 8.134
0.20 12.392 23.037 19.680 16.187 7.666
0.30 11.501 22.456 18.193 14.890 7.438
0.40 10.927 21.856 17.201 14.020 7.585
0.50 10.558 21.181 16.556 13.482 7.853

Lenna RGB

0 inf 28.446 33.758 32.538 31.828
0.10 14.368 23.799 23.141 21.068 21.847
0.15 13.249 23.332 21.434 19.475 10.198
0.20 12.496 22.966 20.143 18.344 8.230
0.30 11.611 22.467 18.691 17.022 8.185
0.40 11.084 21.703 17.758 16.191 8.164
0.50 10.707 21.152 17.063 15.629 8.189

Mondrian RGB

0 inf 17.688 36.324 29.113 28.609
0.10 14.728 16.729 17.404 16.621 15.873
0.15 13.072 16.465 15.700 14.978 14.440
0.20 11.976 15.927 14.560 13.850 13.526
0.30 10.568 15.098 13.054 12.432 12.291
0.40 9.690 14.841 12.086 11.545 11.420
0.50 9.070 15.039 11.391 10.917 10.330

Peppers RGB

0 inf 33.057 48.801 34.615 32.112
0.10 14.519 24.496 22.653 19.361 19.103
0.15 13.324 23.756 20.752 17.669 17.418
0.20 12.540 23.349 19.468 16.594 16.102
0.30 11.565 22.606 17.837 15.310 7.490
0.40 10.974 21.553 16.868 14.491 7.657
0.50 10.569 20.784 16.179 13.942 7.667
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In order to better show all the results of the metrics calculated from the validation
database images processed by each of the aforementioned networks, Box-and-Whisker
plots were made. This type of graph shows a summary of a large amount of data in five
descriptive measures, in addition to intuiting its morphology and symmetry. This type of
graph allows us to identify outliers and compare distributions.

Figure 8 shows the Box-and-Whisker plots for each of the metrics applied to the results
of the GS images, and Figure 9 also shows the plots for the RGB image results. In each of
the diagrams, it can be seen that the DVA contains smaller box dimensions with respect
to the other networks, which means that the results obtained oscillate in a smaller range,
so the result of the processing is similar regardless of the density with which the image is
corrupted. The median is also located near the center of the box, which indicates that the
distribution is almost symmetrical. Another point to highlight in the diagrams is that there
are fewer outliers in the DVA compared to the other networks.

Figure 8. Box-and-Whisker plots of the quantitative results obtained on GS images.
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Figure 9. Box-and-Whisker plots of the quantitative results obtained on RGB images.

Recapitulating the previous results, it has been determined that the DVA obtained
better results in comparison with the other neural networks. Although the difference
presented in the metric calculations is not visually appreciated, this is mainly due to the
fact that these metrics do not accurately reflect the perceptual quality of the human eye.
One measure of image quality is the Mean Opinion Score (MOS) [34]; however, this type of
measure is not objective as it differs depending on the user in question [35].

Another point in favor of the DVA is that it can be used in images of any dimension.
As an example, Table 5 shows the visual and calculated results for high-definition images
in which it is perceived that good restoration results are obtained.
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Table 5. Visual and quantitative results obtained by DVA in HD images.

Sun 2100 × 2034

σ = 0 σ = 0.10 σ = 0.20 σ = 0.30 σ = 0.40 σ = 0.50

ERGAS = 5169.806 ERGAS =
10,965.422

ERGAS =
13,395.159

ERGAS =
15,276.500

ERGAS =
17,736.873

ERGAS =
18,296.674

MSE = 21.131 MSE = 124.536 MSE = 249.594 MSE = 380.183 MSE = 567.533 MSE = 699.633
PSNR = 34.882 PSNR = 27.178 PSNR = 24.158 PSNR = 22.331 PSNR = 20.591 PSNR = 19.682

RASE = 0 RASE = 1498.244 RASE = 1902.722 RASE = 2190.058 RASE = 2530.487 RASE = 2639.515
RMSE = 4.597 RMSE = 11.160 RMSE = 15.799 RMSE = 19.498 RMSE = 23.823 RMSE = 26.451
SAM = 0.072 SAM = 0.273 SAM = 0.390 SAM = 0.448 SAM = 0.489 SAM = 0.523
SSIM = 0.994 SSIM = 0.964 SSIM = 0.926 SSIM = 0.896 SSIM = 0.867 SSIM = 0.842
UQI = 0.782 UQI = 0.558 UQI = 0.512 UQI = 0.499 UQI = 0.490 UQI = 0.484

Dog 6000 × 2908

ERGAS = 5624.483 ERGAS =
11,456.096

ERGAS =
10,623.462

ERGAS =
10,393.671 ERGAS = 9919.464 ERGAS =

10,406.266
MSE = 217.856 MSE = 362.834 MSE = 441.465 MSE = 566.388 MSE = 610.187 MSE = 763.037
PSNR = 24.749 PSNR = 22.534 PSNR = 21.682 PSNR = 20.6 PSNR = 20.276 PSNR = 19.305
RASE = 806.958 RASE = 1652.544 RASE = 1530.997 RASE = 1496.294 RASE = 1427.232 RASE = 1496.917
RMSE = 14.76 RMSE = 19.048 RMSE = 21.011 RMSE = 23.799 RMSE = 24.702 RMSE = 27.623
SAM = 0.022 SAM = 0.078 SAM = 0.089 SAM = 0.099 SAM = 0.113 SAM = 0.131
SSIM = 0.936 SSIM = 0.773 SSIM = 0.711 SSIM = 0.665 SSIM = 0.623 SSIM = 0.588
UQI = 0.986 UQI = 0.936 UQI = 0.948 UQI = 0.953 UQI = 0.956 UQI = 0.951
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As an aggregate, the negative of the differences between the analyzed image and the
original image is shown, in which all the white pixels represent the pixels that are equal to
those of the original image, for which it can be deduced that the DVA manages to have a
good restoration of the image when it is corrupted with Gaussian noise.

5. Conclusions

In this research work, the importance of the use of filters for artificial vision systems
was highlighted, as well as the basic concepts that encompass artificial intelligence and
some types of unsupervised networks that are used today. Through this, a methodology
based on autoencoders was proposed, which is capable of processing images of any size and
type (RGB or GS). When carrying out the analysis of the results shown, it is identified that,
from the use of the DVA, it is possible to efficiently smooth the Gaussian noise of images
through the deep learning techniques implemented in the proposed algorithm regardless
of the density of noise present in the corrupted images. The DVA results, both visual and
calculated using various quantitative metrics, show better results in noise suppression
compared to the DnCNN, NAFNET, and Restormer algorithms that, despite being of
different architecture, have the function of smoothing noise in images.

One of the limitations observed during this research work is that when the image
presents a low noise density, the results are similar to the architectures with which the
DVA was compared. That is why it is suggested as a starting point to make improvements
either by transferring learning or combining this methodology with another such as that
proposed in [36] in order to obtain both qualitative and quantitative results, since it is
extremely important for vision systems to get as close as possible to the real scene in order
to reduce errors.
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