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Abstract: In this paper, we investigate the problem of graph neural network quantization. Despite
the great success on convolutional neural networks, directly applying current network quantization
approaches to graph neural networks faces two challenges. First, the fixed-scale parameter in the
current methods cannot flexibly fit diverse tasks and network architectures. Second, the variations of
node degree in a graph leads to uneven responses, limiting the accuracy of the quantizer. To address
these two challenges, we introduce learnable scale parameters that can be optimized jointly with the
graph networks. In addition, we propose degree-aware normalization to process nodes with different
degrees. Experiments on different tasks, baselines, and datasets demonstrate the superiority of our
method against previous state-of-the-art ones.
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1. Introduction

Different from regular data like images and videos, graph data are a special type
of non-Euclidean irregular data, which cannot be directly processed by convolutional
neural networks (CNNs). To remedy this, graph neural networks (GNNs) are developed
to handle these irregularly structured data and are widely applied in applications like
social networks [1], natural science [2,3], knowledge graphs [4], data mining [5] and
recommendation systems [6,7]. Although GNNs are commonly shallower than CNNs
with fewer parameters, their computational cost are tightly related to the input graph
size. Considering that the graph size ranges from hundreds of nodes to billions of nodes,
the high computational cost of GNNs becomes one of its major obstacle in real-world
scenarios and hinders potential applications on resource-limited devices.

To improve the efficiency of GNNs, numerous network compression techniques suc-
cessfully applied in CNNs have attracted increasing interests, including low-rank factoriza-
tion, network pruning, network quantization, and knowledge distillation. Among these
techniques, network quantization aims to represent the full-bit values in the network with
low-bit ones and employ efficient integer arithmetic instead of expensive floating point
arithmetic. As a result, the memory consumption and the computational cost of the quan-
tized networks are significantly reduced without changing the architecture. Considering
these advantages, this technique shows great potential for GNN acceleration.

Despite being successfully applied in CNNs, directly extending network quantization
to GNNs may suffer severe performance drop [8]. Due to the high variance of node degree
in a graph (ranging from one to hundreds or thousands), the magnitudes of the response
for different nodes vary significantly in the GNN. This large range pose great challenge
to existing network quantization methods and limits their accuracy. To address this issue,
Tailor et al. [8] proposed Degree-Quant, which firstly considers node degree during network
quantization and produces promising improvements. However, a heuristic scale parameter
is used in Degree-Quant, which cannot flexibly adapt to diverse graph data. In addition,
Degree-Quant relies on explicitly calculating the node degree to adaptively process nodes
of varing degrees, which is quite time consuming.
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To address the aforementioned issues, in this paper, we propose a degree-aware
quantization for GNNs. Specifically, we introduce learnable scale parameters and optimize
them together with the network parameters during training, allowing the quantizer to
adapt to diverse graph data. In addition, we propose a simple yet effective degree-aware
normalization method to normalize the response of nodes with different degrees to a
common range. Our method is generic and compatible with different GNN architectures
and tasks. The contributions of this paper can be summarized as follows:

• We develop a degree-aware quantization method for GNNs. Our method leverages
learnable scale parameters to achieve flexible adaption to various graph data and
employs a degree-aware normalization to avoid the adverse effect of varying node
degrees to network quantization.

• We successfully apply our quantization method to typical GNN architectures and
representative tasks (including node classification, graph classification, and graph
regression). Extensive experiments validate the effectiveness of our designs and
demonstrate the superiority of our method against previous approaches.

2. Related Work

In this section, we first briefly review several major works about graph neural network
acceleration techniques. Then, we further discuss recent network quantization approaches
that are closely related to our work.

2.1. Acceleration of Graph Neural Networks

Due to the capability of processing non-Euclidean data, GNNs have gained broad
application and extensive research attention in various fields, such as complex systems [9]
and social networks [10]. However, due to the high computational complexity of GNNs,
these methods cannot be scaled to large-scale data. In order to handle large-scale graph data
on resource-limited devices, numerous efforts have been made to accelerate graph neural
networks, which can be roughly divided into graph-based and model-based approaches.

Graph-based methods aim at improving the speed of graph neural network by accel-
erating their graph operations. Early graph neural networks process full graphs and suffer
redundant computational cost. To remedy this, techniques like graph sampling [11], graph
sparsification [12,13], and graph partition [14] are widely studied to sample partial graphs
to reduce the graph sizes, remove unimportant edges to increase the sparsity of the graphs,
and divide the full graph into sub-graphs to obtain smaller ones. By reducing the computa-
tional consumption of graph operations, these methods achieve promising speedup.

Different from graph-based methods, model-based ones aim at accelerating graph
neural networks by improving the efficiency of model operations. Specifically, Wu et al.
and He et al. developed light graph neural network SGC [15] and lightGCN [16], which
leverage lightweight network architectures and operation flows to achieve efficient training
and inference. Meanwhile, several works employ generic network acceleration techniques
like network pruning [17], knowledge distillation [18] and network quantization [19] for
speedup. These methods do not require novel network designs and can improve the infer-
ence efficiency of existing graph neural networks, thereby attracting increasing interests.
The technique of knowledge distillation involves pre-training a complex teacher model and
then utilizing distillation loss to transfer the knowledge from the teacher model to a com-
pact student model. This allows the student model to retain the knowledge of the teacher
model. For example, KDGCN [18] proposed a knowledge distillation technique termed
Local Structure Preservation module (LSP) to transfer knowledge for GCNs. Additionally,
the KD-framework [20] presents an effective knowledge distillation framework that aims
to achieve more efficient and interpretable predictions.

2.2. Network Quantization

Network quantization aims at representing full-bit floating-point numbers in the
neural network with low-bit ones to reduce the memory and computational consumption.
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For example, by quantizing 32-bit weight and activation values to 4-bit ones, the model size
is reduced to 1

8 , and the inference speed is significantly improved with the support of integer
arithmetic, enabling efficient deployment of neural networks on FPGA platforms [21] or
edge devices [22].

The feasibility and advantages of model quantization in traditional convolutional
neural networks have been widely discussed. Networks such as BNN [23], TWN [24],
and XNOR-Net [25] have been designed to quantize the weights to 1 or 2 bits, improving
the inference speed at the cost of moderate performance drop. Inspired by the great success
of network quantization in the area of convolutional neural networks [26], some studies ex-
tended this technique to graph convolutional neural networks. Specifically, Wang et al. [19]
proposed Bi-GCN, which binarizes the input values and network parameters for speedup.
In addition, to address the vanishing gradient issue during backpropagation caused by
binarization, a new backpropagation method was designed for training. Tailor et al. [8]
designed a quantization method tailored for GNNs, termed Degree-Quant. Specifically,
they introduced a mask parameter to encourage nodes with higher degrees to retain their
original accuracy, thereby avoiding the problem of large degree variations between different
nodes. Despite promising performance, this approach introduces considerable memory
and computational cost during training, which largely increases its training burden.

2.3. Self-Supervised Graph Representation Learning

In addition to high computational complexity, the annotation cost of graph data is also
expensive and imposes challenges to GNNs. Motivated by the success of self-supervised
learning in the field of natural language processing and computer vision, numerous efforts
have been made to extend self-supervised learning to GNNs [27]. By contrasting similar
nodes against dissimilar ones, discriminative representations can be learned from unlabeled
data in an unsupervised manner, which can be transferred to downstream graph-based
tasks to speedup the training phase [28,29]. Currently, self-supervised graph representation
learning has drawn increasing interest.

3. Methodology

In this section, we first introduce the preliminaries. Then, we present our degree-aware
quantization in detail.

3.1. Preliminaries

Network quantization aims at converting full-bit floating-point values in the network
to low-bit ones to reduce the memory consumption and computational cost. Assuming
that x represents a floating-point number and xq represents the quantized value, the quan-
tization function can be defined as:

xq = clamp(round(
x
S
+ Z), Qmin, Qmax). (1)

Here, the clamp(·) function truncates the input number within the specified range,
Qmax and Qmin are the maximum and minimum quantized values. For N-bit quantization,
Qmax = 2N−1 − 1, Qmin = −2N−1. Note that for unsigned numbers like activation values,
Qmax = 2N − 1, Qmin = 0. S and Z are the scale parameter and the zero point, respectively.
These two parameters can be calculated as:

S =
qmax − qmin

Qmax −Qmin
, (2)

Z = clamp(round(Qmax −
qmax

S
), Qmin, Qmax), (3)

where qmax and qmin are the maximum and minimum values for floating-point numbers.
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3.2. Degree-Aware Quantization

Our quantization framework with learnable scale parameters and degree-aware nor-
malization is illustrated in Figure 1. Take a graph convolution as an example, the response
from the previous layer x is first fed to the degree-aware normalization to normalize the
values to a small certain range. Then, the normalized values and the convolutional kernel
values are passed to the clip, scaling, and quantization steps, resulting in xq and wq. Note
that the scale parameters in the scaling step are differentiable and optimized by the task
loss. With quantized values, graph convolution is conducted, and the result is then rescaled
using the scale parameters. In this section, we first introduce the motivation. Then, we
detail the degree-aware normalization and learnable scale parameter.

degree-aware 

normalization qxx

×sxsw

clip(·) ×1/sx quantization

qww clip(·) ×1/sw quantization

convolution output

Figure 1. Quantization process with learnable scale and degree-aware normalization.

3.2.1. Motivation

We first conduct experiments to study the values to be quantized in GNNs. As il-
lustrated in [8], the responses of nodes with different degrees vary a lot. As shown in
Figure 2, the nodes produce higher responses after the aggregation layer x as the node
degree increases. Therefore, the values to be quantized span a wide range, which is difficult
to be well covered by the quantizer. Meanwhile, it can be observed that the variance of the
response values σ shares a similar trend as the response values x. This observation inspires
us to use the variance values to normalize the response values. In this way, the responses
are constrained to a small range (the red line), which facilitates the quantizer to quantize
these values with low quantization errors for higher accuracy.

0 2 4 6 8

0.0

2.5

5.0

10.0

12.5

log2degree

log2σ
log2x

log2(x/σ)

Figure 2. Analysis of values collected after aggregation at the final layer of FP32 GIN trained on Cora.
x represents the response value, and σ represents the variance of x.

3.2.2. Degree-Aware Normalization

In graph data, each node is connected to adjacent nodes, and this number of connected
nodes is called the degree. Generally, the degree is highly uneven in a graph, ranging from
one to hundreds or thousands. As discussed in Degree-Quant [8], the source of error in
quantizing the graph convolutional neural network mainly comes from the aggregation
phase. In this phase, nodes combine the feature information from its adjacent nodes in a
permutation-agnostic manner. In the context of graph data, nodes with higher degrees
collect more information from their adjacent nodes, resulting in a higher response after the
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aggregation phase. As a result, the range of full-bit responses for different nodes vary in a
large range and introduce critical challenges for quantization.

The aggregation layer produces higher responses for nodes with higher degrees,
shown in Figure 2. Meanwhile, the variance of response also increases linearly. Motivated
by this observation, the aggregation responses are normalized by dividing their corre-
sponding variances before being fed into the quantizer. This ensures that the input values
produced by nodes with different degrees are constrained within a small certain range, fa-
cilitating the quantizer to reduce quantization errors for higher accuracy. Subsequently, we
multiply the quantized results by the variance value again to ensure the range of the results.

3.2.3. Learnable Scale Parameter

It is demonstrated in [30] that the scale parameter significantly affects the accuracy
of the quantized networks. As discussed in the preliminary section, the scale parameters
in current methods are usually pre-defined and fixed, which cannot flexibly fit various
datasets, networks, and tasks. To remedy this, we develop learnable scale parameters to
make them trainable during backpropagation. According to the quantization function in
Equation (1), the gradient of the scale parameter is derived as:

∂xq

∂x
=


− x

S + round( x
S ) i f Qmin ≤ x

S ≤ Qmax

Qmin i f x
S < Qmin

Qmax i f x
S > Qmax

. (4)

In our experiments, the scale parameters are initialized using k times standard devia-
tion of the data in the first batch. By using trainable scale parameters, the quantizer can
adaptively fit the distributions of full-bit values in diverse networks developed for various
tasks and datasets.

4. Experimental Results

In this section, we first introduce the implementation details. Then, we compare our
method with previous ones in terms of both accuracy and efficiency. Finally, we conduct
experiments to validate the effectiveness of our method.

4.1. Implementation Details
4.1.1. Datasets and Metrics

We conduct experiments on node classification, graph classification, and graph repres-
sion tasks. In our experiments, we employ the Cora dataset, the REDDIT-BINARY dataset,
the MNIST-Superpixels dataset, and the ZINC dataset for both training and evaluation.
The details of these datasets are described in Table 1. For classification tasks, we evaluate
the model performance based on its accuracy on the test set. For regression tasks, we
employ the mean absolute error (MAE) between the predicted values and actual labels
as metrics.

• The Cora dataset [31] contains a single graph representing a citation network, where
each node corresponds to a research paper. The edges between nodes represent the
citation relationships among the papers. The node features are binary indicators
indicating the presence or absence of specific words in the corresponding papers.
The task on the Cora dataset is to classify the nodes into their respective labels.

• The MNIST-Superpixels dataset is obtained from the MNIST dataset using SLIC [32].
Each graph is derived from a respective image, and each node represents a set of
pixels or superpixels sharing perceptual similarities. This dataset is widely applied for
the graph classification task.

• The REDDIT-BINARY dataset [33] consists of 2000 graphs corresponding to online
discussions on the Reddit website. Each graph represents an online discussion thread,
where nodes represent users and edges connect nodes if there has been a message
response between the corresponding users. A graph is labeled according to whether it



Entropy 2023, 25, 1510 6 of 12

belongs to a question/answer-based community or a discussion-based community.
This dataset is employed for the graph classification task.

• The ZINC dataset consists of molecules graphs, where each node represents an atom.
The task involves graph regression [34], specifically predicting the constrained solubil-
ity based on the graph representation of the molecules.

Table 1. Details of the datasets applied in this paper.

Dataset Graphs Nodes Edges Features Labels Task

Cora 1 2078 5278 1433 7 Node classification
MNIST 70K 40–75 565 (avg) 3 10 Graph classification

REDDIT 2K 430 (avg) 498 (avg) 1 2 Graph classification
ZINC 12K 9–37 50 (avg) 28 1 Graph regression

4.1.2. Baselines

In our experiments, three popular graph neural networks are employed as base-
lines, including the graph convolutional network (GCN), graph attention network (GAT),
and graph isomorphism network (GIN). The setting of three baselines is presented in
Table 2. In addition, as a message passing function [35] is the key process in GNNs, its
formulation in different networks is detailed as follows.

Table 2. Detailed parameters of the model architectures.

Layers Hidden Units

GCN GAT GIN GCN GAT GIN

Cora 2 2 2 16 8 16
MNIST 4 4 4 146 19 110

REDDIT – – 5 – – 64
ZINC 4 4 4 145 18 110

• Graph convolutional network (GCN) [36]:

ht+1
v = ∑

w∈N(v)∪{v}
(

1√
dvdw

Wht
w), (5)

where dv represents the degree of node v.
• Graph attention network (GAT) [37]:

In GAT, attention coefficients α are introduced and calculated based on task-specific
query vectors and input information, allowing for higher weights on more valuable
feature information. The message passing function is defined as follows:

ht+1
v = αv,vWht

v + ∑
w∈N(v)

(αv,wWht
w). (6)

Here, the self-attention mechanism is utilized:

ev,w = LeakyReLU(a[Whv||Whw]), (7)

where ev,w represents the significance of node w to node v, a is a single-layer feed-
forward neural network, and LeakyReLU is a non-linear activation function. Finally,
the attention coefficients are obtained through a normalization layer:

αv,w = so f tmaxw(ev,w) =
exp(ev,w)

∑w∈N(v) exp(ev,w)
. (8)

• Graph isomorphism network (GIN) [38]:
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GIN leverages the isomorphism property of graphs to complete diverse graph-related
tasks. Its message passing function is defined as follows:

ht+1
v = f [(1 + ε)ht

v + ∑
w∈N(v)

ht
w], (9)

where f is a learnable injective function, such as a multi-layer perceptron (MLP), and ε
is a learnable parameter.

4.1.3. Experimental Setup

In our experiments, we utilized the Adam optimizer with β1 = 0.9 and β2 = 0.999 for
training. For GCN on the Cora dataset and REDDIT-BINARY datasets, the batch size was
set to 128. Meanwhile, for GCN on the MNIST and ZINC datasets, the batch size was set to
5. Other detailed hyperparameters, including the learning rate and the number of epochs,
are presented in Table 3. For our method, an additional parameter k was employed to
determine the initialization range of quantized data. We set k = 3 for the Cora dataset and
k = 1 for the REDDIT-BINARY dataset.

Table 3. Detailed hyperparameters of the experiments.

INT8
Learning Rate Epoch

GCN GAT GIN GCN GAT GIN

Cora 10−2 10−2 10−2 750 500 400
MNIST 5× 10−5 5× 10−5 5× 10−4 1000 1000 1000

REDDIT – – 10−2 – – 200
ZINC 5× 10−5 5× 10−5 5× 10−4 1000 1000 1000

INT4
Learning Rate Epoch

GCN GAT GIN GCN GAT GIN

Cora 10−2 10−2 10−3 750 500 400
MNIST 5× 10−5 5× 10−5 5× 10−4 1000 1000 1000

REDDIT – – 10−2 – – 200
ZINC 5× 10−5 5× 10−5 5× 10−4 1000 1000 1000

4.2. Comparison with Previous Approaches

In this section, we compare our method with previous network quantization ap-
proaches on different tasks and datasets. Following previous evaluation protocol, we
conducted over 10 runs on the MNIST-Superpixels and the ZINC dataset, and 10-fold cross
validation on the REDDIT-BINARY dataset. We first report the accuracy results and then
present the efficiency results.

4.2.1. Accuracy

We first conducted the experiments following the implementation details in Section 4.1
and quantized both weight and activation values to INT8 and INT4, respectively. We opted
for Degree-Quant (DQ) as the state-of-the-art method for comparison.

As shown in Table 4, our method produces comparable performance to the baseline
model for both INT4 and INT8 quantizations. In addition, our method outperforms DQ
by large margins, especially for INT4 quantization. For example, our method achieves an
accuracy of 86.6% on Cora, surpassing DQ by over 16%. For the graph regression task, our
method also produces lower errors than DQ (0.402 vs. 0.431). The superior performance of
our method clearly demonstrates the effectiveness of our method.
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Table 4. Results produced by different methods on different datasets.

Model Cora (%) MNIST (%) REDDIT (%) ZINC

Baseline (FP32)
GCN 81.4 ± 0.7 90.0 ± 0.2 – 0.469 ± 0.002
GAT 83.1 ± 0.4 95.6 ± 0.1 – 0.463 ± 0.002
GIN 77.6 ± 1.1 93.9 ± 0.6 92.2 ± 2.3 0.414 ± 0.009

DQ (INT8)
GCN 81.7 ± 0.7 90.9 ± 0.2 – 0.434 ± 0.009
GAT 82.7 ± 0.7 95.8 ± 0.4 – 0.456 ± 0.005
GIN 78.7 ± 1.4 96.6 ± 0.1 91.8 ± 2.3 0.357 ± 0.014

Ours (INT8)
GCN 83.0 ± 0.8 93.7 ± 0.1 – 0.371 ± 0.006
GAT 90.4 ± 0.5 96.8 ± 0.2 – 0.361 ± 0.005
GIN 86.8 ± 1.0 97.2 ± 0.1 91.9 ± 1.8 0.338 ± 0.007

DQ (INT4)
GCN 78.3 ± 1.7 84.4 ± 1.3 – 0.536 ± 0.011
GAT 71.2 ± 2.9 93.1 ± 0.3 – 0.520 ± 0.021
GIN 69.9 ± 3.4 95.5 ± 0.4 81.3 ± 4.4 0.431 ± 0.012

Ours (INT4)
GCN 80.8 ± 0.9 87.8 ± 0.2 – 0.455 ± 0.012
GAT 88.4 ± 1.6 94.0 ± 0.1 – 0.410 ± 0.010
GIN 86.6 ± 1.2 96.2 ± 0.2 89.2 ± 4.0 0.402 ± 0.011

4.2.2. Efficiency

We then conducted experiments to study the training efficiency of our method. Specif-
ically, we measured the average training time on the REDDIT-BINARY dataset using GIN
as the baseline. Similarly, DQ was employed as the state-of-the-art method for comparison.

As shown in Table 5, our method achieves a significant efficiency improvement with a
12.9× speedup as compared to DQ. As discussed in Section 3.2.2, DQ relies on explicitly
calculating the node degree and introduces considerable computational cost. In contrast,
our method leverages the efficient degree-aware normalization with only negligible ad-
ditional cost, thereby achieving significant speedup. This further demonstrate the high
efficiency of our method.

Table 5. Training time (s) for different methods.

DQ Ours Speedup

INT8 36.02 2.79 12.93×
INT4 35.98 2.78 12.94×

4.3. Model Analyses

In this subsection, we conduct ablation experiments to study different components in
our method, including the learnable scale parameter and degree-aware normalization.

4.3.1. Learnable Scale Parameter

The learnable scale parameter enables the quantizer to flexibly adapt to various
distributions of full-bit values in the network. To study its effectiveness, we replaced the
learnable scale parameters with fixed ones for comparison. We conducted experiments on
the Cora dataset. As shown in Table 6, the accuracy achieved by different graph networks
suffers a notable drop when fixed-scale parameters are employed. This is because fixed-
scale parameters cannot well fit diverse data in the dataset. This clearly validates the
effectiveness of our learnable scale parameters.
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Table 6. Accuracy (%) achieved by models with and without learnable scale parameters.

INT8 GCN GAT GIN

w LSP 83.0 90.4 86.8
w/o LSP 57.2 85.2 85.2

INT4 GCN GAT GIN

w LSP 80.8 88.4 86.6
w/o LSP 48.2 85.8 86.0

4.3.2. Initialization of Learnable Scale Parameters

As discussed in Section 3.2.2, the initialization of the learnable scale parameters is
critical to the final performance. Consequently, we conduct experiments to study the effect
of different initializations. Specifically, we set k to 0.5, 1, 3, and 5, and conduct experiments
on the Cora dataset and the REDDIT-BINARY dataset for comparison. From Table 7, we can
see that our method produces high accuracy on the Cora dataset and the REDDIT-BINARY
dataset for k = 3. Consequently, k = 3 is used as the default setting of our method.

Table 7. Accuracy achieved by models with different initialization values of learnable scale parameters.

INT8 (%) Model 0.5 1 3 5

Cora
GCN 80.2 79.6 83.0 80.2
GAT 30.6 26.6 90.4 89.4
GIN 13.6 78.6 86.8 86.2

REDDIT GIN 83.1 91.4 91.2 87.4

INT4 (%) Model 0.5 1 3 5

Cora
GCN 80.2 79.4 80.8 80.6
GAT 33.0 32.2 88.4 88.4
GIN 30.8 64.6 86.6 85.4

REDDIT GIN 80.8 89.2 71.6 55.4

4.3.3. Convergence of Learnable Scale Parameter

During training, our learnable scale parameters are optimized jointly with the network
parameters. Therefore, we further conduct experiments to investigate their convergence
during training. Specifically, we visualize the convergence of scale parameters in Figure 3.
As we can see, the scale parameter is updated during training and gradually reaches
convergence to fit the distributions of float values. This validates the effectiveness and
flexibility of our learnable scale parameter.

4.3.4. Degree-Aware Normalization

To address the issue that different nodes in a graph have different degrees, we employ
degree-aware normalization to constrain the responses in a certain range. To validate
its effectiveness, we remove this operation and compare its performance to our original
method. The results are presented in Table 8. As we can see, our degree-aware normaliza-
tion consistently introduces notable accuracy gains for different GNNs. For example, our
degree-aware normalization produces an accuracy improvement of 4.6% on GCN for INT4
quantization. This demonstrates its effectiveness in handling the variation of node degrees
in a graph.
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Table 8. Accuracy (%) achieved by models with and without degree-aware quantization.

INT8 GCN GAT GIN

w DAN 83.0 90.4 86.8
w/o DAN 81.8 90.0 86.2

INT4 GCN GAT GIN

w DAN 80.8 88.4 86.6
w/o DAN 76.2 87.8 82.0

epoch

Figure 3. hlEvolution of the learnable scale parameter during training.

5. Discussion

Our method shares a similar goal with Degree-Quant [8] to obtain low-bit GNNs
for efficient inference. However, a heuristic scale parameter is used in Degree-Quant,
which cannot flexibly adapt to diverse graph data. In addition, Degree-Quant relies on
explicitly calculating the node degree to adaptively process nodes of varing degrees, which
is quite time consuming. In contrast, our method leverages learnable scale parameters to
achieve flexible adaption to various graph data and employs a degree-aware normalization
to avoid the adverse effect of varying node degrees to network quantization. Moreover,
one limitation of our method is that its accuracy suffers notable drops for bit widths
lower than 4. In the future, we will conduct research to study binarized GNNs for further
efficiency improvements.

6. Conclusions

In this paper, we propose a degree-aware network quantization method for graph neu-
ral networks. Specifically, we propose learnable scale parameters to fit various distributions
of full-bit values in the network. In addition, we develop degree-aware normalization to
handle the nodes with different degrees. Experiments demonstrate the effectiveness of our
method against previous approaches on diverse tasks, datasets, and network architectures.

Author Contributions: Both authors have contributed to methodology, experiments, writing, review
and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2023, 25, 1510 11 of 12

References
1. Wu, Q.; Zhang, H.; Gao, X.; He, P.; Weng, P.; Gao, H.; Chen, G. Dual graph attention networks for deep latent representation of

multifaceted social effects in recommender systems. In Proceedings of the World Wide Web Conference (WWW), San Francisco,
CA, USA, 13–17 May 2019; pp. 2091–2102.

2. Sanchez, A.; Heess, N.; Springenberg, J.T.; Merel, J.; Hadsell, R.; Riedmiller, M.A.; Battaglia, P. Graph networks as learnable
physics engines for inference and control. In Proceedings of the International Conference on Machine Learning (ICML), Stockholm,
Sweden, 10–15 July 2018; pp. 4470–4479.

3. Cinaglia, P.; Cannataro, M. Identifying Candidate Gene–Disease Associations via Graph Neural Networks. Entropy 2023, 25, 909.
[CrossRef] [PubMed]

4. Hamaguchi, T.; Oiwa, H.; Shimbo, M.; Matsumoto, Y. Knowledge transfer for outof-knowledge-base entities: A graph neural
network approach. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden,
13–19 July 2018; pp. 1802–1808.

5. Hu, X.; Chen, H.; Chen, H.; Li, X.; Zhang, J.; Liu, S. Mining Mobile Network Fraudsters with Augmented Graph Neural Networks.
Entropy 2023, 25, 150. [CrossRef] [PubMed]

6. Van den Berg, R.; Kipf, T.N.; Welling, M. Graph convolutional matrix completion. arXiv 2017, arXiv:1706.02263.
7. Zhang, X.; Zhou, Y.; Wang, J.; Lu, X. Personal Interest Attention Graph Neural Networks for Session-Based Recommendation.

Entropy 2021, 23, 1500. [CrossRef]
8. Tailor, S.A.; Fernandez-Marques, J.; Lane, N.D. Degree-Quant: Quantization-aware training for graph neural networks. In

Proceedings of the International Conference on Learning Representations, Virtual, 3–7 May 2021.
9. Xi, Y.; Cui, X. Identifying Influential Nodes in Complex Networks Based on Information Entropy and Relationship Strength.

Entropy 2023, 25, 754. [CrossRef] [PubMed]
10. Wu, S.; Sun, F.; Zhang, W.; Xie, X.; Cui, B. Graph Neural Networks in Recommender Systems: A Survey. ACM Comput. Surv. 2023,

55, 1–37. [CrossRef]
11. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the Advances in Neural

Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 1025–1035.
12. Rong, Y.; Huang, W.; Xu, T.; Huang, J. Dropedge: Towards Deep Graph Convolutional Networks on Node Classification. In

Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.
13. Li, J.; Zhang, T.; Tian, H.; Jin, S.; Fardad, M.; Zafarani, R. SGCN: A graph sparsifier based on graph convolutional networks. In

Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Singapore, 11–14 May 2020; pp. 275–287.
14. Md, V.; Misra, S.; Ma, G. DistGNN: Scalable distributed training for large-scale graph neural networks. arXiv 2021,

arXiv:2104.06700.
15. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the

International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871.
16. He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; Wang, M. LightGCN: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieva, Virtual, 25–30 July 2020; pp. 639–648.

17. Blalock, D.; Ortiz, J.J.G.; Frankle, J.; Guttag, J. What is the state of neural network pruning? Proc. Mach. Learn. Syst. 2020, 2,
129–146.

18. Yang, Y.; Qiu, J.; Song, M.; Tao, D.; Wang, X. Distilling knowledge from graph convolutional networks. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7074–7083.

19. Wang, J.; Wang, Y.; Yang, Z.; Yang, L.; Guo, Y. Bi-GCN: Binary graph convolutional network. In Proceedings of the Conference on
Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1561–1570.

20. Yang, C.; Liu, J.; Shi, C. Extract the knowledge of graph neural networks and go beyond it: An effective knowledge distillation
framework. In Proceedings of the WWW, Ljubljana, Slovenia, 19–23 April 2021; pp. 1227–1237.

21. An, J.; Zhang, D.; Xu, K.; Wang, D. An OpenCL-Based FPGA Accelerator for Faster R-CNN. Entropy 2022, 24, 1346. [CrossRef]
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