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Abstract: Currently, the research on the predictions of remaining useful life (RUL) of rotating machin-
ery mainly focuses on the process of health indicator (HI) construction and the determination of the
first prediction time (FPT). In complex industrial environments, the influence of environmental factors
such as noise may affect the accuracy of RUL predictions. Accurately estimating the remaining useful
life of bearings plays a vital role in reducing costly unscheduled maintenance and increasing machine
reliability. To overcome these problems, a health indicator construction and prediction method based
on multi-featured factor analysis are proposed. Compared with the existing methods, the advantages
of this method are the use of factor analysis, to mine hidden common factors from multiple features,
and the construction of health indicators based on the maximization of variance contribution after
rotation. A dynamic window rectification method is designed to reduce and weaken the stochastic
fluctuations in the health indicators. The first prediction time was determined by the cumulative
gradient change in the trajectory of the HI. A regression-based adaptive prediction model is used to
learn the evolutionary trend of the HI and estimate the RUL of the bearings. The experimental results
of two publicly available bearing datasets show the advantages of the method.

Keywords: rolling bearings; health indicator construction; stochastic fluctuations; remaining useful
life; degradation model

1. Introduction

Rolling bearings are one of the most common rotating machines in industry, and their
performance directly affects the health of the entire machine or piece of equipment. Mechan-
ical failures caused by bearing failures often lead to casualties, plant shutdowns, economic
losses and even catastrophic accidents if maintenance measures are not taken in a timely
manner [1–3]. Accurate remaining life predictions help to better develop maintenance
strategies, thus improving the reliability of machinery and equipment [4–6]. Therefore, the
remaining life prediction of bearings has received a lot of attention from researchers.

Overall, a remaining useful life prediction is performed as part of condition-based
maintenance and is designed to predict the remaining useful life of a machine, based on his-
torical and ongoing degradation trends observed from condition monitoring information.
The remaining useful life prediction is usually divided into four main steps: data collection,
health indicator construction, health stage classification and remaining life prediction [7,8].
Monitoring data, such as vibration signals, are first collected from the sensors. Then, appro-
priate health indicators are constructed to mark the current health status, using methods
such as signal processing techniques or artificial intelligence techniques. Different stages
of degradation are classified according to the health indicators. Finally, a physical model
or neural network is used to estimate the remaining useful life of the machinery. Current
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research in remaining life predictions focuses on constructing appropriate health indica-
tors, determining the first prediction time, determining failure thresholds and mitigating
fluctuations in health indicators [9–12].

Studies have found that the accuracy of health indicators will affect the accuracy of
remaining life prediction, and constructing appropriate health indicators can help improve
the predictability of mechanical equipment. Health indicators can be divided into two
categories: physical health indicators and virtual health indicators. Briefly, physical health
indicators are usually extracted from vibration signals using statistical methods. In con-
trast, virtual health indicators are mainly constructed by fusing multiple physical health
indicators. Various physical characteristics are used as health indicators in many studies,
such as root mean square (RMS) and peak values. Based on the instantaneous definition of
Shannon’s spectral entropy, Civera et al. [13] used the instantaneous spectral entropy as
a health indicator, thereby achieving condition monitoring of wind turbines. In fact, due
to the complex internal structure and variable operating environment, a single physical
feature extracted from raw monitoring data cannot fully capture failure trends over the
lifetime of a machine [14,15]. In feature level fusion studies [15–17], by building an opti-
mized model of features, the optimal features are selected for constructing health indicators.
However, there are many random fluctuations in the health indicators constructed based
on multi-feature fusion, and there is no solution for such stochastic fluctuations in the
above method. Ahmad et al. [18] have proposed a linear correction technique to deal with
random fluctuations, to fit the increasing trend of health indicators. In Yan et al. [19], a
smoothing method is proposed, based on different regression models, to deal with anoma-
lous fluctuations in health indicators. The above methods ensure the health indicators
have a clear monotonic trend by processing the stochastic fluctuations, which satisfies the
prognostic requirement of the monotonicity of the health indicators. Regarding the effective
handling of spurious fluctuations [20], it would be beneficial to identify the starting point
of bearing degradation, which in turn would improve the prediction accuracy. However,
these methods weaken the degradation trend of the bearings during processing and cannot
accurately distinguish the different degradation stages of the bearings.

In addition, determining the first prediction time is a worthy concern [21,22], which
will affect the accuracy of the RUL estimate. The root mean square (RMS) is the most
commonly used physical property that reflects the increase in vibrational energy with
degradation [23]. Figure 1 shows the complete process of a rolling bearing degrading
from a healthy state to degradation to failure, using RMS as a health indicator. In the
healthy stage, the curve shows a relatively smooth trend along with stochastic fluctuations;
after a failure occurs, the curve first shows a linear trend and is in the slow degradation
stage; as the damage continues to increase, the bearing enters the accelerated degradation
stage. If the prediction takes into account the starting point of bearing degradation, it is
impossible to accurately calculate the duration of the bearing in the slow degradation stage
and the accelerated degradation stage, respectively, and it is therefore difficult to estimate
the remaining life of the bearing. Elbow point detection is based on the premise that
there are two apparently different degradation trends, slow degradation and accelerated
degradation. The bearing degradation trend at the onset of degradation is linear, while
it becomes closer to exponential during the accelerated degradation phase as the failure
deepens and spreads. Rigamonti et al. [24] proposed an elbow point identification method
based on a Z-test. However, the features describing the trend of bearing degradation do not
satisfy the prerequisites of the Z-test well. Baptista et al. [25], using different neural network
models to detect elbow points, incorrectly identified spurious fluctuations as elbow points
during detection, due to the presence of spurious fluctuations in the actual degradation
process of the bearing.
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Figure 1. Bearing degradation trajectory.

There is a proliferation of methods for determining remaining useful life predictions,
but some issues remain a focus of attention in this area:

(1) Owing to the complex internal structure and variable external environment, none
of the features can fully capture all the degradation information. Therefore, it is
difficult to attain effective and accurate results using a single degradation feature as a
health indicator.

(2) Considering the differences between individual bearings and the uncertainty of failure
propagation, the duration of different degradation stages in the full life cycle possesses
a certain degree of randomness. In some existing studies, the first prediction time is
mostly distributed in the early stage of degradation. The uncertainty of the duration
of the slow degradation stage reduces the accuracy of the prediction results.

(3) Generally, the state of degradation of rolling bearings is monotonic. This means that
once a failure has occurred, the damage it causes is irreversible. However, stochastic
fluctuations carry disturbing information for the process of predicting the RUL. An
effective solution to the problem of how to deal with anomalies caused by spurious
fluctuations is urgently needed.

To solve the above problems, this paper proposes a health indicator construction
and prediction method based on multi-featured factor analysis. The method processes
the original vibration signal using wavelet denoising. Based on the consideration of
information entropy, the relationship between the signal and noise is balanced by adjusting
the threshold value, thus changing the signal-to-noise ratio to maximize the extraction of
useful information. First, the extracted features are factor analyzed to mine the hidden
common factors. The variance contribution ratio is calculated with the goal of maximizing
the characterization of the bearing degradation trend, thus completing the construction
of health indicators. After considering the interference of anomalies caused by spurious
fluctuations on the first prediction time, the cumulative gradient change within the sliding
window is analyzed for elbow point detection, i.e., the first prediction time is determined.
In view of the fact that stochastic fluctuation is not a degradation feature of the bearing,
we design a dynamic window rectification method to deal with it, which ensures the
monotonicity of the bearing. Finally, the degradation trajectory of the bearing is learned
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based on an adaptive degradation regression model, thus accomplishing the prediction of
the remaining useful life of the bearing.

The rest of the paper is organized as follows: Section 2 describes the methodology of
this paper, including feature extraction, health indicator construction, dynamic window
correction, elbow detection and RUL prediction. Section 3 includes experiments and
discussions. Section 4 concludes the whole paper.

2. Methodology

In this section, a new statistical method is proposed for the RUL estimation of rolling
bearings. The whole prediction process is shown in Figure 2. The overall method can
be divided into five parts: feature extraction, health indicator construction, elbow point
detection, dynamic window correction and RUL prediction.

Figure 2. Framework of prediction method in this paper.

2.1. Feature Extraction

This section focuses on how to extract features from a large amount of historical moni-
toring data using signal processing techniques. Noise interference is unavoidable during
signal extraction [6]. In this paper, the original data are decomposed by the basic wavelet
threshold denoising method. After the threshold quantization of the high-frequency coeffi-
cients of each layer of the wavelet decomposition, an estimate of the wavelet coefficients is
obtained, and then the signal is reconstructed with the inverse wavelet transform to obtain
the denoised vibration signal. In the study, Daubechies wavelets were chosen, in order
to be as similar as possible to the denoised signal. Using a wavelet denoising method in
theory should balance the relationship between signal and noise by adjusting thresholds,
thereby changing the signal-to-noise ratio to maximize the extraction of useful information.
Since the choice of threshold value may lead to overfocus, i.e., when the amplitude of the
wavelet coefficients of the noise decreases with the increase in the decomposition scale, the
threshold value is fixed to 0.2 after comprehensive analysis.

Time domain analysis characterizes the health of mechanical equipment by calculating
the time domain statistical features of the vibration signal. To a certain extent, the time
domain features can reflect the complete process of performance degradation of mechanical
equipment, but it is not sensitive to the occurrence of initial failure. Among them, the more
widely used time domain indicators include 12 features, such as root mean square, peak to
peak, impulse and crest. The calculation of the 12 features is given in Table 1.
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Table 1. Common statistical characteristics.

Features Equation Features Equation

mean X = 1
N

N
∑

i=1
xi

skew Xske =
∑N

i=1(xi−X)
3

(N−1)Xσ
3

standard deviation Xσ =

√
1

N−1

N
∑

i=1
(xi − X)

2 kurtosis Xkur =
∑N

i=1(xi−X)
4

(N−1)Xσ
4

square root amplitude Xr =

[
1
N

N
∑

i=1

√
|xi|
]2

crest Ip = Xmax
Xrms

absolute average
amplitude Xp = 1

N

N
∑

i=1
|xi| margin Im = Xmax

Xr

RMS Xrms =

√
1
N

N
∑

i=1
xi

2 impulse Ii =
Xmax
Xp

peak to peak Xp−p = max(xi)−min.(xi) waveform Iw = Xrms
Xp

2.2. Health Indicator Construction

Since overlapping information among features increases the computational effort and
the difficulty of analyzing the problem, there is a necessity to construct health indicators
that sufficiently contain degradation information and have little redundancy and a low
dimensionality. Factor analysis starts from inter-feature correlation, explores the basic
structure in the data by studying the internal dependencies between multiple features, and
uses a few hidden variables to represent the basic structure of the original data. The hidden
variables can reflect the main information in the original data, and hence such hidden
variables are called factors.

Before conducting factor analysis on the extracted features, it is necessary to perform
a test of adequacy. The Kaiser–Meyer–Olkin (KMO) test is used to assess whether the
data are suitable for factor analysis. First, a correlation matrix is calculated, and then the
KMO is calculated using the following Formula (1). Here, sij represents the elements in
the correlation matrix, and eij represents the corresponding residual term. The range of the
KMO value is between zero and one. Generally, data with KMO values less than 0.5 are
considered unsuitable for factor analysis. The closer the KMO statistic is to one, the stronger
the correlation between the variables and the weaker the partial correlation, indicating
better results for factor analysis.

KMO =
∑ s2

ij

∑ s2
ij + ∑ e2

ij
(1)

Let X1, X2, X3, . . . , Xp be p features after normalization, and assume that the features
Xi(1 ≤ i ≤ p) satisfy:

Xi = ai1F1 + · · ·+ aimFm + εi (2)

and satisfy:

(1) m ≤ p;
(2) Cov(F, ε) = 0;
(3) D(F) = diag

(
λ1, λ2, . . . , λp

)
;

(4) D(ε) = diag
(

σ2
1 , σ2

2 , . . . , σ2
p

)
.

Among them, F = (F1, F2, . . . , Fm)
T are mutually independent hidden common factors,

Ap×m
(
aij
)

is the factor loading matrix, aij denotes the loading of the feature Xi on the factor
f j, and ε = ( ε1, ε2, . . . , εm)

T are the random error terms.
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Let λ1 ≥ λ2 ≥ . . . ≥ λp be the eigenvalues of the correlation coefficient matrix R, and
η1, η2, . . . , ηp be the corresponding standard normalized eigenvectors. The loading matrix
A of the correlation coefficient matrix R after factor analysis is:

A = (
√

λ1η1,
√

λ2η2, . . . ,
√

λmηm) (3)

The factor loading aij is the correlation coefficient between feature Xi and common
factor Fj. When the absolute value of the loading of a feature in the common factor is larger,
it indicates that the common factor is better suited to characterizing the feature. To solve
the correlation coefficient matrix R of the original features, the number of factors is selected
by combining the eigenvalues greater than one and the cumulative contribution of variance.
Since the factor loadings are not unique, the common factor obtained by factor rotation
is more meaningful in practice. The results of such an analysis reduce the subjectivity of
interpretation and are often more acceptable than those of principal component analysis.

Sj =
m

∑
i=1

a2
ij (4)

After calculating the variance contribution rate Sj of the rotated common factor f j,
the common factor with the largest contribution rate is chosen as the characterization of
bearing degradation trend HI, and the HI range is limited to [0,1], assuming that the HI
corresponding to the failure state is one.

2.3. Elbow Point Detection

In order to properly observe the potential relationship between the degradation be-
havior of the signal and the decreasing RUL, the starting point of the beginning of the
accelerated degradation phase needs to be detected, i.e., the elbow point detection. Ideally,
a bearing in the normal operating stage will have an HI value that remains essentially
constant. Once the bearing starts to degrade, the HI value will continue to increase. Due to
the influence of the external environment and the propagation of the bearing’s own damage,
some spurious fluctuations usually occur even during the normal operating stage. Studies
have shown that these spurious fluctuations can affect the detection of the accelerated
degradation point of the bearing, thus affecting the accuracy of a RUL prediction. In order
to avoid the spurious fluctuations on the detection of the accelerated degradation point,
a linear regression model is fitted on the sliding window of the health indicator, and the
continuous change in the gradient of the linear regression model is used to determine the
accelerated degradation point of the bearing. The parameters k and b are determined by the
least squares method as shown in the following equation. The expressions for parameter k
and parameter b are given in Equations (6) and (7):

y = k× x + b (5)

k =
∑ xiyi − ∑ xi ∑ yi

n′

∑ x2
i −

k ∑ xi
n′

(6)

b =
∑ yi − k ∑ xi

n′
(7)

argk,bmin

{
n′

∑
i=1

(yi − kxi − b)2

}
(8)

The parameter k indicates the gradient of the health indicator with respect to time. The
elbow point appears between the slow degradation stage and the accelerated degradation
stage, implying that the gradient of HI is highly variable at this moment. The spurious
fluctuations caused by the abnormal point can also cause abrupt gradient changes, and
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the starting point of degradation cannot be accurately detected based only on the gradient
reaching a fixed threshold. Therefore, this paper proposes that once the gradient corre-
sponding to the samples in the window increases continuously and exceeds the threshold
m times, the bearing is considered to have entered the accelerated degradation stage at
the current moment, and the moment is the starting point of accelerated degradation. In
the experimental stage, based on the stability and accuracy of the algorithm, the gradient
threshold of the bearing is set to 0.001, and the number of consecutive times m exceeded is
set to five times. This setting is considered that the abnormal state caused by random noise
does not persist in the normal operation stage.

Consideration of the size of the sliding window is essential. In the paper, we analyzed
the length of sliding windows on two public datasets [26,27]. According to different
window lengths, health indicators are divided into multiple subsequences. The conditional
entropy of the subsequence is calculated as the information loss under the current sliding
window length. The length of the sliding window is determined to be between 30 and 50
by calculating the information loss and the rule of thumb. Figure 3 illustrate the impact of
different window sizes on elbow detection. On the IMS bearing dataset, the corresponding
FPTs are 8010 s, 6780 s and 6530 s when the window sizes are 30, 40 and 50, respectively.
Similarly, the corresponding FPTs on the PHM2012 bearing dataset are 7160 s, 7220 s and
4980 s, respectively. As can be seen from the two detail figures, the performances of the
window sizes at 30 or 50 can both lead to bias in the determination of the FPT, due to
differences in individual bearings. The results show that, when the sliding window size is
40, the degradation point of T2-B1 is 6780 s and the degradation point of bearing2-2 is 7220 s.
From the figure, it can be seen that the elbow point detection method proposed in this
paper can accurately identify the accelerated degradation points and effectively avoid the
limitation of spurious fluctuations.

2.4. Dynamic Window Rectification

Considering the influence of spurious fluctuations of the bearing during the normal
operation stage on the identification of degradation points, this paper therefore proposes a
sliding window based gradient continuous change approach to determine the accelerated
degradation points. Since the stochastic fluctuations caused by failures are not a degrada-
tion characteristic of the bearing, modeling the stochastic fluctuations after the degradation
point in the health indicator is impractical from a modeling point of view. Therefore,
this paper proposes a dynamic window correction method for dealing with stochastic
fluctuations after degradation points. The dynamic window correction method consists of
two steps: the determination of the window size and the stochastic fluctuation correction
criterion. The degradation of the bearing found during the experiment is irreversible. Once
a fault occurs, the health of the bearing does not improve over time. At the same time, the
degradation process of bearings is gradual and does not change abruptly during operation.
Over a short period of time, the degradation trend of the bearing remains essentially the
same or changes slightly.

The sliding window was found to take values in the range 30–70. The size of the sliding
window at different times depends on the sample variance within the current window.
Firstly, presentvar is initialized to infinity and it is assumed that the current window size is
30. When currentvar ≤ presentvar, the current window size is kept unchanged; conversely,
the window size is increased in increments, and presentvar is updated. During the window
size increase (to a limit of 70), if currentvar ≤ presentvar is satisfied, the current window size
is returned; conversely, the window size is decreased in decrements. After determining
the window size at the current moment, the mean and standard deviation of the samples,
corresponding to the current window, are calculated and the specific adjustment is shown
in the following equation:
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µ =
1
n

n

∑
i=1

winHI(i) (9)

σ =

√
1
n

n

∑
i=1

[
winHI(i) − µ

]2
(10)

winHI(i) =


µ winHI(i) >

max(winHI(i))+min(winHI(i))
2

µ− 3σ winHI(i) < min
(

winHI(i)

)
winHI(i) else

(11)

When winHI(i) >
max(winHI(i))+min(winHI(i))

2 , winHI(i) is adjusted to the mean value

for the samples in the current window; when winHI(i) < min
(

winHI(i)

)
, winHI(i) is

adjusted to the lower bound of the 3σ interval; other sample points that do not satisfy the
above conditions are taken unchanged. As shown in Figure 4, the experiment shows that
the HI_original, adjusted in the above way, obviously shows a monotonic trend, which
eliminates the influence of random fluctuations on the prediction accuracy well.

Figure 3. Performance of the proposed method on different bearing datasets. (a) IMS bearing dataset
T2-B1. (b) Detailed drawing of T2-B1. (c) PHM 2012 bearing dataset of Bearing2-2. (d) Detailed
drawing of Bearing2-2.



Entropy 2023, 25, 1539 9 of 19

Figure 4. Dynamic window rectification results.

2.5. RUL Prediction

In this study, the HI will grow exponentially once the bearing enters the accelerated
degradation stage after a failure occurs. Therefore, once the accelerated degradation point
of the bearing is detected, the proposed degradation model is used to predict RUL. To fit the
known samples after the degradation point, and then simulate the degradation trajectory
of HI reaching the failure state, the failure time corresponding to the HI failure is obtained,
and RUL can be expressed as the product of the time difference between the failure time,
the current time and the step size of the adjacent time difference. In Formula (12), r, s, g are
adjustable linear parameters determined by least squares, HIpre is the predicted HI, T is
the running time, T1 is the failure time, T0 is the current time and ∆t is the step size of the
neighboring time difference:

HIpre = resT + gT (12)

RUL = (T1 − T0)× ∆t (13)

2.6. Prediction Model Construction Process

The flow of the method proposed in this paper is described step by step in the following:

(1) First, the raw vibration signals acquired on the sensors are processed. The signal is
decomposed into wavelet coefficients at different scales using a wavelet threshold
denoising method. Considering the statistical characteristics of the vibration signal
and the noise level, the threshold value is determined at 0.2. After reconstruction by
inverse wavelet transform, the denoising effect is evaluated using the signal-to-noise
ratio. If the information entropy of the denoised signal is close to the information
entropy of the signal itself, it means that the denoising method is able to effectively
remove the noise and retain the important information of the signal.

(2) Time domain statistical features in the signal are extracted for subsequent factor
analysis using traditional methods.

(3) The normalized features are fed into the factor analysis model to obtain mutually
independent hidden common factors. In order to better interpret the factors, orthog-
onal rotation of the factors is required. Then, the factor loading matrix is analyzed,
to determine the strength of the relationship between each feature and the common
factor. The variance contribution rate of each common factor is calculated, and the
common factor with the largest variance contribution rate is selected as the health
indicator, characterizing the bearing degradation trend.
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(4) The main purpose of elbow point detection is to find the first prediction time. A
linear regression model is fitted on the sliding window of the health indicators, and
the cumulative gradient change is observed, to determine the location of the first
prediction time. The method proposed in this paper indicates that, when the gradient
of the samples in the window increases continuously and exceeds the threshold
value of 0.001 five times or more, the current moment is considered to be the first
prediction time.

(5) The HI value of the samples within the current window are analyzed in the case of
iterative updating of the window size. Then, adjustments are made according to the
given formula so that the HI satisfies the characteristic of a monotonic trend of the
bearing during degradation.

(6) After determining the first prediction time of the bearing and eliminating the random
fluctuations, the known sample data after this degradation point are fitted to simulate
the trajectory of the health indicator when it reaches the failure state, so as to calculate
the time difference between the failure state and the current state, and to obtain the
predicted results.

3. Experiment and Result Analysis
3.1. Experimental Platform and Dataset

In this study, experimental data were from the IEEE PHM2012 Data Challenge [28] and
the University of Cincinnati Intelligent Maintenance Systems (IMS) Center bearing dataset.
The applicability of the method was demonstrated with two run-to-failure datasets.

The data of the IEEE PHM2012 Data Challenge were collected on the PRONOSTIA
platform, as shown in Figure 5. Table 2 provides a detailed description of the composition
of the dataset. The platform was designed by the French FEMTO-ST Institute and consists
mainly of a rotating part, a degradation generating part and a measuring part. It is able
to provide realistic experimental data for describing the degradation of rolling bearings
during their entire life. The platform is able to provide constant and variable operating
conditions to accelerate the degradation of the bearing, while collecting monitoring data
(speed, temperature, vibration, etc.) in real time. The experiments considered data from
three different loads (i.e., 1800 rpm and 4000 N, 1650 rpm and 4200 N and 1500 rpm and
5000 N) and collected vibration accelerations in both horizontal and vertical directions of
the bearing housing, with a sampling frequency of 25.6 kHz and 2560 samples recorded
every 10 s. For safety reasons, once the amplitude of the vibration signal exceeded 20 g,
the test was stopped, and the bearing was considered to have failed. The entire data set
contains all possible types of bearing failures during the degradation process.

Figure 5. Introduction to the experimental platform.
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Table 2. IEEE PHM2012 bearing dataset information.

Condition 1 Condition 2 Condition 3

Load(N) 4000 4200 5000

Speed(rpm) 1800 1650 1500

Training dataset Bearing1-1 Bearing2-1 Bearing3-1
Bearing1-2 Bearing2-2 Bearing3-2

Testing dataset

Bearing1-3 Bearing2-3 Bearing3-3
Bearing1-4 Bearing2-4
Bearing1-5 Bearing2-5
Bearing1-6 Bearing2-6
Bearing1-7 Bearing2-7

The IMS bearing dataset was obtained from the NASA Ames Prognostics Data Reposi-
tory. Table 3 provides a detailed description of the composition of the dataset. These data
contain three datasets, each containing full life cycle vibration data for four bearings. For
each bearing in dataset 1, one accelerometer was fitted in the x and y axes, respectively,
and for dataset 2 and dataset 3, one accelerometer was fitted in each bearing. The sampling
frequency was 20 kHz and the duration of each sample was 1 s. A data file containing
20,480 sampling points was generated. The data file was named after the time of data
collection, and each record was a data point.

Table 3. IMS bearing dataset information.

Condition Test 1 Test 2 Test 3

Bearing

T1-B1 T2-B1 T4-B1
T1-B2 T2-B2 T4-B2
T1-B3 T2-B3 T4-B3
T1-B4 T2-B4 T4-B4

3.2. Health Indicator Construction

Twelve statistical features are extracted from the raw data using signal processing
techniques, requiring an adequacy test before factor analysis can be performed. Bartlett’s
spherical test and KMO test are used to show that this type of data can be used for factor
analysis. The correlation matrix of the population variables is examined to see if it is a
unit matrix, and if it is not a unit matrix, it indicates that there is a correlation between
the original variables and factor analysis can be performed. Correlations and skewness
correlations between variables are tested and take values between zero and one. The
closer the KMO statistic is to one, the stronger the correlation between variables and
the weaker the skewness correlation, therefore the better the factor analysis is. In this
paper, the IMS bearing dataset was used as an example for illustration. A factor analysis
model was developed for the extracted 12 features, the factors were rotated using variance
maximization and three common factors were selected after factor analysis. To observe
more intuitively which features were more relevant for each hidden variable, a heatmap of
the factor matrix was drawn, based on the absolute values of the correlation coefficients.
Figure 6 shows the relationship between different bearings and the common factors, from
which it can be seen that the correlation between the three common factors was weak
and the data dimensionality reduction was achieved. Then, the variance contribution
rate of the rotated common factors was calculated, to select the common factor with the
largest contribution rate as the health indicator of the bearing. Figure 7 shows the variance
contribution rate for different bearings. Figure 8 shows the health indicators constructed
based on multi-feature factor analysis.
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Figure 6. The heat map of feature and factor relationship.

Figure 7. The variance contribution of the common factor.

Figure 8. Health indicators for different bearings.
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Evaluation criteria for health indicators can quantitatively assess the performance
degradation curve properties of health indicators. Common criteria [29] for assessing health
indicators include correlation, monotonicity and discreteness. To verify the effectiveness of
the proposed method, the proposed method-based health indicators are compared with
those based on traditional methods and deep learning networks [30]. This paper has
been validated on the PHM2012 bearing dataset. The results are shown in Table 4. The
results show that the monotonicity of the health indicators, based on the proposed method,
is improved, the correlation is essentially the same, and the discreteness is significantly
reduced. This shows that the method of factor analysis model is effective. The common
factor with the largest contribution to the variance can preserve information while showing
good monotonicity as a health indicator. The method presented in this paper takes into
account the statistical properties of the vibrational signal of a single bearing, such that the
discreteness is small. Health indicators constructed based on machine learning methods
take into account the historical monitoring data of different bearings at the same time. The
constructed health indicators have a large scatter, due to individual differences. The lower
the discreteness of the health indicator, the more accurate the prediction of the remaining
useful life based on the degraded trajectory will be.

Table 4. Comparison of health indicators’ evaluations.

Bearing Proposed Method-HI RMS ELM-AE-HI SDAE-SOM-HI

Criteria Corr Mon Dis Corr Mon Dis Corr Mon Dis Corr Mon Dis

Bearing1-3 0.78 0.16 0.14 0.77 0.14 0.15 0.77 0.14 0.44 0.67 0.12 0.62

Bearing1-4 0.33 0.17 0.26 0.32 0.16 0.33 0.31 0.15 0.70 0.41 0.17 0.76

Bearing1-5 0.29 0.13 0.20 0.16 0.12 0.21 0.28 0.12 0.63 0.26 0.14 0.55

Bearing1-6 0.25 0.11 0.13 0.10 0.10 0.12 0.18 0.11 0.86 0.31 0.13 0.79

Bearing1-7 0.37 0.14 0.22 0.23 0.11 0.26 0.34 0.10 0.77 0.35 0.14 0.58

3.3. Elbow Point Detection

The proposed elbow detection method is used to determine the first prediction time,
which improves the accuracy of the RUL prediction. Figure 9 and Table 5 reflect the results
of the proposed method, in comparison with other methods. Since the duration of the slow
degradation phase is difficult to estimate, detecting the accelerated degradation point is
more helpful to improve the prediction accuracy. In Ref. [5], the calculated relative root
mean square (RRMS) was used as a health indicator to determine whether the bearing had
entered the degradation stage, using the most recent n samples of the RRMS. In Ref. [28],
3σ criteria were introduced for the RMS as a health indicator, the upper bound was used
as an abnormality detection criterion, a degradation state was considered to have been
reached when a number of consecutive values were outside this threshold. The energies
of the wavelet packet coefficients were extracted in Ref. [31] to characterize the health of
the machine, and then the first prediction time was determined based on the proposed
multivariate statistical process control (MSPC) method. In contrast to this paper, other
methods cannot clearly distinguish between slow and accelerated degradation points and
are not well suited to avoid the effects of spurious fluctuations.

Table 5. Determining the time to first prediction.

Proposed Method RRMS [5] MSPC [32] RMS [28]

Bearing1-1 27,210 s 25,720 s 11,290 s 14,620 s

Bearing1-2 8030 s 280 s 7620 s 8260 s

Bearing1-3 13,310 s 1140 s 8910 s 13,650 s

Bearing1-4 10,850 s 11,040 s 10,830 s 10,840 s
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Figure 9. Bearing1-1 elbow point detection.

3.4. Dynamic Window Rectification

As stated in Section 2, stochastic fluctuations due to faults are not degenerate features
of the bearing and therefore it is not reasonable to model them. After detecting the acceler-
ated degradation point of the bearing, the stochastic fluctuations in the health indicator are
corrected using the proposed method. Figure 10 shows that the proposed method works
well to eliminate stochastic fluctuations that do not belong to the bearing degradation trend,
and it can be used to estimate the RUL of a bearing after meeting the prognosis criteria of
the health indicator. The experiment shows that the corrected health indicators can predict
the failure point in advance and reduce costs and losses.

Figure 10. IMS bearing dataset correction results. (a) Bearing1. (b) Bearing2. (c) Bearing3. (d) Bearing4.
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3.5. RUL Prediction

After constructing the health indicators, the proposed elbow point detection algorithm
is executed to find the accelerated degradation points of the bearing, which is validated
using the IEEE PHM2012 challenge data. Figure 11 depicts the prediction process after
the degradation point of bearing3. According to the proposed method, the degradation
point of the bearing is detected at the time 13,310 s, and then the RULs at 15,000 s, 15,200 s
and 15,400 s after the degradation point is predicted. The RULs at the corresponding
moments, based on the degradation model, are predicted to be 2200 s, 2270 s and 2280 s,
respectively. The experimental results show that the degradation trajectory fitted by the
proposed method converges better to the actual RUL as the monitoring time progresses. In
practice, this is consistent with our requirement for RUL prediction, that is, more accurate
prediction results are expected when the bearing is close to the failure state. This result can
be explained by the fact that, at the early stage of failure, the HI values are not sufficient
to accurately estimate the parameters of the model, and the more HI values are obtained,
the more accurately the parameters of the model are estimated, and the bias that exists at
this time is mainly due to the random error brought by the stochastic process. In this study,
both the smoothing procedure of HI and the linear regression procedure are able to reduce
the stochastic error to some extent. Thus, as more data are collected on the sensor, the RUL
prediction is closer to the true value.

3.6. Discussion and Comparison

In this study, two commonly used performance metrics, the cumulative relative accu-
racy (CRA) and the convergence metric, as proposed in the literature [29], were calculated,
in order to illustrate the superiority of the method in a comparative manner. The CRA re-
flects the sum of the relative prediction accuracy of the forecasting methods at a given time
and is used to assess the prognostic performance of different methods. The convergence
metric reflects how quickly the prediction method approaches the actual RUL during the
prediction process. Table 6 summarizes the results of the comparison between the proposed
method and the other two methods, which were validated on the PHM2012 bearing dataset.
It is worth noting that these methods are based on the prediction of the constructed HI
after determining the PFT. The results show that the proposed method has higher CRA
scores and better convergence between the three models for all tested bearings. Compared
to the other two methods, the proposed method has more accurate prediction results and
performs best in the bearing prediction process.

Table 6. Score of indicators for testing bearing performance.

Metric Case Paris Model Degradation Trajectory
Racking Model Proposed Model

CRA

Bearing1-1 0.6967 0.7111 0.7243

Bearing1-3 0.6317 0.5420 0.6521

Bearing1-4 0.7443 0.7463 0.7483

Convergence

Bearing1-1 9234 9382 9187

Bearing1-3 307.3 329.9 316.4

Bearing1-4 315.3 296.7 292.1

In addition, the mean absolute error (MAE) [29] and the normalized RMS error
(NRMSE) of the predictions in the PHM2012 dataset are calculated separately. Among them,
RMS is a commonly used traditional health indicator in the field of residual life prediction,
principal component analysis (PCA) is a machine learning method for constructing virtual
health indicators, and extreme learning machine auto code (ELM-AE) is a deep learning
method. These four existing methods for constructing health indicators, and the proposed
method, are used to validate the effectiveness of predicting the remaining service life of
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bearings based on health indicators. The evaluation criteria are used to analyze it, as well
as the results, are shown in Figure 12. Compared with a single structured deep learning
network, the proposed method can effectively increase the prediction accuracy. At the
same time, it improves the accuracy of the remaining useful life prediction, compared to
traditional health indicator construction methods.

Figure 11. RUL prediction process of bearing3. (a) RUL predicted trajectory at the time 15,000 s.
(b) RUL predicted trajectory at the 15,200 s. (c) RUL predicted trajectory at the time 15,200 s.
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Figure 12. Comparison with other methods.

These results show that the health indicators constructed according to the method
proposed in this paper are consistent with the bearing degradation trend. This is because
of the irreversibility of the mechanical degradation process, i.e., it is impossible to recover
from the damage once a failure has occurred without artificial repair. The health indicators
constructed based on this paper have the inherent property of monotonicity, which meets
the prognostic criteria. Meanwhile, the accuracy of the prediction is improved after the
elbow point is determined, which means that the first prediction time is determined
accurately and can accurately classify the slow degradation and accelerated degradation
stages. The remaining useful life prediction, by combining it with the adaptive regression
model pointed out in this paper, is in line with the degradation trajectory of the bearings,
thus achieving better prediction results.

4. Conclusions

In this work, we propose a multi-featured factor analysis-based construction of health
indicators that effectively addresses stochastic fluctuations in health indicators, and also
propose a novel elbow-point detection method for abnormal fluctuations in the normal
operation phase. A factor analysis model is built on the original features, and health
indicators are constructed based on the maximization of the factor variance contribution
rate. The degradation model is used to predict the RUL at different times, by correcting
the stochastic fluctuations after the degradation point, through a dynamic window. Ex-
perimental results show that the health indicators constructed in this paper can better
characterize the degradation trend of bearings. Based on the correct detection of the bear-
ing degradation points, the dynamic window rectification method successfully handles
the stochastic fluctuations in the degradation process, which not only makes the health
indicator monotonic, but also better preserves the degradation trend of the bearing, thus
improving the prediction’s accuracy.

Nevertheless, the method proposed in this paper has some shortcomings. First, the
method is applicable to degradation processes with slow and accelerated degradation
stages but is not applicable to the case of near-sudden bearing failure. Secondly, the ac-
curacy of the prediction will be affected by the construction of health indicators. If the
health indicators contain more information that is not part of the bearing degradation,
it is impractical to model this part. Maintenance decisions based on inaccurate health
indicators may lead to wrong actions, such as unnecessary or delayed maintenance. Finally,
the methodology in this research was validated on two publicly available datasets, and the
generalizability of the methodology needs to be further evaluated on additional datasets.
In future works, we would like to take into account the multi-stage nature of bearing
degradation. The process of predicting the remaining useful life of bearings is realized by
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learning the degradation trend of bearings, in combination with deep learning models for
the characteristics of different degradation stages. The construction of health indicators
also requires multidimensional considerations, such as temporal and spatial dimensions.
Although the application scenarios included in the public dataset are representative, con-
sidering the complexity of real industrial environments, more bearing operation-to-failure
test data will be explored.
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