Supplementary materials

1. Symbols:

S Seebeck coefficient I Electrical Current

¢ Thomson coefficient J: Electrical Current density

p-  electric resistivity Qu/c* Thermal rate at hot/cold side
K: thermal conductivity qusct Thermal flux at hot/cold side
a: Ratio of Thomson to Seebeck PE: Work (electric power)

Ar Area COP: Coefficient of Performance

- Length Z: Figure of merit

Tyjc: Temperature of hot/cold side ZT: dimensionless figure of merit
AT: Temperature difference PF: TE power factor (W/m2K)

PFT: TE power factor (W/mK)

a) Thermoelectric Refrigerator:

Let’s start with the more familiar TE refrigerator. Heat is
pumped from the cold side to the hot side by applying current.
Insulation is used between the p-n legs to enforce the heat
transfer only through the thermoelectric legs. Therefore,
boundary conditions are zero heat flux on the sides and fixed

temperature at hot and cold ends.

We can write the heat conduction equation for one leg (p-leg) by
writing the energy balance for a slab as shown schematically in
figure S1. Consider the electrons and phonons as a single
system so that we do not need to deal with the internal energy
exchanges between electrons and phonons. Total thermal current
at each position x (including electron and phonon contributions

could be written as:
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FIG. S1. Schematic of a
thermoelectric ~ refrigerator  is
shown on top and detailed energy
balance for the p leg is shown in
the lower graph.

Therefore the heat balance equation for the schematically shown slab could be written as:

—KAVT |, + KAVT |yynx + SAJTy — SAjTyspy + j. EAAx = 0
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Noting that under temperature gradient and applied electric field E, the coupled current

equation for electron-phonon system with electrical (j) and total heat flux (electrons and

phonons, q) could be written as:
J=E/p—=S/pVT
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q = —kVT + STj S4

If we write E from S 3 in terms of j and VT and substitute in S 2 then divide by AAx, we find:
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With boundary conditions of T = T, (x = 0) and q(x = 0) =0

We find
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b) Thomson cooler
f/ j
It is said that the Thomson coolers work by only one leg and do ¢ ¢

not require n-p geometry. The purpose of this analysis is to L:;Z{T\ ﬂi ﬁ:;
understand how they work and define an equivalent figure of | Insularin: i |
merit if possible. Here to simplify, we use a one-leg geometry and FIG S2. P-type Thomson
keep it p-type. The analysis is the same as before but now S is cooler

temperature dependent.

Total thermal current at each position x (including electron and phonon contributions could
be written as:

Q, = —KAVT, + SIT, S11

Therefore the heat balance equation for the schematically shown slab could be written as:

—KAVT |, + KAVT | yax + AjSiTe — AjSyinxTesnx + j. EAAx = 0 S12

Noting that under temperature gradient and applied electric field E, the coupled current
equation for electron-phonon system with electrical (j) and total heat flux (electrons and
phonons, Q') could be written as:

j=§—%VT—>E=pj+SVT S13

If we write E from S3 in terms of j and VT and substitute in S2 then divide by AAx, we find:



KV2T — j == (ST) +j.E = 0 S14
Here, we need to use the average E inside the element. But this means average S and will

make it complex. So for the sake of simplicity, let’s use S and not average S.
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We need to assume something for S to enable continuing.
Assuming: 7= T% = constant and positive

KVT —jtVT +pj2=0 orT' —jt/kT +pj?/k=0 S17
The general solutions are

T(x) =p7jx+Clej“‘/"+C2 S18
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1.1-With boundary conditions of T = T, (x = 0) and q(x =0) =0
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1.2-With boundary conditions of T =T, (x =0) and T =Ty atx =L

T(x) = p?jx + Cef™* + ¢, S 26
T(x=1)=Ty =2L+Cel™"+, S 28
ar-2;,
== G 29
ex -1

: jear-2
VT =2 4 Lt fmx/x $ 30

t ex —1

: pj AT- p iTX /K
q = —kVT +jST = —Kk— — JT—5r*— ef + jST S 31
e

Details for maximizing the heat flux:
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Let uscall R = pL, The following parameter is dimensionless: Rj/ST

A'-Rj
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q(0) =—j +]SCTC(
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Upon expansion around j:
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The simplest is to keep only up to the second-order term. To do so we look at the ratio of the

third-order term to the second-order term

T, . T, .
Ratio of the terms = Tl . P
= R T2AT . (a2zAT+6)
12 2 pK

In most cases a?zAT < 6
And we take zT ~ 1, set j < 100% and take the order of magnitude for the other parameters,
i.e.S~107% %, K~1 and L~ 1mm
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While this works well, I noted that at larger values of zT and Thomson, the results are
strange. Perhaps the expansion is not valid anymore and higher-order terms are needed.

We can try to make the original heat flux dimensionless and see if it helps
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Doing the same process as before and maximizing the heat flux after keeping the third-order

term results in the following expression which is too long to be useful.
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Hence it is best to solve the heat flux numerically as done in the manuscript.



