
 

 

Supplementary materials 

I. Symbols:  

𝑆 :     Seebeck coefficient    

𝜏:     Thomson coefficient 

𝜌:      electric resistivity   

𝜅:       thermal conductivity                 

𝛼:       Ratio of Thomson to Seebeck 

A:      Area     

𝑙:       Length 

𝑇𝐻/𝐶:  Temperature of hot/cold side                                   

∆𝑇:     Temperature difference 

 

𝐼:         Electrical Current  

 𝑗:  Electrical Current density 

𝑄𝐻/𝐶:  Thermal rate at hot/cold side  

𝑞𝐻/𝐶:   Thermal flux at hot/cold side  

PE:         Work (electric power)   

COP:  Coefficient of Performance 

 Z: Figure of merit    

ZT: dimensionless figure of merit 

PF:   TE power factor (W/m2K) 

PFT: TE power factor (W/mK) 

 

a) Thermoelectric Refrigerator: 

Let’s start with the more familiar TE refrigerator. Heat is 

pumped from the cold side to the hot side by applying current. 

Insulation is used between the p-n legs to enforce the heat 

transfer only through the thermoelectric legs. Therefore, 

boundary conditions are zero heat flux on the sides and fixed 

temperature at hot and cold ends. 

We can write the heat conduction equation for one leg (p-leg) by 

writing the energy balance for a slab as shown schematically in 

figure S1.  Consider the electrons and phonons as a single 

system so that we do not need to deal with the internal energy 

exchanges between electrons and phonons. Total thermal current 

at each position x (including electron and phonon contributions 

could be written as: 

 
𝑄𝑥 = −𝜅𝐴∇𝑇𝑥 + 𝑆𝐼𝑇𝑥        S 1 

 

Therefore the heat balance equation for the schematically shown slab could be written as: 

 

−κA∇𝑇|𝑥 + κA∇𝑇|𝑥+∆𝑥 + 𝑆𝐴𝑗𝑇𝑥 − 𝑆𝐴𝑗𝑇𝑥+∆𝑥 + 𝑗. 𝐸𝐴∆𝑥 = 0        S 2 

 

Noting that under temperature gradient and applied electric field E, the coupled current 

equation for electron-phonon system with electrical (j) and total heat flux (electrons and 

phonons, 𝑞) could be written as: 

  𝑗 = 𝐸/𝜌 − 𝑆/𝜌 ∇𝑇         S 3  

FIG. S1. Schematic of a 

thermoelectric refrigerator is 

shown on top and detailed energy 

balance for the p leg is shown in 

the lower graph.  



 

 

𝑞 = −𝜅∇𝑇 + 𝑆𝑇𝑗          S 4 

If we write 𝐸 from S 3 in terms of 𝑗 and ∇𝑇 and substitute in S 2 then divide by 𝐴∆𝑥, we find: 

d2𝑇

𝑑𝑥2 +
𝜌𝑗2

𝜅
= 0                        S 5 

With boundary conditions of 𝑇 = 𝑇𝐶 (𝑥 = 0) and 𝑞(𝑥 = 0) = 0 

We find  

𝑇(𝑥) = − 
𝜌𝑗2

2𝜅
 𝑥2 + 𝑏 𝑥 + 𝑇𝐶                     S 6 

𝑞𝐶|𝑝 = 𝑞𝑥=0 = −𝜅𝑏 + 𝑆𝑗𝑇𝐶 = 0 → 𝑏 = 𝑆𝑗𝑇𝐶 /𝜅                          S 7 

𝑇(𝑥) = − 
𝜌𝑗2

2𝜅
 𝑥2 +

𝑆𝑗𝑇𝐶

𝜅
 𝑥 + 𝑇𝐶                                                                                         S 8 

 𝑇𝐻 − 𝑇𝑐 = Δ𝑇 = − 
𝜌𝑗2

2𝜅
 𝐿2 +

𝑆𝑗𝑇𝐶

𝜅
 𝐿                                                                                  S 9 

d𝑇

𝑑𝑗
= − 

𝜌𝑗

𝜅
 𝐿2 +

𝑆𝑇𝐶

𝜅
 𝐿 = 0 →  𝑗𝑜𝑝𝑡 =

𝑆𝑇𝐶

𝜌𝐿
→ Δ𝑇𝑚𝑥 =

𝑧𝑇𝐶
2

2
                                                  S 10 

 b) Thomson cooler                                                                       

It is said that the Thomson coolers work by only one leg and do 

not require n-p geometry. The purpose of this analysis is to 

understand how they work and define an equivalent figure of 

merit if possible. Here to simplify, we use a one-leg geometry and 

keep it p-type. The analysis is the same as before but now S is 

temperature dependent.    

Total thermal current at each position x (including electron and phonon contributions could 

be written as: 

 

𝑄𝑥 = −𝜅𝐴∇𝑇𝑥 + 𝑆𝐼𝑇𝑥        S 11 

 

Therefore the heat balance equation for the schematically shown slab could be written as: 

 

−κA∇𝑇|𝑥 + κA∇𝑇|𝑥+∆𝑥 + 𝐴𝑗𝑆𝑥𝑇𝑥 − 𝐴𝑗𝑆𝑥+∆𝑥𝑇𝑥+∆𝑥 + 𝑗. 𝐸𝐴∆𝑥 = 0        S 12 

 

Noting that under temperature gradient and applied electric field E, the coupled current 

equation for electron-phonon system with electrical (j) and total heat flux (electrons and 

phonons, 𝑄′) could be written as: 

 

  𝑗 =
𝐸

𝜌
−

𝑆

𝜌
∇𝑇 → 𝐸 = 𝜌𝑗 + 𝑆∇𝑇     S 13  

If we write 𝐸 from S3 in terms of 𝑗 and ∇𝑇 and substitute in S2 then divide by 𝐴∆𝑥, we find: 

FIG S2. P-type Thomson 

cooler 



 

 

 κ∇2𝑇 − 𝑗
𝑑

𝑑𝑥
(𝑆𝑇) + 𝑗. 𝐸 = 0          S 14 

Here, we need to use the average E inside the element. But this means average S and will 

make it complex. So for the sake of simplicity, let’s use S and not average S. 

κ∇2𝑇 − 𝑗
𝑑

𝑑𝑥
(𝑆𝑇) + 𝜌𝑗2 + 𝑆𝑗∇𝑇 = 0                                                 S 15 

κ∇2𝑇 − 𝑗
𝑑𝑆

𝑑𝑥
𝑇 + 𝜌𝑗2 = 0 →    κ∇2𝑇 − 𝑗

𝑑𝑆

𝑑𝑇
𝑇

𝑑𝑇

𝑑𝑥
 + 𝜌𝑗2 = 0              S 16 

We need to assume something for S to enable continuing. 

Assuming:  𝜏 = 𝑇
𝑑𝑆

𝑑𝑇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  and positive 

  κ∇2𝑇 − 𝑗𝜏 ∇𝑇 + 𝜌𝑗2 = 0      or T" − 𝑗 𝜏/𝜅 𝑇′ + 𝜌𝑗2/𝜅 = 0         S 17 

The general solutions are 

𝑇(𝑥) =
𝜌𝑗

𝜏
𝑥 + 𝐶1𝑒𝑗𝜏𝑥/𝜅 + 𝐶2          S 18 

∇𝑇(𝑥) =
𝜌𝑗

𝜏
+

𝑗𝜏

𝜅
𝑒𝑗𝜏𝑥/𝜅𝐶1               S 19 

1.1-With boundary conditions of 𝑇 = 𝑇𝐶 (𝑥 = 0)  and 𝑞(𝑥 = 0) = 0  

𝑇𝑐 = 𝐶1 + 𝐶2                                        S 20 

𝑞𝐶 = 𝑞𝑥=0 = −𝜅∇𝑇𝑥=0 + 𝑗𝑆𝐶𝑇𝐶 = −𝜅
𝜌𝑗

𝜏
− 𝑗𝜏𝐶1 + 𝑗𝑆𝐶𝑇𝐶 = 0 → −𝜅

𝜌

𝜏2 +
𝑆𝐶𝑇𝐶

𝜏
= 𝐶1     S 21  

Δ𝑇 =
𝜌𝑗

𝜏
𝐿 + 𝐶1 (𝑒

𝑗𝜏𝐿

𝜅 − 1) =
𝜌𝑗

𝜏
𝐿 + (−𝜅

𝜌

𝜏2 +
𝑆𝐶𝑇𝐶

𝜏
) (𝑒

𝑗𝜏𝐿

𝜅 − 1)                                    S 22 

𝑑𝑇

𝑑𝑗
=

𝜌

𝜏
𝐿 + (−𝜅

𝜌

𝜏2 +
𝑆𝐶𝑇𝐶

𝜏
) (

𝜏𝐿

𝜅
𝑒

𝑗𝜏𝐿

𝜅 ) = 0 →
1

(1−
𝜏𝑆𝐶𝑇𝐶

𝜌𝜅
)

= 𝑒
𝑗𝜏𝐿

𝜅 → −
𝜅

𝜏𝐿
ln (1 −

𝜏𝑆𝐶𝑇𝐶

𝜌𝜅
) = 𝑗  S 23 

Δ𝑇𝑚𝑥 = −
𝜅𝜌

𝜏2 ln (1 −
𝜏𝑆𝐶𝑇𝐶

𝜌𝜅
) − (

𝑆𝐶𝑇𝐶

𝜏
) = −

𝜅𝜌

𝜏2 [ln (1 −
𝜏𝑆𝐶𝑇𝐶

𝜌𝜅
) + (

𝜏𝑆𝐶𝑇𝐶

𝜅𝜌
)]              S 24 

lim
𝜏→0

Δ𝑇𝑚𝑥 = lim
𝜏→0

[−
𝜅𝜌

2𝜏
[

−
𝑆𝐶𝑇𝐶

𝜌𝜅

(1−
𝜏𝑆𝐶𝑇𝐶

𝜌𝜅
)

+ (
𝑆𝐶𝑇𝐶

𝜅𝜌
)]] = lim

𝜏→0
[

1

2

𝑆𝐶
2𝑇𝐶

2

𝜌𝜅
[

1

(1−
𝜏𝑆𝐶𝑇𝐶

𝜌𝜅
)
]] =

1

2

𝑆𝐶
2𝑇𝐶

2

𝜌𝜅
=

1

2
𝑧𝑇𝑐

2  S 25 

 

 

 

 

 



 

 

1.2-With boundary conditions of 𝑇 = 𝑇𝐶 (𝑥 = 0)  and 𝑇 = 𝑇𝐻  𝑎𝑡 𝑥 = 𝐿 

𝑇(𝑥) =
𝜌𝑗

𝜏
𝑥 + 𝐶1𝑒𝑗𝜏𝑥/𝜅 + 𝐶2                                 S 26 

𝑇(𝑥 = 0) = 𝑇𝐶 = 𝐶1 + 𝐶2                                    S 27 

𝑇(𝑥 = 𝐿) = 𝑇𝐻 =
𝜌𝑗

𝜏
𝐿 + 𝐶1𝑒𝑗𝜏𝐿/𝜅 + 𝐶2          S 28 

Δ𝑇−
𝜌𝑗

𝜏
𝐿

𝑒
𝑗𝜏𝐿

𝜅 −1

= 𝐶1                                                 S 29 

∇𝑇 =
𝜌𝑗

𝜏
+

𝑗𝜏

𝜅

Δ𝑇−
𝜌𝑗

𝜏
𝐿

𝑒
𝑗𝜏𝐿

𝜅 −1

𝑒𝑗𝜏𝑥/𝜅                           S 30 

𝑞 = −𝜅∇𝑇 + 𝑗𝑆𝑇 = −𝜅
𝜌𝑗

𝜏
− 𝑗𝜏

Δ𝑇−
𝜌𝑗

𝜏
𝐿

𝑒
𝑗𝜏𝐿

𝜅 −1

𝑒𝑗𝜏𝑥/𝜅 + 𝑗𝑆𝑇              S 31 

 
  

Details for maximizing the heat flux: 

 

𝑞(𝑥 = 0) = −𝑗
𝜏 Δ𝑇−𝜌𝑗𝐿

𝑒
𝑗

𝜏
𝜅𝐿

−1
+ 𝑗 (𝑆𝑐𝑇𝑐 −

𝜌𝜅

𝜏
) = −𝜏𝑗

 Δ𝑇−
𝜌𝐿𝑗

𝜏

𝑒
𝑗

𝜏
𝜅𝐿

−1
+ 𝑗𝑆𝑐𝑇𝑐 (1 −

1

𝑧𝑐𝑇𝑐𝛼𝑐
)              S 32 

 
Let us call  𝑅 = 𝜌𝐿 ,  The following parameter is dimensionless: 𝑅𝑗/𝑆𝑇 

 

𝑞(0) = −𝑗
 τΔ𝑇−𝑅𝑗

𝑒
𝑗

𝜏
𝜅𝐿

−1
+ 𝑗 𝑆𝐶𝑇𝐶 (1 −

1

𝑧𝑐𝑇𝑐𝛼𝑐
) = −𝑗

 A′−𝑅𝑗

𝑒𝑗𝐶′
−1

+ 𝑗 𝐵′             S 33                  

 

Upon expansion around j:    

 

𝑞(0) = −
𝐴′

𝐶′ + (
𝐴′

2
+ 𝐵′ +

𝑅

𝐶′) 𝑗 + (−
𝐴′𝐶′

12
−

𝑅

2
)𝑗2 +

1

12
𝐶′𝑅𝑗3 + 𝑂[𝑗]4       S 34 

The simplest is to keep only up to the second-order term. To do so we look at the ratio of the 

third-order term to the second-order term 

  𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚𝑠 =
1

12
𝐶′𝑅j

𝐴′𝐶′

12
+

𝑅

2

=
𝜏

𝜅
𝐿j

τ2Δ𝑇

𝜌𝜅
+6

=  
𝜏

𝜅
𝐿j

(α2zΔT+6)
 

In most cases α2zΔT ≪ 6    

And we take zT ~ 1, set 𝑗 < 100
𝐴

𝑐𝑚2 and take the order of magnitude for the other parameters, 

i.e. S~10−4 𝑉

𝐾
,  𝜅~1

𝑊

𝑚𝐾
, and 𝐿~ 1𝑚𝑚 

Then 𝑟𝑎𝑡𝑖𝑜~ 
𝜏

6𝜅
𝐿j <  

10−4𝑉

𝐾
 10−3 𝑚 106 𝐴

𝑚2

6  1
𝑊

𝑚𝐾

< 0.016   



 

 

 

 

 

𝑞(0) = −𝑗
 τΔ𝑇−𝑅𝑗

𝑒
𝑗

𝜏
𝜅𝐿

−1
+ 𝑗 𝑆𝐶𝑇𝐶 (1 −

1

𝑧𝑐𝑇𝑐𝛼𝑐
) = −𝑗

 A′−𝑅𝑗

𝑒𝑗𝐶′
−1

+ 𝑗 𝐵′                    𝐵′ = (𝑆𝐶𝑇𝐶 −
𝑆𝐶

𝑧𝑐𝛼𝑐
) 

 

𝐵′𝐶′ =
𝜏

𝜅
𝐿 (𝑆𝐶𝑇𝐶 −

𝑆𝐶

𝑧𝑐𝛼𝑐
) = (𝑆𝐶𝑇𝐶

𝜏

𝜅
𝐿 − 𝑅)  

𝐴′𝐶′ = Δ𝑇
𝜏2

𝜅
𝐿  

𝑞𝑜𝑝𝑡 =
−𝐴′2

𝐶′2
+12𝐴′𝐶′(𝐵′𝐶′−𝑅)+12(𝐵′𝐶′+𝑅)2

4𝐶′2(𝐴′𝐶′+6𝑅)
=

−(𝜏2Δ𝑇2)+12Δ𝑇𝜅(𝑆𝐶𝑇𝐶
𝜏

𝜅
−2𝜌)+12(𝑆𝐶𝑇𝐶)2

4(Δ𝑇
𝜏2

𝜅
𝐿+6𝑅)

      S 35 

 

𝑞𝑜𝑝𝑡 =
𝜅Δ𝑇

𝐿
[

−𝑧α2Δ𝑇+12𝛼𝑐𝑧𝐶𝑇𝐶−24+12𝑧𝐶𝑇𝐶
2/Δ𝑇

4(𝑧α2Δ𝑇+6 )
]                  S 36 

 

If α → 0 

𝑞𝑜𝑝𝑡 =
𝜅Δ𝑇

𝐿
[−1 + 𝑧𝐶𝑇𝐶

2/2Δ𝑇]                                 S 37 

 

While this works well, I noted that at larger values of zT and Thomson, the results are 

strange.  Perhaps the expansion is not valid anymore and higher-order terms are needed.  

We can try to make the original heat flux dimensionless and see if it helps 

 

𝑞(0) = −𝑗
 τΔ𝑇−𝑅𝑗

𝑒𝛾−1
+ 𝑗 (𝑆𝐶𝑇𝐶 −

𝑆𝐶

𝑧𝑐𝛼𝑐
)                      

Doing the same process as before and maximizing the heat flux after keeping the third-order 

term results in the following expression which is too long to be useful.  

 

𝑞

𝜅
= (

−ΔT4τ6+72κ ρ 𝑆2𝑇2(6 κ ρ+𝑆𝑇τ)+3ΔT3τ4(−9κρ+4𝑆𝑇τ)−36 ΔT κρ(24κ2ρ2−12κρ𝑆𝑇τ−7𝑆2𝑇2τ2)

4𝐿(6κρ+ΔT τ2)3 +     

 

6ΔT2τ2(−54κ2ρ2+33κρ𝑆𝑇τ+2𝑆2𝑇2τ2))

4𝐿(6κρ+ΔT τ2)3   

 

Hence it is best to solve the heat flux numerically as done in the manuscript.  

----------------------------------------------------------------------------------------------  

 

 

 

 


