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Abstract: Driven by the variety of available measures intended to estimate predictability of diverse
objects such as time series and network links, this paper presents a comprehensive overview of
the existing literature in this domain. Our overview delves into predictability from two distinct
perspectives: the intrinsic predictability, which represents a data property independent of the chosen
forecasting model and serves as the highest achievable forecasting quality level, and the realized
predictability, which represents a chosen quality metric for a specific pair of data and model. The
reviewed measures are used to assess predictability across different objects, starting from time series
(univariate, multivariate, and categorical) to network links. Through experiments, we establish a
noticeable relationship between measures of realized and intrinsic predictability in both generated
and real-world time series data (with the correlation coefficient being statistically significant at a 5%
significance level). The discovered correlation in this research holds significant value for tasks related
to evaluating time series complexity and their potential to be accurately predicted.

Keywords: predictability measures; time series analysis; intrinsic predictability; realized predictability

1. Introduction

Nowadays, the task of forecasting is a crucial topic with wide-range applications
and significance in various fields. In fact, forecasting provides valuable insights into the
future, helping individuals, organizations, and societies plan and adapt in a dynamic and
uncertain world. Time series [1,2] and network link [3,4] are among the most significant and
extensively investigated objects that have been the focus of forecasting efforts. The range
of developed forecasting models is wide, starting from regression models [5] to neural
networks [6] for time series forecasting, and from well-established classification methods [7]
to random walks [8] for network links prediction.

Despite the extensive range of developed forecasting methods, researchers rarely
address questions concerning the overall predictability of an object and its upper bound.
Nevertheless, there are studies that delve into this matter, and the predictability measures
they propose encompass a wide range, reflecting diverse viewpoints from various scientific
domains, including dynamical systems [9] and information theory [10]. Our objective in
this paper is to clarify the differentiation between prediction accuracy and predictability.
We offer a comprehensive survey within the domain of predictability and the measures
employed to evaluate it.

The concept of predictability is usually regarded from two sides [11]: with respect to
a chosen forecasting model (realized predictability) and as a data property not depending
on a certain model (intrinsic predictability). A significant part of this research is dedicated
to the analysis of the correlation between realized and intrinsic predictability measures.
Despite the extensive body of work on estimating object (such as time series [11] or network
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links [12]) predictability, this topic needs further exploration, particularly in regards to in-
vestigating the relationship between forecasting errors and intrinsic predictability measures.
Gaining a comprehensive understanding of the relationship between forecast accuracy
and time series complexity, which can be gauged using established intrinsic predictability
measures, holds potential for assessing the achievable level of forecast accuracy (up to the
forecasting moment).

Motivated by the above-mentioned issues, we provide an overview of existing pre-
dictability measures developed for various types of time series (univariate, multivariate,
and categorical) as well as for network links. Moreover, we conduct an analysis of the cor-
relation rate between intrinsic and realized predictability measures, utilizing both artificial
and real-world time series. Our findings reveal statistically significant correlations between
specific pairs of these measures. In short, the impact of this study is as follows:

• We formalize the predictability measure concept, specifying measures of realized and
intrinsic predictability;

• We provide a comprehensive survey of predictability measures for time series and
network links, encompassing both realized and intrinsic predictability measures;

• We provide the correlation analysis results between intrinsic and realized time series
predictability measures, offering valuable insights for assessing achievable forecast
accuracy levels prior to the forecasting moment.

2. Overview of Predictability Measures

The task of predicting the future has become a fundamental practice for many scientists
across various disciplines. As a result, a multitude of forecasting methods have been
devised, catering to a diverse array of objects and phenomena. This extensive range of
objects has led researchers to explore predictive techniques in fields as varied as economics,
climate science, medicine, social sciences, and more.

Among the various entities whose behaviors have been subject to prediction, time
series [1,2] and network links [3,4] stand out as some of the most prominent and extensively
studied. Time series, which represent a sequence of data points indexed by time inter-
vals, find applications in fields such as finance [13], meteorology [14], and stock market
analysis [15], where forecasting future values based on past observations is of paramount
importance. Network links, on the other hand, are crucial in understanding and model-
ing the relationships and interactions among entities in complex systems, such as social
networks [16], transportation networks [17], and biological systems [18].

We can highlight certain methods that are widely utilized across diverse fields. Among
these, linear and nonlinear regression models stand out as some of the most straightforward
techniques. What makes them particularly appealing is their simplicity, as they do not
demand significant computational resources and can be constructed without reliance on
specialized tools or software. Regression models continue to find applications in research
and practice, as evidenced by studies such as [5,19,20].

The autoregressive model ranks among the most popular forecasting methodolo-
gies, largely due to its well-defined algorithmic framework for model construction and
parameter selection [21]. The research has seen extensive adoption of various autoregres-
sive models, such as ARMA, ARIMA, ARCH, GARCH, and others, to predict a wide
range of phenomena, such as market prices [15,22–24], network traffic [25–27], and social
processes [28–30]. Oftentimes, hybrid autoregressive models that combine multiple fore-
casting techniques are used [31–34]. By combining the strengths of different methodologies,
these hybrid approaches seek to harness the complementary predictive capabilities of
various models, yielding more accurate and robust forecasts.

Neural networks represent a specific type of nonlinear functional architecture that
involves iteratively processing linear combinations of inputs through nonlinear func-
tions [35]. Artificial neural networks have found extensive application in various domains,
demonstrating their efficacy in predicting stock prices and indices [6,36,37], addressing



Entropy 2023, 25, 1542 3 of 25

industrial challenges [38–40], facilitating medical forecasts [41–45], enhancing weather
forecasts [46–49], and tackling a myriad of other challenges [50–52].

Well-established classification methods, including decision trees, k-Nearest Neighbors
(k-NN), and Support Vector Machines (SVM), among others, have demonstrated their ap-
plicability in predicting links within a network [7], achieving competitive levels of accuracy.
The utilization of these methods in link prediction tasks allows researchers to harness their
robustness and adaptability to different datasets and graph structures. In the work of [53],
a comparative analysis is conducted on various node similarity measures, encompass-
ing both node-dependent indices and path-dependent indices. These measures serve as
essential components in link prediction, aiding in quantifying the potential connections
between nodes and guiding the predictive modeling process. Beyond these widespread
techniques, there exist link prediction methods that leverage concepts such as random
walks [8,54], matrix factorization [55,56], and others [57–59]. These methods are based
on diverse mathematical frameworks to capture complex patterns within the network’s
topology and provide valuable insights into the potential links between nodes.

The approaches discussed in the referenced papers are oriented towards the develop-
ment of methods capable of making predictions with the desired level of quality on test
datasets. However, it has been observed that authors often overlook certain questions:
What is the overall predictability of this object? Can a model be devised that exhibits
superior performance on this dataset?

To validate this concept, we introduce a citation network comprised of the regarded
papers focused on forecasting and predictability assessment methods for various objects,
such as time series and network links. The network and its connections are depicted in
Figure 1. Notably, the figure illustrates that research studies aimed at enhancing forecast
accuracy are rarely linked to predictability studies.

Figure 1. The citation network consisting of papers dedicated to forecasting and predictability
assessment methods for different objects (time series, network links).

In this section, we aim to clarify the distinction between prediction accuracy and
predictability. We provide a comprehensive survey within the field of predictability and
the measures employed for its assessment.
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2.1. General Predictability Concepts

To evaluate the quality of predictive models on data, methods of predictability anal-
ysis for the modeling object can be employed. According to [11], the concept of object
predictability should be divided into two components: realized predictability (RPr) and
intrinsic predictability (IPr). The first type of predictability, realized predictability, is a
function that depends on the forecasting model employed:

ρR = ρ(m, S), (1)

where m is the forecasting model and S is the object or class of objects. For example,
different forecast quality metrics, such as MSE, MASE, RMSE, etc., are nothing but realized
predictability measures. The second type, intrinsic predictability, is independent of the
model used:

ρI = ρ(S), (2)

where S is the object or class of objects. Calculating theoretical estimates of intrinsic
predictability for objects can be challenging, even in the case of simple data classes [60].
Therefore, the upper bound of realized predictability, which represents the predictability
achieved by an optimal model, is used to estimate intrinsic predictability:

ρ̂I = sup
m

ρ(m, S). (3)

Low values of realized predictability could indicate not only the inherent complexity
of the modeled object but also potentially inadequate quality of the selected model. Con-
versely, intrinsic predictability is independent of the forecasting model and can, therefore,
be utilized to assess the data quality.

One of the central questions that motivated the experimental aspect of this study
is how to establish a connection between quality measures (RPr), ρR, and a measure of
intrinsic predictability, ρI . While we possess distinct tools for predictability estimation,
the fundamental question is: do they truly have a meaningful relationship with each other?
We will discuss this later in the paper.

Researchers have developed various approaches to measure the predictability of
diverse objects, including univariate and multivariate time series, categorical time series
(event sequences), network links, and more. It is important to note that there is not a
singular methodological approach in this field, as different researchers approach this
issue from the perspectives of various scientific domains, such as information theory,
dynamical system theory, approximation theory, and others. In the following sections, we
provide an overview of the existing approaches used to assess the predictability of different
types of objects.

2.2. Time Series Predictability

Prior to discussing time series predictability measures, we focus on the notion of intrin-
sic unpredictability (IPr) concerning a random variable. The definition of an unpredictable
random variable was introduced in reference [61]. A random variable ξt is deemed unpre-
dictable with respect to an information set Ωt−1 if the conditional distribution Fξt(ξt|Ωt−1)
aligns with the unconditional distribution Fξt(ξt) of ξt, that is:

Fξt(ξt|Ωt−1) = Fξt(ξt). (4)

Specifically, when Ωt−1 comprises past realizations of ξt, Equation (4) suggests that
having knowledge about these past realizations does not enhance the predictive accuracy
of ξt. It is important to note that this form of unpredictability in ξt is an inherent attribute,
unrelated to any prediction algorithm.
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2.2.1. Univariate Time Series

Methods for estimating univariate time series predictability can be categorized into
two groups: methods for estimating sample predictability and methods for estimating
intrinsic predictability. The first group of methods aims to evaluate realized predictability
(RPr) and encompasses measures that analyze forecast quality. The second group comprises
intrinsic predictability (IPr) estimation methods, which are often rooted in information
theory approaches, particularly those involving Shannon entropy. We will now delve
deeper into each of these groups.

The starting point for developing sample predictability measures is the work of [62],
in which the predictability of a time series generated by a wide-sense stationary process is
proposed to be evaluated as the ratio of the theoretical optimal forecast and the original
time series variances. Consequently, computing predictability values requires knowledge
of the optimal forecast, which is challenging to obtain for real-world time series. Therefore,
coefficients for the sample predictability estimation (RPr), based on the approach from [62],
are developed [63]. The approach from [62] assesses predictability as the ratio of the optimal
forecast and the original series variances, but instead of using the optimal forecast error,
while the proposed approach from [63] employs the forecast error shown by a specific
model. Thus, the coefficient of efficiency (CE) indicates the ratio of the sample variance of
the model’s forecast error to the sample variance of the time series, measured over the entire
observation period. The seasonally adjusted coefficient of efficiency (SACE) differs from
CE in that the series variance is considered within a specific season. The SACE coefficient
is useful for time series where the mean value changes based on the season.

Furthermore, this group includes the work [64], which introduces a metric of realized
predictability based on the ratio of two values: the sum of squared errors in the case
of forecasting the original time series and the case of forecasting the same series after
random shuffling. It is evident that measuring the predictability of a series using the three
mentioned measures is entirely dependent on the model’s performance, and therefore, does
not provide insight into the intrinsic predictability of the data.

The second group of methods for analyzing the predictability of univariate time series
is based on (but not limited to) estimating various forms of entropy for the series, thereby
allowing the assessment of data properties rather than models. This group of methods,
in turn, is further divided into two subgroups: methods for assessing the predictability of
the entire series and methods for assessing predictability on specific scales. Different scales
of the series refer to series obtained from the original by retaining only those values that
occur at specific intervals of time. Investigating the predictability of the series at different
scales can provide valuable information about long-term correlations in the data, which
can subsequently be utilized in training predictive models.

In [10], the Shannon entropy formula is employed to assess the intrinsic predictability
of clients’ trajectories as time series composed of their coordinates. Additionally, utilizing
Fano’s inequality, which relates the average information loss in a noisy communication
channel to the probability of errors during signal reception, the authors established an
upper bound for the trajectory’s predictability. However, computing the trajectory entropy
value using the Shannon formula necessitates the calculation of the probability of finding
a subsequence within the original trajectory for all potential subsequences. This requires
substantial time and computational resources. Moreover, for time series containing ob-
servations spanning several decades, such calculations would be practically infeasible.
For this reason, the Lempel–Ziv–Welch data compression algorithm is applied to estimate
the real entropy value. The core concept of this algorithm involves dynamically building a
phrase dictionary by sequentially reading the text character by character and comparing the
resulting character sequences with the dictionary entries. Consequently, an approximate
entropy value for a time series (y1, y2, ...yN) can be computed by iterating through all
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possible subsequences that start with an element at a specific index and are not continuous
subsequences of trajectory elements whose indices precede the given index:

Ent =

(
1
N ∑

i
Λi

)−1

ln(N), (5)

where Λi is minimum length k, such that the subsequence starting from i with length k
does not appear as a continuous subsequence of (y1, y2, ...yi−1).

The authors of [65] made slight modifications to the formula for approximating entropy
computation and also improved the algorithm for iterating through trajectory subsequences.
A series of experiments described in [65] demonstrates that the entropy estimation proposed
by the authors yields results that are closer to the theoretical predictability bound compared
to the estimation presented in [10].

In Reference [66], permutation entropy (PE) is proposed for assessing the intrinsic
predictability of a series (y1, y2, ...yN). Permutation entropy can be viewed as a method for
analyzing the complexity of a time series. It is also rooted in the Shannon entropy formula,
which is based on the probabilities of encountering permutations in certain subsequences
of the series. The mapping, operating from a space composed of subvectors (embeddings)
of the original series, into the space of permutations, is established through the relationship
of order among adjacent elements of the subvectors. More formally, to calculate the PE
value, one should consider the original series embedding of the dimension m with a time
delay τ, which consists of the following vectors: Ym,τ

j = (yj, yj+τ , ...yj+(m−1)τ), where
j ∈ {1, 2, . . . , N − (m− 1)τ}. Next, each of the M = N − (m− 1) vectors is mapped to
one of the m! possible permutations. Finally, the equation for calculation the permutation
entropy is as follows:

PE(m, τ) = − ∑
i:πm,τ

i ∈Π

P
(
πm,τ

i
)
· ln
[
P
(
πm,τ

i
)]

,

P(πm,τ
i ) =

∑j≤M Iu:type(u)=πi
(Ym,τ

j )

∑j≤M Iu:type(u)=Π(Ym,τ
j )

,
(6)

where Π = {πm,τ
i }

m!
i=1 is the set of all possible permutations of m elements, type(·) is the

relation that maps the vector Ym,τ
j to the permutation πm,τ

j , and IA is the characteristic
function of the set A.

There are also methods for measuring the complexity of a time series that take into
account not only the order in which its elements are arranged, but also the amplitude of the
series values. To incorporate the amplitude of the series values in assessing its complexity,
weighted permutation entropy (WPE) was developed [67]. The computation logic of WPE
is similar to that of PE, with the distinction that each permutation is associated with a
weight equal to the sample variance of the corresponding subvectors of the original series.

In Reference [68], the relationship between the predictability of a time series, expressed
through weighted permutation entropy, and the Mean Absolute Scaled Error (MASE)
is investigated. Experiments are conducted on artificially generated time series with
explicitly defined structures: short-term correlation (AR(1) model), long-term correlation
(ARFIMA(0, d, 0) model), multifractal time series (binomial multifractal model), and chaotic
time series (Lorenz attractor). As a result, predictability bounds are derived for time series
with different structures. By using these bounds to determine the structures of real-world
time series, the authors achieve improved forecasting quality by employing models that
are most suitable for time series with specific structures.

Another measure of intrinsic predictability for a time series, based on entropy, is the
Wavelet Energy Entropy Measure (WEEM) [69]. Wavelet transformation converts a signal
(time series) from its time-domain representation into a frequency-time representation, mak-
ing certain aspects of the original signal (time series) more amenable to study. The authors
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note that the novelty of their proposed measure lies in its ability to account for the dynamics
of the process generating the time series across different scales during its computation.
To calculate the WEEM measure, it is necessary to generate a time series consisting of white
noise realizations, with a length matching that of the original series. Then, the energy of
the wavelet transformation of the original series should be computed, and this value will
be used to calculate the continuous entropy of the wavelet transformation. This entropy
should also be computed for a time series composed of white noise values, and then both
entropy values will be combined in the formula for calculating WEEM. The comparison
with the entropy of white noise is explained by the fact that the entropy of white noise is
maximal, as its energy distribution is uniform across any interval.

In Reference [70], a method is introduced for quantifying the irregularity of the time
series by using the spectrum entropy (SE). It serves as a mean of quantifying the irregularity
present in time series due to the fact that spectral entropy reflects the relative sharpness or
uniformity of the spectral distribution. SE mainly depends on spectral variables, such as
the degree of dominance of a few peaks, the number of peaks, and their peakedness. As the
degree of time series irregularity increases, the SE value also increases.

The obtained power spectrum S( f ) of the time series (y1, y2, ...yN) is normalized using
the following equation: ∑

fn
f=0 S( f ) = 1, where fn is the sampling frequency. The entropy

of the relative power (normalized power) across the entire frequency range is calculated
as follows:

SE =
fn

∑
f=0

S( f ) · log2 S( f ). (7)

In [71], the authors define a measure of dynamic complexity known as the entropy of
the singular value decomposition (SVD entropy). SVD entropy serves as an indicator of
the number of eigenvectors required for a sufficient explanation of the data. The authors
note that the method does not require a significant computational overhead and can be
employed in real-time systems.

To calculate the SVD entropy value for a time series (y1, y2, ...yN), we consider the
embedding matrix X for this series, which can be written as follows:

X = [x(1), x(2), ..., x(N − (order− 1)delay)]T , (8)

where x(i) = [yi, yi+delay, ..., yi+(order−1)delay]. The entropy of the singular value decomposi-
tion is then defined as:

SVD_ent = −
Ms

∑
i=1

σ̄i log σ̄i, (9)

where Ms is the number of singular values of the embedding matrix X and σ̄1, σ̄2, . . . , ¯σMs

are the normalized singular values of X, calculated as σ̄i = σi/ ∑i′ σi′ .
Furthermore, in [72], the authors point out that entropy, as a measure of uncertainty,

lacks sensitivity to nonstationarity in the signal. To address this limitation, they utilized
time-dependent entropy (TDE) based on a sliding temporal window technique.

All the mentioned approaches to measuring the predictability of a series are aimed at
analyzing the entire series. However, it can be useful not only to answer the question of
how predictable a particular series is, but also to analyze in what scale this series exhibits
high or low predictability (IPr).

In [73], one of the first predictability measures, which analyzes not the entire time
series but rather its subvectors of varying lengths, is introduced. This measure is known
as Approximate entropy, which serves as a method to quantify the degree of regularity
and unpredictability of fluctuations within a time series. The algorithm for computing the
Approximate entropy value for a time series (y1, y2, ...yN) with fixed parameters m (chosen
length of subvectors) and r (chosen filtering level or neighbourhood radius) consists of the
following steps:
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1. Form a sequence of vectors x(1), x(2), ..., x(N −m + 1) in Rm, a real m-dimensional
space, defined by x(i) = [yi, ..., yi+m−1];

2. Use the sequence x(1), x(2), ..., x(N −m + 1) to construct, for each i, 1 ≤ i ≤ N −m +
1, Cm

i (r) = {number of x(j) such that d[x(i), x(j)] ≤ r}/(N −m + 1);
3. Define Φm(r) = (N −m + 1)−1 ∑N−m+1

i=1 ln Cm
i (r);

4. Calculate the Approximate entropy value:

App_ent(r, m) = Φm(r)−Φm+1(r). (10)

Sample entropy, proposed in [74], expresses the conditional probability that two sam-
ples (sequences) will remain identical after adding a new point to each sample. Essentially,
Sample entropy is a modification of Approximate entropy. Higher values of Sample entropy
suggest greater complexity, while smaller values indicate more self-similarity and regu-
larity in time series. For a time series (y1, y2, ...yN), the Sample entropy value with fixed
parameters m (chosen length of subvectors) and r (chosen filtering level or neighbourhood
radius) can be found by the following expression:

Samp_ent(r, m) = − ln(
Φm+1(r)

Φm(r)
). (11)

The authors of [74] conducted a series of experiments in which they compared Ap-
proximate entropy with the proposed measure, Sample entropy. By presenting several
arguments that highlight the advantages of the proposed measure, the authors concluded
that Sample entropy offers an enhanced assessment of time series regularity.

Furthermore, for the analysis of predictability in different scales, approaches based
on multiscale entropy are employed. Multiscale Entropy (MSE) [75] is widely used for
assessing the predictability of a time series within different scales. The algorithm for
calculating MSE involves two main steps: (a) the procedure of constructing a set of time
series at different scales (the coarse-graining procedure) and (b) the computation of Sample
entropy [74] for the time series at various scales. Sample entropy can only take two values,
namely 0 and 1. As a result, even slight changes in the behavior of the series can lead to
sharp changes in the values of multiscale entropy. To address this issue, Flexible Multiscale
Entropy (FMSE) [76] is proposed, with values ranging from 0 to 1, enhancing the reliability
and stability of time series predictability measurement. Another modification of MSE,
Composite Multiscale Entropy (CMSE) [77], is previously suggested to enhance the stability
of the MSE method. The results of experiments from [76], conducted on both synthetic
and real time series, demonstrate that FMSE exhibits more consistent behavior across
various scales than MSE and CMSE; FMSE’s greatest superiority is observed in short series.
Moreover, in [78], multiscale entropy differences (MED) are proposed to evaluate the
predictability of financial time series.

As mentioned earlier, different researchers approach the question of predictability
assessment from various scientific perspectives. In [9], five measures (IPr) are identified
that characterize the dynamic system generating a specific time series: correlation dimen-
sion, correlation entropy, Kolmogorov–Sinai entropy, Hurst exponent, and noise measure.
The authors computed the values of all these measures for one-dimensional time series
from a dataset and subsequently conducted series clustering based on the obtained measure
values. After computing the prediction errors for series in different clusters, the authors
concluded that the resulting clusters exhibit varying levels of realized predictability.

2.2.2. Multivariate Time Series

The goal of assessing the predictability of components within a multivariate time
series (also referred to as features) is to select a set of features that best describe the behavior
of the object and enable the model to make forecasts of the desired quality. In fact, there
may be situations where using a particular feature as a predictor does not improve the
forecast quality, complicating the search for patterns in the data. When dealing with large
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volumes of input data, there arises a need to match the original features with a specific
subset of smaller-sized features that can make the model’s forecasts more stable and
effective. However, standard dimensionality reduction methods are focused on preserving
data properties unrelated to predictability, which introduces the risk of losing important
information contained within the data [79].

There is an entire group of methods [79–82] in the field of extracting predictable
features from multivariate time series. All works within this group share a similar algorithm.
The input consists of multivariate time series, and the objective is to find a mapping from a
space whose dimension equals the number of series components to a lower-dimensional
space. The principle of dimensionality reduction may vary depending on the algorithm,
yet all methods boil down to an optimization problem. The approach [82] is aimed at
theoretically assessing realized predictability, while the other works within this group deal
with the intrinsic predictability of features.

Indeed, in [80], a method for extracting slowly changing (or invariant) features, known
as Slow Feature Analysis (SFA), is proposed. This method is utilized to analyze multivariate
time series containing sensor data. The principle of feature extraction for creating a lower-
dimensional space involves retaining those features that change over time as slowly as
possible. Ultimately, the dimensionality reduction task is reduced to a variational calculus
optimization problem.

The Forecastable Component Analysis (ForeCA) method [81] also addresses the task
of feature selection, in this case, forecastable features. The work introduces a measure of
predictability for time series generated by stationary random processes. The calculation
of this measure employs the entropy of the process, which, in turn, is determined using
spectral density. The ultimate task of finding features is reduced to maximizing this
predictability measure.

A similar task of finding a set of features is considered in [82] (Predictable Feature
Analysis, PFA), with the distinction that feature selection is carried out considering a
specific model (i.e., the features that are well predicted by it). A criterion is derived that the
model must adhere to in order to be used with PFA. It is worth noting that despite analyzing
a specific model, this method examines theoretical predictability without utilizing forecast
results. The advantage of this approach is the knowledge of a certain model that is able to
make the predictions of the desired quality. However, the optimization problem is more
challenging than in SFA: the forecasting optimization problem is embedded within the
optimization problem of searching for predictable features.

The method from [79] (Graph-based Predictable Feature Analysis, GPFA) is based
on interpreting predictability as a situation where the variance of a time series in the next
time step is small given that the current value of the series is known. The dimensionality
reduction task is formulated as the search for an orthogonal transformation of the original
series. The term graph in the method’s name is mentioned simply because it is used
as an auxiliary tool to search for the columns of the orthogonal transformation matrix.
Additionally, the predictable components of a multivariate series can be seen as neighboring
nodes on a specific graph, connected by an edge.

All the methods discussed in this section (apart from [82] that theoretically assesses
realized predictability) are aimed at estimating intrinsic feature predictability. Additionally,
there exists a straightforward approach to estimate realized feature predictability [83,84].
This approach identifies the most useful features for predicting the remaining time of
system performance. The predictability measure is defined as a function dependent on the
prediction horizon, model class, model parameters, and the required accuracy threshold.
The proposed predictability measure combines the threshold and the accuracy achieved by
the model into a single value ranging from 0 to 1. Subsequently, pairs (a set of features and
a model) with a favorable predictability value are selected through brute force.
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2.2.3. Categorical Time Series

This section is dedicated to the predictability of (often short) univariate time series
consisting of categorical values. In practice, these time series can be referred to as events or
event sequences. For instance, in [85], sequences composed of items viewed or purchased
by users during a single session on a retailer’s website are considered. Predictability
in this context refers to the probability of correctly determining the next element in the
sequence (i.e., the purchase of a specific item), given the session’s start and the user’s session
history. The authors provide an estimation of the maximum theoretical predictability of
the sequence, expressed using entropy as formulated in [10]. Furthermore, the theoretical
predictability realized by specific algorithms (RPr) is assessed by analyzing potential
algorithm outcomes and selecting the result with the best forecasting quality. For instance,
in the case of a Markov chain model, predictability is evaluated as the proportion of
observations where the most likely transition from one state to another occurred. Thus,
theoretical predictability can only be assessed for explicit models. Estimating the theoretical
predictability for black-box models using this approach is not feasible.

In Reference [86], the authors consider the problem of forecasting the next point in
a trajectory (the category of the point, not its coordinates). Similar to [86], the maximum
theoretical predictability of the sequence is assessed using the entropy formula from [10].
Additionally, two statistics are introduced to measure the gap between theoretical pre-
dictability (IPr) and the maximum prediction accuracy achieved using a set of models (3).

In [87,88], the authors assess the realized predictability (RPr) of client’s transactional
sequences by employing a coefficient based on the mean absolute error of the selected
predictive model for each sequence. Subsequently, they categorize all sequences into pre-
dictability classes based on the values of the predictability measure. This approach can be
utilized to gauge the predictability level of a sequence prior to forecasting, by utilizing a
form of meta-classifier that assigns categorical time series to their corresponding predictabil-
ity classes. Experiments demonstrated the efficiency of this approach, as the estimated
predictability classes consistently align with those obtained through the application of a
prediction model.

2.3. Network Link Predictability

Most of the studies on network link predictability discussed in this section are focused
on assessing intrinsic predictability. In Reference [12], a network is considered predictable
if the removal or addition of a small number of randomly chosen nodes preserves its
fundamental structural characteristics. Such networks are referred to as structurally con-
sistent. The proposed measure is the Universal Structural Consistency Index, which is
based on perturbing the adjacency matrix and evaluates the corresponding changes in
network structural features. Through conducted experiments, a strong correlation is re-
vealed between link prediction accuracy and the structural consistency index in various
real-world networks, demonstrating the applicability of network structural consistency
as a link predictability assessment. Moreover, this index can be used in tasks of missing
links prediction. Such experiments with networks constructed using the Erdos–Renyi
model indicate, as expected from the networks’ construction, that this type of networks is
poorly predictable.

Furthermore, to assess the predictability of network structure, the normalized shortest
compression length of the network structure can be employed [89]. Any network can be
transformed into a binary string through compression. The length of the string increases
as the randomness in the network structure grows. The authors compared their proposed
predictability measure with the accuracy of the best available link prediction algorithm (as
an approximation of the optimal algorithm) estimated via performance entropy and find a
strong correlation.

Another work focusing on the assessment of the intrinsic predictability of network
links is [60]. By considering ensembles of well-known network models, the authors analyt-
ically demonstrated that even the best possible link prediction methods provide limited
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accuracy, quantitatively dependent on the ensemble’s topological properties such as degree
heterogeneity, clustering, and community structure. This fact implies an inherent limitation
on predicting missing links in real-world networks due to uncertainty arising from the
random nature of link formation processes. The authors show that the predictability limit
can be estimated in real-world networks and propose a method to approximate this limit
for real-world networks with missing links. The predictability limit serves as a benchmark
for evaluating the quality of link prediction methods in real-world networks. Additionally,
the authors conducted experiments comparing their proposed predictability measure with
the structural consistency index from [12].

The authors of [90] assessed the predictability of links in temporal networks. The tem-
poral nature of links in many real-world networks is not random, but predicting them is
complicated due to the intertwining of topological and temporal link patterns. The paper
introduces an approach based on Entropy rate, which combines both topological and
temporal patterns to quantitatively assess the predictability of any temporal network (in
previous works, only temporal aspects were considered). To examine both topological
and temporal properties of the network, the sequence of adjacency matrices is treated as
realizations of a random process. The subsequent procedure is similar to the one in [10]
for trajectory predictability estimation: the entropy rate and theoretical upper bound of
intrinsic predictability are derived, and then applying the Lempel–Ziv–Welch data com-
pression algorithm yields an expression for the approximate entropy value. It is noted that
for most real-world temporal networks, despite the increased complexity of predictability
estimation, the upper bound of combined topological-temporal predictability is higher
than that of temporal predictability.

Furthermore, there are two studies [91,92] focusing on the realized predictability of
network links; specifically, the predictability observed through a selected feature-based
link prediction model. The authors evaluate link predictability by assessing the error of the
chosen model and divide the links within a small portion of the network into high and low
predictability classes based on the error value. Subsequently, they train a meta-classifier on
this subset of the network to estimate the predictability class using certain link features.
This meta-classifier can then be applied to the entire network to estimate link predictability
without the time-consuming process of training a link prediction model.

Moreover, there are methods that involve converting time series into networks. These
methods can be categorized into three classes based on the type of resulting network [93]:
(a) proximity networks; (b) visibility networks; (c) transition networks. The first category
of methods constructs networks by utilizing information about the mutual proximity of
various segments within time series. Mutual proximity can be measured in various ways,
such as through the correlation between time series cycles (resulting in a cycle network [94]),
the correlation between time series segments (resulting in a correlation network [95]), or the
closeness of time series segments in phase space (resulting in a recurrence network [96]).
The second category, known as visibility network methods, generates networks based on the
convexity of consecutive observations in series [97]. Lastly, the class of methods producing
transition networks constructs networks by considering the transition probabilities between
groups of aggregated values from series [98].

However, to the best of our knowledge, there is only one study [99] that analyzed
predictability under such transformations. The authors utilized the transition network
approach to convert time series into networks. They then calculated network characteristics
and employ them for clustering time series into two groups. By measuring the forecasting
errors obtained by various models on time series from these clusters, they concluded that
these clusters can be considered as classes of high and low predictability, as the mean
forecasting error in one class is significantly lower than in the other.

2.4. Overview Summary

To assess the predictability of data, there is a multitude of measures that allow working
with various objects: univariate and multivariate time series, categorical time series (se-
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quences of events), and network links. In the case of time series, measures are developed to
evaluate the predictability of the series as a whole, as well as at specific scales. The diversity
of measures presented in the studies is due to researchers expressing their perspectives
on predictability assessment from various scientific domains, such as information theory,
dynamical systems, approximation theory, and so on. However, despite the variety of
existing predictability measures, the challenge of proper analysis of connection between
intrinsic and realized predictability remains unresolved. In the next section, we will try to
shed a light on this problem.

3. Correlation Rate between Intrinsic and Realized Predictability

The objective of the second part of the paper is to investigate the correlation between
intrinsic and realized predictability. Exploring the presence of a connection between the
measure of forecast accuracy and the measure of intrinsic predictability proves valuable in
addressing the challenge of evaluating forecast quality prior to the forecasting moment.
It is worth noting that similar work was conducted in [11], focusing on a single intrinsic
predictability measure (permutation entropy). In contrast, our study offers a more compre-
hensive approach by encompassing six distinct intrinsic predictability measures through
an extensive experimental investigation.

3.1. Method Description
3.1.1. Problem Statement

The problem can be formulated as follows: consider a set of N time series of a cer-
tain length, denoted as {yi}n

i=1, along with m forecasting models, represented as {mj}M
j=1.

For each series yi, it is possible to compute the measure of intrinsic predictability denoted
as ρIi = ρ(yi). Utilizing the model mj to forecast the time series yi, the measure of realized
predictability, labeled as ρRj,i = ρ(mj, yi), can be computed. This measure will not solely
rely on the series yi, but also on the specific forecasting model mj chosen. By setting,
for instance, j = 1 (using a specific forecasting model m1), what will be the correlation
corr(ρIi , ρR1,i )? Moreover, when analyzing the entire array of forecasting models, what will
be the predictability measures’ correlation corr(ρIi , ρRj,i )? The insights derived from these
inquiries will offer valuable insights for evaluating the internal complexity of the series.

3.1.2. Pipeline

The task of examining the correlation between intrinsic and realized predictability is
accomplished through four key steps (as illustrated in Figure 2). In the initial step, known
as data processing, alongside common transformations such as addressing missing values,
scaling, and partitioning into training and test sets, the time series are adapted to enable the
application of various forecasting models. It is important to mention that the experiments
are conducted using both real-world time series data and synthetic ones, necessitating the
generation of time series at this stage as well.

Utilizing the processed data, measures of intrinsic predictability are computed (six
measures are highlighted in Figure 2). Concurrently, the time series are fed into the
forecasting models (five models are employed, also depicted in Figure 2). Subsequent to
applying the forecasting models to the time series, realized predictability measures (five
forecast error metrics) are computed based on the generated forecasts. In the concluding
step, all the computed datasets are gathered, and pairwise correlation coefficients are
computed, forming correlation matrices.
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1. MAE
2. MSE
3. RMSE
4. MAPE
5. R2

1. Entropy (Ent)
2. Permutation entropy (PE)
3. Spectral entropy (SE)
4. Entropy of the singular value

spectrum (SVD_ent)
5. Approximation entropy (App_ent) 
6. Sample entropy (Samp_ent)

1. ARIMA
2. LSTM
3. RF
4. XGBoost
5. CNN 

time series
data processing

prediction models

calculating of intrinsic
predictability measures

calculating of realized
predictability measures

intrinsic vs realized
predictability
correlation

Figure 2. The pipeline of predictability correlation analysis.

3.1.3. Forecasting Models and Predictability Measures

As mentioned in Section 3.1.2, various forecasting models are employed to investigate
the correlation between measures of intrinsic and realized predictability.

ARIMA, or Autoregressive Integrated Moving Average, is a widely used forecasting
model for predicting time series across a range of fields. One of the strengths of this
model is its clear mathematical foundation, accompanied by a step-by-step algorithm
for constructing the model and selecting its parameters [21]. ARIMA comprises three
parameters (p, d, q), where p is the autoregressive order, q is the moving average order
and d is the difference order. ARIMA(p, d, q) serves as an extension of ARMA(p, q) models
to address nonstationary time series. These nonstationary series are transformed into
stationary ones by taking differences of order d from the original time series—a process
known as integration.

The ARIMA methodology for time series involves initially assessing the stationarity
of the series. The degree of integration of the time series is determined, typically restricted
to either first or second order. If the degree of integration surpasses zero, the series is trans-
formed through differencing by the corresponding order, and subsequently, an ARMA(p, q)
model is built.

In the following experiments, the model parameters are determined using the grid
enumeration method. This involves considering all combinations of p ∈ {1, 5}, d ∈ {0, 2},
q ∈ {1, 5}, and selecting the parameter sequence that minimizes the Akaike criterion.

LSTM (Long Short-Term Memory) is a type of recurrent neural network designed to
capture long-term dependencies within data sequences. The LSTM model was introduced
in [100] and continues to be extensively utilized, particularly in tasks that involve retaining
information over extended time intervals.

The LSTM architecture employed for predicting the next observation in the time
series comprises a single hidden layer of 50 LSTM units and an output layer tasked with
predicting a single numerical value. The input shape is determined by the number of time
steps and the number of features. In this context, the number of time steps is set to 10
(further elaboration on the selection of time steps is provided). Given that the experiments
utilize univariate series, the number of features is one. To train the model, the Adam
optimization algorithm and the Mean Squared Error (MSE) loss function are employed.

Two tree-based machine learning algorithms are applied: Random Forest and XGBoost
(eXtreme Gradient Boosting). Decision trees are a supervised learning method that works
by recursively splitting the input data into subsets based on the values of different features.
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Each split is determined by a decision rule, which is chosen to maximize the separation of
the data into different classes or to minimize the prediction error.

Random Forest is an algorithm for solving classification and regression problems
based on decision trees and ensemble learning. In fact, the algorithm is based on bagging,
so all trees of the ensemble are constructed in parallel on independent samples.

Similar to Random Forest, Gradient Boosting is based on ensemble learning, but in this
case, the type of ensemble method is boosting. This means that each tree in the ensemble is
constructed in such way as to focus on instances where the previous tree failed. Thus, one
tree learns from the mistakes of another tree.

In this study, the Random Forest algorithm is employed with the following parameters:
an ensemble consisting of 1000 trees, and the squared error function is utilized to evaluate
the quality of splits. Similar to the LSTM model, the input shape consists of the number of
time steps and the number of features, following similar data processing steps. XGBoost is
also employed, utilizing 1000 gradient boosted trees, with the squared error serving as the
corresponding metric for performance evaluation.

Convolutional Neural Networks (CNNs), originally developed for image data, are
increasingly being applied to address time series forecasting problems. As a result, we also
incorporate this model into our study. A typical CNN consists of three types of layers: a
convolutional layer, a pooling layer, and a fully connected layer. However, the architecture
can vary depending on the specific application and design choices.

The CNN model used in this study follows the architecture outlined below. The initial
layer is a convolutional hidden layer that operates over sequences. This layer consists of
64 filter maps, and the kernel size is set to two. The ReLU activation function is applied.
Following the convolutional layer, a pooling layer is employed to filter the output of the
previous layer, capturing the most important features. Subsequently, a flatten layer is used
to transform the feature maps into a single one-dimensional vector. A fully connected
dense layer interprets the features extracted by the convolutional segment of the model.
The final dense layer is designed to predict a single value, representing an observation
from the time series. Similar to the LSTM model, the Adam optimization algorithm and
MSE-loss function are utilized for model fitting.

Entropy and its various modifications are employed to assess the intrinsic predictabil-
ity of the series, namely, Entropy estimated via Lempel–Ziv data compression (5), Per-
mutation entropy (6), Spectral entropy (7), Singular value decomposition entropy (9),
Approximate entropy (10), and Sample entropy (11). Detailed descriptions and formulas
can be found in Section 2.2.1. Forecast errors serve as measures of realized predictability,
utilizing five standard metrics: MAE, MSE, RMSE, MAPE, and R2. While these measures
are standard, their descriptions and calculation formulas are provided in Table 1.

Table 1. Formulas for calculating forecast errors (measures of realized predictability).

Measure Formula

Mean Absolute Error (MAE) 1
n ∑n

i=1 |y(i)− ŷ(i)|

Mean Squared Error (MSE) 1
n ∑n

i=1 (y(i)− ŷ(i))2

Root Mean Square Error (RMSE)
√

MSE

Mean Absolute Percentage Error (MAPE) 1
n ∑n

i=1
|y(i)−ŷ(i)|

y(i) · 100

Coefficient of determination (R2) ∑n
i=1(ŷi−yi)

2

∑n
i=1(yi−y)2

It is worth mentioning that measures of intrinsic predictability are computed on
the training set, whereas forecast errors are computed on the test set after the model’s
predictions are obtained. The assumption is that by calculating measures such as entropy
for the series, we can gain additional insights into the intrinsic complexity before applying
the forecasting model.
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3.2. Experiments and Results
3.2.1. Data Description, Generation, and Processing

To ensure the reliability of the results, both real-world and artificial series are utilized
in the experiments. Artificial series are created by combining various components, such as
periodic components, white noise, and random walks, in different proportions. The general
equation for the generated series is as follows:

yi = ktYt + kpYp + knYn + krYr, (12)

where kt, kp, kn, and kr are coefficients, Yt corresponds for values from uniform distribution,
Yp is the periodic component of the time series, Yn is the random component of the time
series, and Yr is the random walk component. Examples of the generated series are
shown in Figure 3. A total of 250 generated series are produced for the experiments.
The code for the artificial time series generation (the length of time series as well as
their entity can be customized) is available on GitHub (https://github.com/Anthony-
Cov/Timesergraph/blob/main/ArtSerGenerator.py, accessed on 7 September 2023).

(a) (b)

(c) (d)

Figure 3. Examples of generated series: (a) only the periodic component, (b) the periodic component
and a random walk, (c) the periodic component and randomness, (d) all the components.

To assess the correlation on real-world time series, another set of 250 series is collected,
reflecting the dynamics of various socio-economic indicators. This dataset primarily in-
cludes stock prices of various companies, along with dynamics of consumer loans, crude oil
prices, deposits, unemployment rates, capital expenditures, inflation rates, and many
others. Part of the series is available on our GitHub (https://github.com/Anthony-
Cov/Timesergraph/tree/main/RealWeekly, accessed on 7 September 2023), while the rest
is taken from the Kaggle website (https://www.kaggle.com/datasets/borismarjanovic/price-
volume-data-for-all-us-stocks-etfs, accessed on 7 September 2023).

For each time series, missing values are filled by propagating the previous observation
forward to the next valid one (this data processing step is applied only to real-world time
series). Subsequently, all the series are normalized to ensure that each value falls within the
range from 0 to 1. This normalization is necessary to facilitate the comparison of forecast
errors on an absolute scale. Finally, the dataset is split into training (800 observations)

https://github.com/Anthony-Cov/Timesergraph/blob/main/ArtSerGenerator.py
https://github.com/Anthony-Cov/Timesergraph/blob/main/ArtSerGenerator.py
https://github.com/Anthony-Cov/Timesergraph/tree/main/RealWeekly
https://github.com/Anthony-Cov/Timesergraph/tree/main/RealWeekly
https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
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and test (200 observations) samples, starting from the last observation of each series in
reverse order.

Not all the forecast models used in this study can directly accept a nontransformed
training sample as input. Therefore, the time series are transformed to be represented as a
supervised learning problem, allowing them to be compatible with the models used.

In Figure 4, the formation of input vectors from the processed data is illustrated.
The input vector is constructed as follows: Xi = (y1, . . . , yi+n−1), where yi represents an
observation from the time series, n is the number of steps considered for learning, and i is
the index of the time series: i ∈ {1, . . . , N − n− 1}. The desired output for the prediction
model corresponds to the value of the next observation for each vector Xi: Yi = (yi+n).

value

y1

y2

y3

y4

y5

y6

y7

y8

y9

X

y1 y2 y3 y4 y5

Y

y6

y2 y3 y4 y5 y6

y3 y4 y5 y6 y7

y4 y5 y6 y7 y8

y7

y8

y9

n steps

observations  
of time series

Figure 4. Example of transforming time series into input vectors with n = 5.

3.2.2. Experiments with Artificial Time Series

The transformed data are divided into train and test periods based on the selected
threshold (80% of the data for training and 20% for testing). As mentioned earlier, five
models are employed to generate forecasts (ARIMA, LSTM network, Random Forest,
XGBoost, and CNN). Using the forecasts generated by these models, the measures of
realized predictability are computed. Additionally, based on the training dataset, measures
of intrinsic predictability are calculated. Consequently, a dataset is compiled for each of
the five models, containing values of predictability measures (five measures of realized
predictability and six measures of intrinsic predictability) for each time series.

In Figure 5, an example of scatter plots is presented, depicting the relationship between
measures of intrinsic and realized predictability for different forecasting models. The points
on these plots are categorized into three classes based on the level of realized predictability,
defined by the 0.33 quantile and 0.66 quantile (ensuring an equal number of points in each
class). The points are color-coded according to their predictability class: red signifies a class
with low predictability, where high forecast error values (y-axis) correspond to high values
of the intrinsic predictability measure (x-axis). Conversely, green points represent a group
of series characterized by low forecast errors and low values of the intrinsic predictability
measure (indicating highly predictable series).

In Figure 5a, a scatter plot for the ARIMA forecasting model is presented. MAE is
utilized as a measure of realized predictability, while permutation entropy (PE) is employed
as a measure of intrinsic predictability. Notably, there exists a strong relationship between
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these predictability measures (Pearson correlation coefficient: 0.87, Spearman correlation
coefficient: 0.97). Figure 5b–d illustrate analogous plots for the other models and their
respective predictability measures.

(a) (b)

(c) (d)

Figure 5. Scatter plots obtained by the forecasting models: (a) ARIMA forecast, with measures
of MAE and PE, (b) LSTM forecast, with measures of RMSE and SVD entropy, (c) CNN forecast,
with measures of RMSE and SVD entropy, (d) XGBoost forecast, with measures of RMSE and SE.

Subsequently, all the datasets are merged, encompassing all forecasting models and
predictability measures. Pearson pairwise correlation coefficients are then computed,
and a correlation matrix is compiled (Figure 6). The obtained correlation coefficients are
subjected to a test for statistical significance. This test aims to evaluate the null hypothesis
H0 : rxy = 0, where rxy represents the pairwise correlation coefficient between variables
x and y. The p-value is employed for this purpose. Essentially, the p-value signifies the
likelihood of committing an error in rejecting the null hypothesis (Type I error). The chosen
significance level, denoted as α, is set at 0.05.

Figure 6. Correlation matrix (artificial time series, Pearson correlation coefficient).

Upon analyzing the correlation matrix in Figure 6, it becomes apparent that correla-
tions exist between measures of realized predictability (MAE, MSE, RMSE) and measures
of intrinsic predictability (PE, SE, SVD entropy, Approximate entropy, Sample entropy).
In several instances, the correlation surpasses 0.8. Given that the p-values for these pairs
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are all below α = 0.05, we are justified in rejecting the null hypothesis (H0) at the 5% sig-
nificance level. Consequently, a strong statistical relationship is established for numerous
pairs of realized and intrinsic predictability measures.

The Pearson correlation test is parametric, requiring the assumption of normal distri-
bution for each of the compared variables. When assessing correlations among variables
with nonnormal distributions, including those measured on an ordinal scale, the Spearman
rank correlation coefficient is more appropriate. Figure 7 illustrates the correlation matrix
using the Spearman correlation coefficient. It is evident that a strong correlation exists
between measures of realized and intrinsic predictability. The highest correlation value
reaches 0.88 (in cases involving pairs such as SVD entropy and MAE, MSE, RMSE). In all
three pairs, the p-values are considerably below 0.05, indicating that we can reject the null
hypothesis at the 5% significance level.

Figure 7. Correlation matrix (artificial time series, Spearman correlation coefficient).

The plots for several pairs of measures are displayed in Figure 8. As one can see,
in the majority of cases, the highly predictable and medium predictable classes are dis-
tinctly distinguished from each other, while points from the low predictable class exhibit
slight scattering.

(a) (b)

(c) (d)

Figure 8. Scatter plots obtained after merging data from all forecasting models: (a) MAE and Sample
entropy as measures, (b) RMSE and PE as measures, (c) RMSE and Sample entropy as measures,
(d) RMSE and SVD entropy as measures.
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Hence, in the case of the generated series, a strong correlation between measures of
intrinsic and realized predictability is evident. The significance test outcomes affirm that
the computed correlation coefficients for the mentioned pairs hold statistical significance.

3.2.3. Experiments with Real-World Time Series

Similar experiments are also conducted on real-world time series. However, it is
crucial to acknowledge a limitation that has been identified at this stage of the study.

Among the forecasting models used for the experiment, two models based on random
forests are included: Random Forest and eXtreme Gradient Boosting. The nonlinear nature
of random forests can provide an advantage over other algorithms, which is why these
models are frequently employed for forecasting tasks. Nevertheless, it is essential to
be aware that random forests are not capable of extrapolation. They can solely provide
predictions based on the average of labels previously observed. This behavior can present
challenges when the range of inputs during training and testing periods differs.

Considering this limitation, models based on random forests are excluded from the
experiment involving real-world time series. This decision is made because the range of
values in the test sample significantly diverges from the range of values in the training
sample. As a result, analyzing forecast errors (measures of realized predictability) under
such circumstances would be incorrect.

Figure 9 shows the correlation matrix for the remaining three models. It is evident
that the correlation values have undergone substantial changes. However, for a few pairs
(such as MAPE-SVD entropy), a significant correlation still exists. A statistical significance
assessment of the correlation coefficient reveals that this correlation is significant at a
5% significance level. Moreover, several pairs exhibit a moderate relationship: MAE–
Entropy, RMSE–Entropy, MAE–Permutation entropy, RMSE–Permutation entropy, MAPE–
Permutation entropy, MAE–Approximate entropy, RMSE–Approximate entropy, MAE–
Sample entropy, RMSE–Sample entropy, and MAPE–Sample entropy. For these pairs,
the null hypothesis of zero correlation is also rejected at a 5% significance level.

Figure 9. Correlation matrix (real-world time series, Pearson correlation coefficient).

In the correlation matrix with Spearman correlation coefficients (Figure 10), sev-
eral pairs with moderate correlations can also be observed. These pairs include: MAE–
Entropy, RMSE–Entropy, MAE–Permutation entropy, RMSE–Permutation entropy, MAPE–
Permutation entropy, MSE–SVD entropy, MAE–Approximate entropy, RMSE–Approximate
entropy, MAE–Sample entropy, and RMSE–Sample entropy. Additionally, the correlation
between MAPE and SVD entropy shows a noticeable relationship. Importantly, all these
correlations are significant at a 5% significance level.
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Figure 10. Correlation matrix (real-world time series, Spearman correlation coefficient).

It is worth noting that in some cases, the pair correlation for certain models (as
shown in Figure 11 for the ARIMA model) reaches a value of 0.8 (Figure 11a) according
to the Pearson correlation coefficient (for the MAE–Permutation entropy pair) and 0.74
(Figure 11b) according to the Spearman correlation coefficient (for the MAPE–SVD entropy
and MAE–Approximate entropy pairs). The scatter plot for the MAPE–SVD entropy pair
is depicted in Figure 12. Within this plot, the class of points with low predictability (red
colored points) appears to be more dispersed throughout the space, while the other two
classes reflect the relationship.

(a) (b)

Figure 11. Correlation matrices for real-world time series (ARIMA model): (a) Pearson correlation
coefficient, (b) Spearman correlation coefficient.

Figure 12. Scatter plot for the MAPE–SVD entropy pair obtained by ARIMA prediction model
(real-world time series).



Entropy 2023, 25, 1542 21 of 25

3.3. Experiments Summary

Experiments conducted on both generated and real-world time series reveal a pos-
itive relationship between measures of intrinsic predictability and measures of realized
predictability. Specifically, a strong relationship is observed for multiple pairs (such as SVD
entropy and MAE, MSE, RMSE, etc.) in the case of generated time series (Figure 7), and a
noticeable relationship (in the case of MAPE–SVD entropy) is identified for real-world time
series (Figure 10).

Hence, the connection between forecast errors (realized predictability) and the mea-
sures of intrinsic predictability is investigated. The conclusion about the presence of
correlation proves highly beneficial in scenarios where evaluating time series complexity
and its potential to be predictable with high level of accuracy is crucial. Estimating pre-
dictability using intrinsic predictability measures prior to the forecasting moment could
notably streamline the process, minimizing time spent on model selection, parameter
tuning, and other stages, especially for time series with evidently low predictability.

4. Conclusions

Motivated by the multitude of existing measures for estimating the predictability of
different objects (time series, network links), this paper proposes an overview of existing
works in this field. Specifically, we investigate predictability from two distinct perspectives:
the intrinsic predictability, which represents a data property independent of the chosen
forecasting model and serves as the highest achievable forecasting quality level, and the
realized predictability, which is a selected quality metric for a specific data–model combina-
tion. We regard existing in the literature measures of intrinsic and realized predictability,
applicable to univariate, multivariate, and categorical time series, as well as network link
predictability estimation.

In the second part of our paper, we provide an analysis of the correlation between
measures of realized and intrinsic predictability, which employs five forecasting models,
five measures of realized predictability (forecast errors), and six measures of intrinsic
predictability. Furthermore, to ensure the reliability of our findings, the experiments are
conducted using both generated and real-world time series data. The presence of a strong
statistically significant relationship (at a significance level of 5%) between predictability
measures is obvious in the generated series. This relationship is observed not only across
specific forecast models (as demonstrated in Figure 5), but also holds true for all models
(Figure 8). The experiments involving real-world time series also confirm the presence of
a relationship. Notably, the MAPE–SVD entropy pair exhibits a noticeable relationship
(Figure 10), with the correlation coefficient being statistically significant at a significance
level of 5%.

The limitations associated with using the regarded intrinsic predictability measures
to estimate the complexity of time series before the forecasting moment are as follows.
Firstly, all the regarded predictability measures are sensitive to data quality (missing
values and measurement errors should be addressed during the preprocessing stage).
Secondly, in the case of time series with changing over time nature, predictability measures
should be applied carefully (with the possible extracting of time periods with different
statistical properties).

The results of this research regarding the observed correlation are highly valuable for
tasks that involve assessing the complexity of time series and their potential to be accurately
predicted. Utilizing intrinsic predictability measures for predictability estimation prior to
the actual forecasting moment can considerably reduce the time and effort required for tasks
such as selecting an appropriate forecasting model and tuning parameters, especially for
time series with evident low predictability. Further elaboration of this research is possible
in the direction of inclusion of case studies illustrating how the obtained results can be
applied to enhance the time series forecasting process. It will be also useful to expand the
results of the experimental study on the network links predictability measures. This task is
planned as a part of our future work.
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