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Abstract: The communication reliability of wireless communication systems is threatened by mali-
cious jammers. Aiming at the problem of reliable communication under malicious jamming, a large
number of schemes have been proposed to mitigate the effects of malicious jamming by avoiding
the blocking interference of jammers. However, the existing anti-jamming schemes, such as fixed
strategy, Reinforcement learning (RL), and deep Q network (DQN) have limited use of historical data,
and most of them only pay attention to the current state changes and cannot gain experience from
historical samples. In view of this, this manuscript proposes anti-jamming communication using
imitation learning. Specifically, this manuscript addresses the problem of anti-jamming decisions
for wireless communication in scenarios with malicious jamming and proposes an algorithm that
consists of three steps: First, the heuristic-based Expert Trajectory Generation Algorithm is proposed
as the expert strategy, which enables us to obtain the expert trajectory from historical samples. The
trajectory mentioned in this algorithm represents the sequence of actions undertaken by the expert in
various situations. Then obtaining a user strategy by imitating the expert strategy using an imitation
learning neural network. Finally, adopting a functional user strategy for efficient and sequential anti-
jamming decisions. Simulation results indicate that the proposed method outperforms the RL-based
anti-jamming method and DQN-based anti-jamming method regarding solving continuous-state
spectrum anti-jamming problems without causing “curse of dimensionality” and providing greater
robustness against channel fading and noise as well as when the jamming pattern changes.

Keywords: anti-jamming communication; spectrum decision; imitation learning; expert strategy

1. Introduction

With the large-scale application of autonomous driving [1], Intelligent Vehicles [2],
drone light formation show [3], Internet-of-Things [4] and other technologies, information
technology is deeply integrated into our lives. As the foundation of information tech-
nology, wireless communication is easy to be affected by user interference and malicious
jamming due to the openness of its channel, which reduces the efficiency of its actual
deployment [5–8].

Addressing the impact of such issues is crucial in wireless communication systems [9].
Therefore, making timely and effective spectrum decisions for different jamming patterns
is practical in the anti-jamming process of wireless communication systems. Researchers
have proposed various anti-jamming methods, including the extensively studied intelligent
anti-jamming technology based on machine learning. Table 1 shows a summary of related
research, and mainly introduces the research status of intelligent anti-jamming technology
based on federated learning (FL), meta-learning (Mate-L), reinforcement learning (RL),
and deep reinforcement learning (DRL). To restore normal communication quickly and
stably when the wireless communication system is faced with jamming, researchers use the
method based on automatic control [10,11] to prevent jamming. To address the issue of local
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data secrecy during multi-agent anti-jamming communication, researchers employ feder-
ated learning (FL) [12–14] for anti-jamming purposes. To enable agents to learn how to learn
during anti-jamming communication, researchers have utilized meta-learning [15–17] for
anti-jamming. To facilitate anti-jamming decision-making as the state changes, researchers
employ reinforcement learning (RL) [18–20] for anti-jamming communication. To mitigate
the “curse of dimensionality” problem associated with RL, researchers have extensively
investigated the use of DQN [21–23] for anti-jamming communication. DQN has shown
promise in the field of anti-jamming decision-making due to its ability to make decisions
while learning and adapting to new jamming scenarios. Building upon this foundation,
scholars worldwide have proposed improved methods such as multi-agent layered Q-
learning (MALQL) and UCB-DQN [23].

Table 1. Summary of Related Research.

Reference Year Research Area Technical Scheme Method Weakness

[10] 2020 LTE & LoRa
Automated Laboratory

Measurement Automatic Control
Method

Historical experience
is underutilized[11] 2020 IoT Automated Measurement

[12] 2023 5G FDRL
FL Performance is

sacrificed for security[13] 2022 Secrecy-driven FL FL
[14] 2022 FANET AFRL

[15] 2021 Beamforming Meta Learning
Meta-L High computing

power requirements[16] 2022 Image Classification MGML
[17] 2020 Jamming Recognition Meta Learning

[18] 2021 Wireless sensor networks JMAA

RL
Curse of dimensionality;

Unable to cope with
continuous-state Spaces

[19] 2022
UAV Anti-Jamming

Communication CMRL

[20] 2022
Deceiving-based

anti-jamming methods Reinforcement Learning

[21] 2018
Frequency Selection

of HF Communication Deep Reinforcement Learning

DRL Low sampling efficiency;
Unsteadiness[22] 2023

Autonomous
Vehicle Networks Deep Reinforcement Learning

[23] 2022 UAV Swarm Network UCB-DQN

LTE: The long term evolution of Universal Mobile Telecommunications System; LoRa: Long Range Radio;
FDRL: Federated Deep Reinforcement Learning; AFRL: Adaptive Federated Reinforcement Learning; MGML:
Momentum Group Meta-Learning; JMAA: Joint Multi-agent Anti-jamming Algorithm; CMRL: Collaborative
Multiagent Reinforcement Learning; UCB-DQN: Upper Confidence Bound Deep Q Network; FL: Federated
learning; Mate-L: Mate learning; RL: Reinforcement Learning; DRL: Deep Reinforcement Learning.

The anti-jamming method based on automatic control can quickly and effectively deal
with the current jamming and make appropriate anti-jamming actions, but this method
cannot accumulate historical experience and cannot effectively predict the state change
before anti-jamming. The intelligent anti-jamming communication methods are based on
FL sacrifice performance for the sake of data security, and the performance is limited by the
communication efficiency between agents. The intelligent anti-jamming communication
method based on Meta-L requires high computing power, which is not practical for anti-
jamming communication. The intelligent anti-jamming communication method based
on RL fails to address the problem of continuous-state space and faces the challenge
of the exponential growth of “state-action” pairs, known as the “dimension disaster”.
The intelligent anti-jamming communication methods based on DQN have low sampling
efficiency for state samples and limited utilization of historical state information, which may
result in considerable time required for convergence even in typical or similar jamming
scenarios. Furthermore, DQN imposes high requirements on the neural network, and
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an inappropriate neural network can lead to instability in the intelligent anti-jamming
communication system based on DQN.

In our previous work, we mainly studied the intelligent anti-jamming communication
technology based on RL [5,24] and DQN [25], improved some technical details, and
combined these with UCB technology. However, in this process, we find that both RL and
DQN are faced with the dilemma of exploration and utilization, which requires a lot of time
to explore the environment, and the ability to explore the environment in the utilization
stage is poor. If the interference style is switched at this time, the anti-jamming ability
of the system will be more significantly affected. In practice, jammers often enhance the
difficulty of jamming by switching jamming patterns or dynamically adapting parameters.
Consequently, efficiently utilizing experience from typical or similar scenarios to make
effective anti-jamming decisions has become a challenging problem. With the advancement
of research on inverse reinforcement learning, the method of imitation learning [26–28]
can be employed to make timely and effective anti-jamming decisions in the face of typical
and similar scenarios. Therefore, we can obtain an efficient spectral decision-making
method by analyzing historical samples, and take it as an expert strategy(ES), to form an
expert trajectory(ET). Using imitation learning neural network(ILNN), we can obtain a
user strategy capable of making efficient decisions, to significantly improve the response
speed and robustness of decision-making. Unlike reinforcement learning, which needs to
maintain a Q-table or DQN so that each state-action has its corresponding Q-value, the
imitation learning method proposed in this paper treats the decision problem as a fitting
problem of state-to-action selection probability. ILNN fits the action selection probability in
the next time slot according to the state of several past moments. The system selects the
anti-jamming action according to the selection probability. Therefore, there is no fear of the
curse of dimensionality.

Based on this view, this manuscript proposes the following spectrum anti-jamming
method using IL for scenarios where varied conventional jamming appears alternatively:

• First, a proposed Expert Trajectory Generation Algorithm (ETGA) serves as the expert
strategy. Anti-jamming decision-making is carried out on historical state samples
(HSS). To enable the system to stably avoid jamming signals, the expert strategy is
generated accordingly.

• Next, Imitation Learning Neural Networks are proposed. It takes historical state
samples as input and the expert strategy generated by ETGA as expected output.
Through network training, a user strategy (US) can be obtained, enabling it to make
decisions according to the state of several previous time slots.

• Finally, the user strategy is used as a function to obtain anti-jamming decision actions
efficiently and sequentially based on the states of multiple previous timeslots in the
anti-jamming process.

The remainder of this manuscript is organized as follows: Section 2 introduces the
system model and problem formulation. Section 3 explains the method. Section 4 presents
the simulation results. Finally, Section 5 summarizes the conclusions.

2. System Model and Problem Formulation

This section presents the system model and problem formulation of this manuscript.
The system comprises a transmitter, receiver, agent, and jammer. The problem formulation
introduces the reward function and objective function discussed in this manuscript.

2.1. System Model

The system model in this manuscript, depicted in Figure 1, considers a wireless
communication scenario where multiple malicious jammers are present. The transmitter
T sends the signal S(t) while the receiver R is being maliciously jammed by both the
determined jammer and the dynamic jammer. The agent at the receiver perceives the state
s, and learns and decides on the anti-jamming action a, and transmits it to the transmitter
through an independent control link to modify the communication action [5].
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Figure 1. System model.

2.2. Problem Formulation

This subsection outlines the reward function and objective function for this problem.
The reward function is dependent on the current state and the chosen action. The objective
function aims to minimize the disparity between the reward obtained from the user strategy
and the reward achieved from the expert strategy.

2.2.1. Reward Function

The communication band is divided into N non-overlapping channels, and the state
s is represented by a N × 1 array where each element corresponds to the strength of the
noise plus jamming signal si of each channel:

s = [s1, s2, · · · , sN ]
T. (1)

Similarly, the action a is defined as a N ∗ 1 array with only one element being 1 and
the others being 0.

a = [0, 0, · · · , 1, · · · , 0]T. (2)

The reward r obtained by selecting action a in state s is given by the following:

r = R(a, s) =
{

0, si > ε
1, si < ε

, ai = 1, (3)

where ε is the energy threshold for jamming plus noise.

2.2.2. Objective Function

To solve the anti-jamming problem, we use imitation learning to learn from the expert
strategy and minimize the difference between the user reward expectation (URE) and the
expert reward expectation (ERE) under policy π.

IL aims to learn tasks from expert strategy, which can extract information about actions
and the surrounding environment, and learn the relationship between states and actions.

For a given expert strategy πE, the expert reward expectation can be calculated accord-
ing to this strategy µE = µ(πE). Generally speaking, expert strategy πE is often manifested
as expert strategy, that is, the action switching process under the expert strategy πE. For

m expert strategies
[
a(i)0 , a(i)1 , a(i)2 , · · ·

]m

i=1
the expert reward expectation µE is calculated

as follows:

µE = µ(πE) =
1
m

m

∑
i=1

∞

∑
t=0

R(at,st). (4)
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At the same time, for the user who adopts user strategy π, its user reward expectation
(URE) can be expressed as follows:

µ(π) = E

[
∞

∑
t=0

R(at,st)|π
]

. (5)

We expect the Agent to minimize the difference between the user reward expectation
µ(π) and the expert reward expectation µE under policy π:

arg min ‖µ(π)− µE‖2 (6)

3. Method

This section proposes an anti-jamming method using imitation learning based on the
above system model for the system model in Section 2. First, the process structure of the
designed anti-jamming method using imitation learning is given, then the Expert Trajectory
Generation Algorithm is given, and finally, the design of imitation learning neural network
is given.

3.1. Process Structure

As illustrated in Figure 2, the process structure of the designed anti-jamming method
using imitation learning is proposed for intelligent spectrum anti-jamming in the scenario
described in Section 2.

State Sample Action Sample

Algorithm 1

Expert Strategy Imitaion Learning User Strategy

Training Network Trained Network

1,
t-d t-
S , S 1t-S, t

a

Figure 2. Method process structure.

The first step is to obtain the state sample S through the perception of the RF environ-
ment. The expert strategy AE is then generated through the expert strategy, as shown in
Algorithm 1,

AE = F(S). (7)

The expert strategy is generated posteriorly, allowing the algorithm to select the
action at based on either the state change before or after the timeslot, maximizing the
total communication reward of this trajectory. The resulting expert strategy AE can be
expressed as

AE = [a1, a2, · · · , aM] = F(S) = arg max
ai

M

∑
i=1

R(ai, si)si ∈S, (8)

which is an action sequence equal to the length of the training sample S timeslot.
In anti-jamming practice, the network parameters θN are adjusted through learning

and adjusting to obtain the maximum reward by observing historical jamming information
and obtaining the next action through the function fθN (•)

at = arg max
θN

R(at, st) = arg max
θN

R
(

fθN (st−d, · · · ,st−1; at−d, · · · , at−1), st
)
. (9)

The ILNN is trained to imitate the expert strategy to obtain the user strategy , and the
function f̂θN (•) is used as the efficient decision function during the process, obtaining the
next action at+1 through the following formula:

at+1 = f̂θN (st−d+1, · · · ,st; at−d, · · · , at−1). (10)
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Implementing this algorithm faces two challenges, which are addressed in the next
section:

• Obtaining the expert strategy through the Expert Trajectory Generation Algorithm;
• Training the Imitation Learning Neural Network based on the expert strategy;

Algorithm 1 Expert Trajectory Generation Algorithm(ETGA)

Input: Time-frequency matrix RF (N*M).
Output: Expert selection sequence ESS (1*M).
initialize: ESS = zeros(1,M); Consecutive unjammed channel start timeslot S1 = 1;
Consecutive unjammed channel end timeslot S2 = TL.
while min(ESS) == 0 do

J = zeros(N,1)
for ii = 1:N do

if sum(RF(ii,S1:S2) >0) == 0 then
J(ii) = S2+1;

else
J(ii) = find(RF(ii,S1:S2) >0,1)+S1−1

end if
end for
[M,N] = max(J);
ESS(S1:M−1) = N*ones(M−S1,1);
S1 = M;

end while

3.2. Expert Trajectory Generation Algorithm (ETGA)

The Expert Trajectory Generation Algorithm (ETGA) is shown in Algorithm 1. The
algorithm selects the trajectory according to the time-frequency state matrix of N ∗ M
based on the expert strategy, ensuring no collision with the jamming channel and that
the communication signal stays in the same channel as long as possible for stable and
sequential communication.

The expert strategy corresponding to the Expert selection sequence (ESS) in Algorithm 1 is

aE(n) =
{

aScheme(n) = 1
}
= [0, · · · , 1, · · · , 0]T. (11)

3.3. Imitation Learning Neural Network

As shown in Figure 3, it is a schematic diagram of the network structure of the trained
ILNN. The trained ILNN should predict the next maximum reward action based on the
past state and action of the past d timeslots:

at = fNARX(st−d, · · · ,st−1;at−d, · · · , at−1). (12)

Here, the neural network fθ can be expressed as a mapping from the input state
domain S to the output action domain A, that is, fθ : S → A. Considering each hidden
layer as a transformation function, the neural network can be expressed as

fθ(s) = g ◦ fL ◦ fL−1 ◦ · · · f2 ◦ f1(s) (13)

where g is the output layer transformation function, fi is the ith hidden layer, and L is the
number of hidden layers, the hidden layer can be expressed as follows:

fH(s) = fL ◦ fL−1 ◦ · · · f2 ◦ f1(s) (14)

where fi ◦ fi−1 = fi( fi−1(•)) and f1 to fL are the transformation functions of the hidden
layer. The transformation function of the hidden layer and the output layer can be broken
down into linear transformation and nonlinear transformation. The linear transformation
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is the product of the weight vector and the input vector plus the bias variable, and the
nonlinear transformation is the nonlinear activation. Then fi(•) can be expressed as follows:

fi(x) = σ
(

wT
i x+ bi

)
(15)

Here, wi and bi are the weight vector and bias variable of the i th layer, respectively.

W

b

Hidden Layers with Delay Output Layer

N
N

N

a(t)
s(t)

a(t) N

W

W

b

1:d

1:d

L

W

W

b

1:d

1:d

L

Figure 3. Imitation Learning Neural Network.

The specific process of the network structure is expressed in the following:

H =Tanh(wIn1sI +wIn2aI + b1)

at = woutH+ b2
, (16)

where H is the hidden layer output matrix, wIn1 is the hidden layer historical state weight
parameter group, wIn2 is the hidden layer historical action weight parameter group, b1 is
the hidden layer offset parameter group, wOut is the output layer weight parameter group,
and b2 is the output layer offset parameter group.

The state input of the network is the concatenation of the state vectors of the past d
timeslots, represented as sI,

sI = [st−d, st−d+1, · · · , st−1]. (17)

While the action input is the concatenation of the state vectors of the past d timeslots,
represented as aI,

aI = [at−d, at−d+1, · · · , at−1]. (18)

The activation function used is Tanh(•),

Tanh(x) =
ex − e−x

ex + e−x =
2

1 + e−2x − 1. (19)

due to its fully differentiable, antisymmetric, and symmetric center at the origin character-
istics, making it a commonly used activation function of the hidden layer.

The network training process is formalized in

ât = arg min
θ

‖µ(Πθ)− µE‖2 = arg min
θ

∥∥∥∥∥E

[
∞

∑
t=0

R(ât,st)|Πθ

]
− 1

m

m

∑
i=1

∞

∑
t=0

R(at,st)

∥∥∥∥∥
2

(20)

where θ is the network parameter group, including wIn1, wIn2, b1, wOut, b2. The network
parameters are adjusted to minimize the gap between the reward of the network strategy
and the expert strategy, obtaining the output result ât of imitation learning.
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3.4. Decision Making

The output ât of the ILNN is an N ∗ 1 sequential array of decimal numbers. To reduce
the influence of error on channel selection and make channels with similar values have
similar selection probability, ât is used as the selection probability of decision action after
exponential compression and normalization, represented by

â∗t = exp(ât)− 1, Pâ =
â∗t −min(a∗t )
‖â∗t −min(â∗t )‖1

. (21)

where Pâ is the selection probability of the anti-jamming action at obtained by channel
selection according to Pâ probability.

4. Simulation

This section presents the simulation results of this manuscript from four aspects: jam-
ming settings, simulation settings, performance experiments, and comparative experiments.
The jamming settings part introduces a jamming environment where jamming appears
in various patterns alternately. The simulation setting introduces the definition of several
important concepts in this section. The performance experiments part demonstrates the
impact of different numbers of hidden layers in the neural network and sample delays on
the anti-jamming performance. The comparative experiments part compares the proposed
method in this manuscript with a DQN-based anti-jamming method. However, our source
code is unfortunately not available due to the requirements of the organization. We will
actively communicate with any researcher who is interested in this paper and send us
an email.

4.1. Jamming Setting

In the scenario of this manuscript, the corresponding state samples are as follows.
Taking M timeslots as a sample, each sample is divided into k parts with long random
timeslot lengths and their jamming parameters are randomly generated. Then a jamming
sample is given by:

S = [s1, s2, · · · , sM], (22)

among them, there are k− 1 time nodes, 1 < T1 < T2 < · · · < Tk−1 < M, such that[
s1:sT1

]
= J1(t) + JD(t)[

sT1+1:sT2

]
= J2(t) + JD(t)

...[
sTk−1+1:sM

]
= Jk(t) + JD(t),

(23)

here, J1(t), · · · Jk(t) ∈ {JS(t), JH(t), JC(t), JW(t)}, JS(t) is the SJ, JH(t) is the NSJ, JC(t) is the
CJ, JCS(t) is the CSJ, and JD(t) is the DJ.

In this manuscript, we consider a scenario where two different malicious jammers are
present: the determined jammer and the dynamic jammer. As shown in Figure 4, they use
different jamming techniques, and they jam in the following ways, respectively:

Determined jammer (DJ): The jammer selects a channel for a period of time to contin-
uously jam the channel.

Dynamic jammer : The jammer alternately uses Sweep Jamming (SJ), Nonlinear Sweep
Jamming (NSJ), Comb Jamming (CJ), and Comb Sweep Jamming (CSJ).

Among them, for a single channel, the jamming signal is blocking jamming, that is, in
the channel where the jamming signal is located, the communication cannot communicate
normally. The research focus of the anti-jamming decision problem is to select a channel
and transmit power in time and effectively to ensure reliable transmission of wireless
communication systems by means of machine learning and neural networks.

Each jamming signal can be represented as follows.



Entropy 2023, 25, 1547 9 of 18

T
im

e
sl

o
t

5 10 15 20

Channel

(a)SJ

10

20

30

40

50

5 10 15 20

Channel

(b)NSJ

10

20

30

40

50

5 10 15 20

Channel

(c)CSJ

10

20

30

40

50

5 10 15 20

Channel

(d)CJ

10

20

30

40

50

Figure 4. Time-frequency waterfall figure of the spectrum anti-jamming process.

4.1.1. Sweep Jamming

sS = JS(t; θS1, θS2, PS) =
[
s∗, c(θS1 + θS2·t) mod FL = PS

]
(24)

where θS1 is the start channel of the sweep jamming, θS2 is the channel offset of the sweep jam-
ming, that is, the next moment is several channels to the right compared with the previous mo-
ment, PS is the sweep jamming power. s* = [0, 0, · · · , 0]T,

[
s∗, c(θS1 + θS2·t) mod FL = PS

]
means

that on the basis of s* = [0, 0, · · · , 0]T, the (θS1 + θS2 · t) mod FLth term c(θS1 + θS2·t) mod TL
is equal to PS. In general, in order to traverse all channels, θS2 and FL should have no
common factors other than 1.

4.1.2. Nonlinear Sweep Jamming

sH = JH(t; map,TH , PH) =
[
s∗, cmap(t mod TH) = PH

]
(25)

where map(•) is the nonlinear sweep pattern, TH is the nonlinear sweep period, and PS is
the nonlinear sweep jamming power.

4.1.3. Comb Jamming

sC = JC(t; θC1, θC2, PC) =
[
s∗, cθC1 mod θC2 :θC2 :FL = PC

]
(26)

where θC1 is the comb-jamming starting channel, θC2 is the comb-jamming channel interval,
and PC is the comb-jamming power. θC1 mod θC2 : θC2 : FL represents an array starting
from θC1 mod θC2, separated by θC2, and not exceeding FL at most. For example, θC1 =
7, θC2 = 4, θC1 mod θC2 : θC2 : FL = 3, 7, 11, 15, 19. Then the comb jamming signal
JC(t) = [s∗, c3,7,11,15,19 = PC].

4.1.4. Comb Sweep Jamming

sW = JW(t; θW1, θW2, θW3, PW) =
[
s∗, c(θW1 + θW2·t) mod θW3 :θW3 :FL = PW

]
(27)

where θW1 is the initial frequency of comb sweep jamming, θW2 is the channel shift of comb
sweep jamming, θW1 is the channel interval of comb sweep jamming, and PW is the power
of comb sweep jamming.

4.1.5. Determined Jamming

sD = JD(t; θD1, PD) =
[
s∗, cθD1 = PD

]
(28)

where θD1 is the jamming channel of fixed-frequency jamming, and PD is the fixed-
frequency jamming power.
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4.2. Simulation Setting

The software and hardware information of the performance experiment is shown in
Table 2. We used MATLAB (2021a) to generate the data, Python (3.8) to perform machine
learning, and the data were stored in .mat files. The machine learning library we used was
TensorFlow1.14.

Table 2. Hardware and Software .

Parameters Value

CPU i7-12700K
GPU RTX-3060Ti

Data Generation Environment MATLAB (2021a)
Machine Learning Environment Python (3.8)

Data Storage Format .mat
Algorithms Library TensorFlow 1.14

The simulation parameters of the performance experiment are shown in Table 3.
Simulation parameters mean that this manuscript considers a multi-channel communi-
cation scenario with 20 channels, each with a channel bandwidth of 2 MHz, and takes
1000 timeslot as a communication unit, in which the aforementioned jamming pattern will
alternate randomly.

Table 3. Simulation Parameters.

Parameters Value

Layers 16, 32, 64, 128
Delay 2, 5, 8, 10

Length of Timeslot 1 ms
Channel Bandwidth 2 MHz
Number of Channels 20

Number of Timeslots for one communication unit 1000

The simulation experiments focus on the collision rate as the main performance metric,
specifically examining the performance variations of the proposed approach when the
jamming pattern switches, the jamming-to-noise ratio (JNR) changes, and the proportion of
jamming signals changes. The key concepts are defined as follows:

Collision rate: The ratio of the number of collisions between the communication
signal and the jamming signal in the same timeslot in the same channel to the total number
of timeslots.

Jamming-to-noise ratio (JNR): The decibel ratio of the jamming signal strength in a
specific time slot and channel to the intensity of the background Gaussian noise signal in
that timeslot. Generally, a lower JNR indicates less noticeable jamming, making it more
challenging for the ILNN to make decisions and resulting in a higher collision rate.

Proportion of jamming signals: The ratio of the cumulative number of channels
occupied by the jamming signal over a certain number of timeslots to the product of the
number of timeslots and the number of channels of interest. Generally, a higher proportion
of jamming signals indicates fewer available channels and greater difficulty in resisting
jamming, resulting in a higher collision rate.

In the performance experiments, the influence of the number of hidden layers and the
number of sample delays on network performance is studied. The key concepts are:

Hidden: The number of hidden layers of the ILNN. Generally, a higher number of
hidden layers indicates a stronger expressive power of the neural network, smaller fitting
errors, but also longer training and execution times.

Delay: The number of past timeslot samples used by the ILNN for decision-making.
Generally, a larger number of delays provides more information for the ILNN to make
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decisions, leading to more informed decisions. However, it also makes it more difficult to
converge when the jamming pattern changes, as it is more influenced by the previous pattern.

4.3. Performance Experiment

As depicted in Figure 5, the spectrum anti-jamming process is graphically displayed.
Figure 5a illustrates a schematic diagram of channel selection based on expert strategy.
The green block represents the channel selected according to the expert strategy, the red
block represents jamming, and the blue-purple block represents the noise background.
Figure 5b shows the channel selection method obtained through real-time decision using
the imitation strategy under the same scenario as Figure 5a, and the blue block represents
the channel selected according to real-time decision. In Figure 5c, the channel selection
method obtained through the imitation strategy after a real-time decision is presented in
a different scenario from Figure 4a. The proposed method efficiently solves the decision
problem in dynamic jamming scenarios.

Figure 5. Time-frequency waterfall figure of the spectrum anti-jamming process. The red block repre-
sents the jamming signal, the lavender is the background noise, the green block is the communication
trajectory selected according to the expert strategy, and the blue block is the user communication
trajectory selected after imitation learning.

Below is a study on the impact of different parameters of ILNN on anti-jamming
performance, with a focus on the number of hidden layers and sample delay in ILNN.
Simulations were conducted to observe the collision rate as a function of JNR and the
proportion of jamming signals under different ILNN parameters. The network training
utilized scaled conjugate gradient which requires less memory and has faster training
speed, with a total of 1000 iterations.

Figure 6 illustrates the variation of collision rate as JNR changes for different numbers
of hidden layers when a delay is fixed. From Figure 6, it can be observed that with a fixed
delay, a higher number of hidden layers leads to a lower collision rate. In particular, the
curve for ILNN with 16 hidden layers shows significantly higher collision rates compared
to other curves, indicating inadequate expressive power with 16 hidden layers. On the
other hand, the curves for ILNN with 64 and 128 hidden layers exhibit similar trends, and
even at a delay of 8, as shown in Figure 6c, the ILNN with 64 hidden layers demonstrates
a lower collision rate. This suggests that the ILNN with 128 hidden layers has excessive
expressive power under this condition and, due to limited training iterations, cannot be
adequately trained, resulting in similar or even lower anti-jamming performance compared
to the ILNN with 64 hidden layers.

Figure 7 shows the variation of collision rate as JNR changes for different delays when
the number of hidden layers is fixed. From Figure 7, it can be observed that with a fixed
number of hidden layers, a higher delay leads to a lower collision rate. Specifically, the
curves for ILNN with a delay of 2 show noticeably higher collision rates compared to the
other curves, indicating that the ILNN with a delay of 2 lacks sufficient historical samples
as input for making decisions, leading to inadequate anti-jamming capability. The curves
for delay = 8 and delay = 10 are similar, with performance lower than that of delay = 8.
This is because the limited training iterations prevent them from being adequately trained.
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Figure 6. The delay is fixed, and the collision rate cha nges curve with JNR under different hidden layers.
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Figure 7. The hidden layers is fixed, and the collision rate changes curve with JNR under different delay.

As shown in Figures 8 and 9, the collision rate changes with the proportion of jamming
signals. As the proportion of jamming signals increases, the collision rate also increases.
As shown in Figure 8, when the delay is fixed, the number of hidden layers is less and the
jamming collision rate is higher. The ILNN with 16 hidden layers has the highest jamming
collision rate.

As shown in Figure 9, when the number of hidden layers is fixed, the change of the
delay number has little impact on the collision rate when the proportion of jamming signals
increases. Therefore, when the proportion of jamming signals increases, it is not feasible to
improve the performance of ILNN by only increasing the delay number and participating
in more samples of the past time slots without increasing the number of hidden layers of
the network.

In summary, increasing the number of hidden layers and delay values can enhance
the anti-jamming performance of ILNN when the JNR or proportion of jamming signals
increases. However, excessive hidden layers and high delay values do not significantly
improve the system’s anti-jamming performance, while also requiring longer training time.
Furthermore, higher delay values make the anti-jamming decision more susceptible to the
influence of the previous jamming pattern. In the simulation scenario of this manuscript, an
ILNN with 128 hidden layers does not show better anti-jamming performance compared
to an ILNN with 64 hidden layers. ILNNs with a delay of 8 or 10 do not exhibit better anti-
jamming performance compared to an ILNN with a delay of 5. Therefore, in this simulated
scenario, an ILNN with 64 hidden layers and a delay of 5 can ensure both anti-jamming
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performance and a smaller network size. Hence, the comparative experiment in Section 4.4
selects an ILNN with 64 hidden layers and a delay of 5.
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Figure 8. The delay is fixed, and the collision rate changes curve with the proportion of jamming
signals under different hidden layers.
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Figure 9. The hidden layers are fixed, and the collision rate changes curve with the proportion of
jamming signals under different delays.

4.4. Comparative Experiments

This subsection presents a comparative analysis between IL-based anti-jamming meth-
ods, RL-based anti-jamming methods, and DQN-based anti-jamming methods. It examines
the performance curves and the time required for re-stabilization of the three methods when
there is a sudden switch in the jamming pattern. Moreover, it investigates the variations
in collision rate changes for the three methods as the JNR varies. Additionally, it exam-
ines the variations in collision rates for the three methods as the proportion of jamming
signals fluctuates.

A comparison is made among the proposed methods, RL and DQN. Figure 10 illus-
trates the performance transformation curves of IL, converged RL, and converged DQN
when faced with sudden switching of jamming patterns. Based on the simulation results, it
can be observed that the RL-based and the DQN-based anti-jamming decision methods
take a long time to reconverge when the jamming pattern switches, whereas the proposed
method can return to a stable state faster despite a sharp performance drop. Apart from
the three switching processes depicted in Figure 10, additional details on the duration of
the transitions can be found in Tables 4–6. In comparison to RL and DQN, which learn
and decide simultaneously as the states change, IL utilizes imitation and generalization
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from expert strategy that encompass certain jamming-switching processes. Consequently,
when the jamming pattern switches, IL demonstrates reduced “decision inertia” toward
previous jamming patterns, facilitating more prompt and robust decision-making. Thus,
the IL-based approach proposed in this study enables the timely and effective selection of
appropriate channels during jamming-type switches, ensuring the reliability and stability
of communication systems.
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Figure 10. Comparison of anti-jamming performance among RL, DQN and IL when jamming pattern
is switched.

Table 4. Duration of restabilization after jamming pattern switch of RL.

Before

After
CJ SJ CSJ NSJ

CJ 0 225.49 219.41 246.92
SJ 239.46 0 233.14 243.27

CSJ 256.71 202.22 0 250.06
NSJ 251.79 206.98 230.69 0

Table 5. Duration of restabilization after jamming pattern switch of DQN.

Before

After
CJ SJ CSJ NSJ

CJ 0 120.06 115.81 145.27
SJ 125.85 0 124.08 152.43

CSJ 143.91 96.34 0 142.46
NSJ 138.91 91.97 135.01 0

Table 6. Duration of restabilization after jamming pattern switch of IL.

Before

After
CJ SJ CSJ NSJ

CJ 0 63.75 58.25 39.58
SJ 47.97 0 57.96 46.51

CSJ 45.63 31.15 0 45.99
NSJ 57.71 34.19 62.40 0

Background noise and channel fading can influence the perception of jamming, which
in turn affects the anti-jamming communication. For classical Q-learning, the state space is
limited, and the state value is discrete. Generally, a threshold is used to make a decision
before learning, but this process causes information loss, affecting learning and decision-
making. In this study, the noisy state is directly input to DQN and IL for anti-jamming
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decisions. For RL, noise affects their sensing of the environment, that is, a large number of
misjudgments are generated when it makes a decision on the environment state according
to the threshold, which affects the anti-jamming performance of the system. The results are
presented in Figure 11. When considering channel fading and noise, IL has a lower jamming
probability than RL and DQN. The IL-based method generalizes the expert strategy from a
global perspective, while the RL-based method and the DQN-based methods focus on the
change of the current state. So, noise and fading in the IL-based method have an impact
on the decision with more overall statistical characteristics, while in the RL-based method
and the DQN-based method, noise and fading have an impact on the decision with more
individual random characteristics. Therefore, the IL-based method is less affected by noise
and fading.
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Figure 11. The collision rate varies with the JNR of jamming signals.

Figure 12 illustrates the relationship between the collision rate and the proportion of
jamming signals. The light thick line in the figure is the direct result of the simulation, and
the thin line is the curve obtained by fitting. It can be seen from Figure 12 that the collision
rate of the IL anti-jamming method is about 30% lower than that of the DQN-based method
and 80% lower than that of the RL-based method under the same proportion of jamming
signals. The increase in the proportion of jamming signals means that more channels are
jammed, and the RL-based and the DQN-based methods have fewer decision choices in
the learning process, making the decision more difficult. However, the training method
based on IL has different parameters and expert strategy under different jamming patterns,
the influence of an increasing proportion of jamming signals is minimal.
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Figure 12. The collision rate varies with the proportion of jamming signals.
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The aforementioned experiments demonstrate that the IL-based anti-jamming method
exhibits faster re-stabilization during sudden changes in jamming patterns when compared
to the RL-based method and the DQN-based anti-jamming method. Moreover, the IL-based
approach shows reduced susceptibility to background noise and channel fading, enabling
prompt and effective multi-channel decisions in response to variations in the environment.
Additionally, when faced with increasing proportions of jamming signals, the IL-based
method proves more efficient in avoiding collisions compared to RL and DQN.

5. Conclusions

The proposed anti-jamming method based on imitation learning generates expert
trajectories from historical samples, which are then imitated using ILNN. Users can obtain
anti-jamming strategies from the trained ILNN for anti-jamming decision-making. This
method enables timely and effective multi-channel decisions in response to changes in the
jamming environment. Compared to the DQN-based anti-jamming method, this method
exhibits faster convergence when faced with sudden switches in jamming patterns. It is
less affected by background noise and channel fading, resulting in a lower collision rate
when the proportion of jamming signals increases.

However, this method has limited generalization capability and limited ability to
handle jamming patterns beyond those contained in the training samples. Further research
and improvement can be conducted by incorporating deep reinforcement learning. The
combination of imitation learning, which learns from historical information, and deep
reinforcement learning, which adapts to real-time changes in the current environment,
can be explored. Additionally, as the number of hidden layers in ILNN increases, its
expressive power is enhanced but requires more training time. Moreover, there is a threat
of adversarial samples to ILNN. Adversaries can significantly impact the anti-jamming
decision-making of ILNN at minimal cost. Targeted optimization can be applied to ILNN
by leveraging adversarial training techniques in adversarial machine learning.

In future work, we will consider combining imitation learning with deep reinforcement
learning to make more robust intelligent anti-jamming communication decisions, aiming
at the problem of poor adaptability when facing new scenarios. Aiming at the problem
that imitation learning requires a high number of historical samples, it was considered
to combine it with the generative adversarial network, so that the system could train an
excellent enough ILNN with limited historical samples.

The advantage of imitation learning lies in obtaining a posteriori optimal trajectory
through the analysis of historical samples, and obtaining a better experience for anti-
jamming by imitating the posteriori optimal trajectory. Its disadvantage lies in requiring
more historical samples for the analysis of posteriori optimal trajectory. Deep reinforcement
learning, on the other hand, focuses on solving the problem of the moment, can quickly
learn from a new environment, and can perform as it learns. Our initial idea is to trust
the results of deep reinforcement learning more when there are fewer historical samples
or historical experience has a low anti-jamming reference value to the current scene, and
trust the results of imitation learning more when there are enough state experience samples
collected for imitation learning. Through such a combination, the system can obtain both
the flexibility of deep reinforcement learning and the high accuracy of imitation learning.
In the process of combining IL and DQN, we need to increase the storage space complexity
and the computational complexity of each timeslot, but we can obtain an anti-jamming
communication method with higher accuracy and fewer timeslots. The combined system
will converge faster and the convergence value will be higher.
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