
Citation: Zhang, B.; Lu, G.; Qiu, P.;

Gui, X.; Shi, Y. Advancing Federated

Learning through Verifiable

Computations and Homomorphic

Encryption. Entropy 2023, 25, 1550.

https://doi.org/10.3390/

e25111550

Academic Editor: Shu-Chuan Chu

Received: 11 September 2023

Revised: 1 November 2023

Accepted: 4 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Advancing Federated Learning through Verifiable
Computations and Homomorphic Encryption
Bingxue Zhang, Guangguang Lu, Pengpeng Qiu , Xumin Gui and Yang Shi *

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,
Shanghai 200093, China; zhangbingxue@usst.edu.cn (B.Z.); 213330769@st.usst.edu.cn (G.L.);
213330798@st.usst.edu.cn (P.Q.); 212260503@st.usst.edu.cn (X.G.)
* Correspondence: 221240073@st.usst.edu.cn

Abstract: Federated learning, as one of the three main technical routes for privacy computing, has
been widely studied and applied in both academia and industry. However, malicious nodes may
tamper with the algorithm execution process or submit false learning results, which directly affects
the performance of federated learning. In addition, learning nodes can easily obtain the global model.
In practical applications, we would like to obtain the federated learning results only by the demand
side. Unfortunately, no discussion on protecting the privacy of the global model is found in the
existing research. As emerging cryptographic tools, the zero-knowledge virtual machine (ZKVM)
and homomorphic encryption provide new ideas for the design of federated learning frameworks.
We have introduced ZKVM for the first time, creating learning nodes as local computing provers.
This provides execution integrity proofs for multi-class machine learning algorithms. Meanwhile,
we discuss how to generate verifiable proofs for large-scale machine learning tasks under resource
constraints. In addition, we implement the fully homomorphic encryption (FHE) scheme in ZKVM.
We encrypt the model weights so that the federated learning nodes always collaborate in the ciphertext
space. The real results can be obtained only after the demand side decrypts them using the private
key. The innovativeness of this paper is demonstrated in the following aspects: 1. We introduce the
ZKVM for the first time, which achieves zero-knowledge proofs (ZKP) for machine learning tasks
with multiple classes and arbitrary scales. 2. We encrypt the global model, which protects the model
privacy during local computation and transmission. 3. We propose and implement a new federated
learning framework. We measure the verification costs under different federated learning rounds
on the IRIS dataset. Despite the impact of homomorphic encryption on computational accuracy, the
framework proposed in this paper achieves a satisfactory 90% model accuracy. Our framework is
highly secure and is expected to further improve the overall efficiency as cryptographic tools continue
to evolve.

Keywords: federated learning; zero-knowledge virtual machine; homomorphic encryption;
verifiability; model privacy

1. Introduction

Nowadays, machine learning has become an indispensable tool in many fields, but
data privacy and security issues are the main reasons preventing its widespread deploy-
ment [1]. Federated learning, as one of the three main technological routes for privacy
computing, focuses on protecting data privacy and realizing the availability but invisibility
of data [2].

Unlike traditional centralized machine learning processes, federated learning protects
the data privacy of learning nodes. It utilizes the ideas of local computing and gradient aggre-
gation to enable multiple participants to jointly construct a model with global performance.

The basic federated learning framework includes a central aggregator and multiple
distributed learning nodes. The aggregator controls the entire training process, including

Entropy 2023, 25, 1550. https://doi.org/10.3390/e25111550 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25111550
https://doi.org/10.3390/e25111550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0000-0283-4808
https://doi.org/10.3390/e25111550
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25111550?type=check_update&version=1

Entropy 2023, 25, 1550 2 of 15

managing learning nodes, aggregating gradients, and maintaining the global model. Before
each round of training begins, the aggregator broadcasts the current global model to the
learning nodes. The learning node utilizes its private data to execute training algorithms
locally, generate model update gradients, and then submit them to the central aggrega-
tor. After collecting gradient information from multiple learning nodes, the aggregator
generates a new global model based on a certain aggregation strategy [3]. This process
will undergo multiple iterations until the predetermined number of training rounds or
convergence conditions are reached.

However, due to its distributed nature, the federated learning process may be affected
by malicious nodes. For example, distributed nodes may forge false data or provide
inaccurate model training results to the aggregator [4], which can seriously degrade the
accuracy of machine learning models.

Several recent studies have proposed introducing zero-knowledge proof techniques
for federated learning frameworks [5]. They encode the distributed machine learning
process as a series of arithmetic and Boolean circuits. Distributed nodes generate verifiable
zero-knowledge proofs along with local models. This approach allows the aggregator to
verify the integrity of the machine learning process before aggregating a new global model.

A common problem with these solutions is that developers need to learn about
cryptography and develop zero-knowledge circuits to accommodate different classes of
machine learning protocols [6]. This process is extremely challenging for complex machine
learning protocols. In the last two years, the emergence of the zero-knowledge virtual
machine (ZKVM) has greatly simplified the design of circuits for developers. The ZKVM is
a zero-knowledge virtual environment deployed on a computer that has the capability to
generate proofs for arbitrary computations and subsequently verify them on the fly [7].

In this paper, we introduce the ZKVM into federated learning. We construct the ZKVM
on all the nodes, where the learning nodes are created as the provers in the ZKP process,
and the aggregators are the verifiers. First, in order to demonstrate the universality of the
proposed framework, we implement several mainstream machine learning algorithms in
ZKVM and compare the verification costs. Second, considering that learning nodes usually
do not have high-performance hardware resources, we discuss the memory required for
verifying large-scale machine learning tasks. We find that the framework proposed in
this paper is able to realize the verification of arbitrary large-scale computational tasks
on smaller devices. Finally, we analyze the security of the framework under a variety of
malicious behaviors and demonstrate that this framework is highly secure.

In addition, during the cycle of federated learning, all distributed nodes can easily
access the latest aggregated global model, which cannot effectively protect the privacy of
the global model [8]. In a practical business environment, we would like to have the final
machine learning results available only to the demand side.

We note that homomorphic encryption can solve the data privacy problem under
multi-party co-computation [9]. It can preserve the structure of the original data so that it
can still perform algebraic operations in the ciphertext state. We implement the BGV fully
homomorphic encryption scheme in ZKVM. First, we encrypt the initial model weights
so that the distributed computational nodes perform the machine learning process in the
ciphertext space and the resulting local model remains encrypted. The actual results can be
obtained by only aggregating the global model and decrypting it using the private key.

The contributions of this paper are summarized as follows:
1. We introduce the ZKVM for the first time in the federated learning, which can

generate verifiable proofs for machine learning tasks of multiple classes and arbitrary sizes.
Meanwhile, we discuss the security of the framework for different malicious behaviors.

2. We implement the BGV fully homomorphic encryption scheme in ZKVM. We
encrypt the model information to ensure that federated learning nodes always collaborate
in the ciphertext space. This protects model privacy during local training and transmis-
sion processes.

Entropy 2023, 25, 1550 3 of 15

3. We propose and implement a new federated learning framework. We conducted
extensive experiments on the IRIS dataset to summarize the computational cost and learn-
ing performance.

The rest of the paper is organized as follows: Section 2 summarizes the preparatory
knowledge on federated learning, zero-knowledge proofs, and homomorphic encryption.
Section 3 describes the implementation of the system. Section 4 sets up experiments to
evaluate the framework proposed in this paper. Section 5 explains the limitations. Section 6
summarizes the whole paper.

2. Background

In this section, we provide a brief introduction to the concepts and cryptographic
primitives related to federated learning.

2.1. Federated Learning

In 2016, Google Research pioneered the concept of federated learning [10]. Federated
learning is essentially a distributed machine learning method, which aims to realize that
all parties work together to train machine learning models without exchanging raw data,
and to improve the model effect through a series of aggregation algorithms [11]. Federated
learning can connect data silos together and effectively build a data ecosystem. It has
become one of the important technologies for mining data value in various fields such as
healthcare [12], finance [13], and the Internet of Things [14].

However, as data privacy becomes more and more of a concern, federated learning
frameworks alone can no longer meet user needs. For example, malicious learning nodes
may tamper with the algorithm execution process or submit false learning results, which
can directly affect the performance of federated learning. In addition, learning nodes can
easily obtain the global model. In practical applications, we would like to obtain the results
of federated learning by only one party. Unfortunately, existing research lacks a discussion
of the above issues.

In this paper, we combine the state-of-the-art cryptography tools, zero-knowledge
proofs, and homomorphic encryption to address the above issues and construct a more
complete federated learning framework.

2.2. Zero-Knowledge Proofs and Zero-Knowledge Virtual Machine

Zero-knowledge proofs (ZKP) are used to solve trust problems between two parties in
scenarios where no third-party trusted institution is involved. The state-of-the-art idea is
non-interactive zero-knowledge proofs [15]. The proof process of this scheme requires only
one data transfer, which greatly reduces the communication time.

In federated learning scenarios, ZKP can validate the legitimacy of data circulation and
manipulation. For example, Ghodsi Z. et al. proposed to generate proofs for local machine
learning processes [16]. They encode machine learning protocols into the circuit program.
When a learning node returns the local model to the aggregator, it needs to provide a
verifiable proof at the same time. The proof is used to verify the integrity of the local
machine learning task execution before aggregating the global model. However, designing
machine learning protocols directly based on circuit languages is difficult due to complex
cryptographic principles. For example, the federated learning framework proposed by
Abla Smahi et al. based on zk-SNARKs circuit language is only applicable to the federated
support vector machine [17].

In this paper, we introduce the ZKVM for the first time to address the above problem.
The ZKVM is a virtual machine that runs trusted code and generates verifications of the
output [18]. It is generalized in that it lowers the development threshold for zero-knowledge
circuits and is able to generate proofs for arbitrary applications or computations on the fly.

The existing ZKVMs are mainly classified into three types: mainstream, EVM-equivalent [19],
and ZK-optimized, and their differences are shown in the Table 1.

Entropy 2023, 25, 1550 4 of 15

Table 1. Classification and differences of ZKVMs.

Existing Expertise/Tooling Blockchain Focused Performant

Mainstream (WASM, RISC-V) Lots No Maybe
EVM-equivalent (EVM bytecode) Some Yes No

ZK-optimized (new instruction set) No Yes Yes

This article is based on the popular RISC Zero project. RISC ZKVM is essentially a
verifiable virtual machine that operates similarly to a real embedded RISC-V micropro-
cessor [20]. The RISC ZKVM takes care of the underlying cryptography and supports
the provision of proofs to arbitrary applications that can run on the RISC-V architecture.
Developers need only focus on building the federated machine learning process.

As shown in Figure 1, the RISC ZKVM application consists of a host program and a
guest program. The host program can provide input to the guest as needed. The guest
program generates a zk-proof after execution. Anyone in possession of a copy of the proof
can verify the execution of the guest program and read its publicly shared output.

Entropy 2023, 25, x FOR PEER REVIEW 4 of 15

knowledge circuits and is able to generate proofs for arbitrary applications or computa-
tions on the fly.

The existing ZKVMs are mainly classified into three types: mainstream, EVM-equiv-
alent [19], and ZK-optimized, and their differences are shown in the Table 1.

Table 1. Classification and differences of ZKVMs.

 Existing Expertise/Tooling Blockchain Focused Performant
Mainstream (WASM, RISC-V) Lots No Maybe

EVM-equivalent (EVM bytecode) Some Yes No
ZK-optimized (new instruction set) No Yes Yes

This article is based on the popular RISC Zero project. RISC ZKVM is essentially a
verifiable virtual machine that operates similarly to a real embedded RISC-V micropro-
cessor [20]. The RISC ZKVM takes care of the underlying cryptography and supports the
provision of proofs to arbitrary applications that can run on the RISC-V architecture. De-
velopers need only focus on building the federated machine learning process.

As shown in Figure 1, the RISC ZKVM application consists of a host program and a
guest program. The host program can provide input to the guest as needed. The guest
program generates a zk-proof after execution. Anyone in possession of a copy of the proof
can verify the execution of the guest program and read its publicly shared output.

Figure 1. Components of RISC ZKVM application.

We provide a brief description of how ZKVM guarantees computational integrity.
The proof system of RISC Zero is built in terms of an execution trace and several con-
straints that enforce checks of computational integrity. When performing a machine learn-
ing task, the execution trace is a record of the full state of the machine at each clock cycle
of the computation. They represent the running state of the processor and effectively check
the integrity of RISC-V memory operations. Constraints are low-degree polynomial rela-
tions over the values of the constraints. The execution trace is valid if and only if each
constraint evaluates to 0. For example, (k)(k − 1) = 0 enforces k to be either 0 or 1. These
constraints enforce that the execution of ZKVM is consistent with the RISC-V Instruction
Set Architecture (ISA) [21].

In summary, thousands of constraints are first used to enforce the integrity of the
RISC-V ISA. Then, at a higher level, constraints are used to enforce that each phase of the
machine learning program in ZKVM performs as required.

The ZKVMs are the future, enabling developers to focus on the design of the appli-
cation itself without paying too much attention to circuits [22]. Constructing ZKVMs on
distributed federated learning nodes bridges the gap between zero-knowledge proofs and
machine learning programs, making verification of complex machine learning tasks pos-
sible.

Figure 1. Components of RISC ZKVM application.

We provide a brief description of how ZKVM guarantees computational integrity. The
proof system of RISC Zero is built in terms of an execution trace and several constraints
that enforce checks of computational integrity. When performing a machine learning
task, the execution trace is a record of the full state of the machine at each clock cycle
of the computation. They represent the running state of the processor and effectively
check the integrity of RISC-V memory operations. Constraints are low-degree polynomial
relations over the values of the constraints. The execution trace is valid if and only if each
constraint evaluates to 0. For example, (k)(k − 1) = 0 enforces k to be either 0 or 1. These
constraints enforce that the execution of ZKVM is consistent with the RISC-V Instruction
Set Architecture (ISA) [21].

In summary, thousands of constraints are first used to enforce the integrity of the
RISC-V ISA. Then, at a higher level, constraints are used to enforce that each phase of the
machine learning program in ZKVM performs as required.

The ZKVMs are the future, enabling developers to focus on the design of the application
itself without paying too much attention to circuits [22]. Constructing ZKVMs on distributed
federated learning nodes bridges the gap between zero-knowledge proofs and machine learning
programs, making verification of complex machine learning tasks possible.

2.3. Private Set Intersection

Private Set Intersection (PSI) is a privacy-preserving protocol designed to compute the
intersection of two parties without revealing their private sets. It also can output the result
of a function f computed on the intersection [23].

Entropy 2023, 25, 1550 5 of 15

Secret sharing (SS) and oblivious transfer (OT) are the two key techniques used to
construct the PSI protocol. SS requires each participant to secretly divide their input data
into data shards and distribute them to others. All participants use their received data
shards for calculation and interaction. OT is a secure protocol that protects the privacy of
communication between both parties. The sender encrypts n messages and sends them to
the receiver, but the receiver can only decrypt k of them. Meanwhile, the sender cannot
determine which messages the receiver has decrypted.

PSI-based protocol allows for broader data collaboration and analysis. Some applica-
tions that have been proposed are secure computation of medical data [24], security event
information sharing [25], etc.

2.4. Trusted Execution Environment

Trusted execution environment (TEE) uses the method of isolating some of the hard-
ware and software resources to build a secure area on a computing device to ensure the
protection of sensitive data and operations [26].

TEE implementations are usually based on hardware technology. Therefore, on dif-
ferent system architectures (x86, ARM, RISC-V) (x86, Arm, RISC-V), different software
interfaces, and security boundaries need to be designed. In addition, the expensive hard-
ware cost has become one of the barriers to the widespread deployment of TEE.

As shown in Table 2, we have compared several cryptographic protocols in terms of
computational complexity and communication cost.

Table 2. Computational complexity and communication costs of cryptographic protocols.

Cryptography
Tools

Hardware
Dependent

Computational
Complexity

Communication
Rounds

Communication
Cost

TEE Yes Lower Lower Lower
SS No Lower Higher Moderate
HE No Higher Constant Lower
OT No Higher Moderate Lower

We discard the TEE scheme because the learning nodes are usually built on different
system architectures, which requires more effort to consider the combination of hardware
and software technologies.

In order to minimize the number of communications between learning nodes and
aggregators, we finally chose the HE. The aggregator encrypts the global model so that
only a constant number of communication rounds are required to delegate the machine
learning task to each learning node. Throughout the entire federated learning process, the
global model and gradient information are always calculated in the ciphertext space, and
ultimately only the demand side decrypts to obtain the machine learning results.

2.5. Homomorphic Encryption

Homomorphic encryption is a special form of encryption that allows algebraic opera-
tions to be performed directly on the ciphertext and the result of the computation remains
the ciphertext. It is truly a fundamental solution to the problem of confidentiality when
delegating data and its operations to a third party [27].

Depending on the ciphertext operations supported, they can be categorized into semi-
homomorphic schemes and fully homomorphic schemes. Semi-homomorphic schemes
refer to those that support only additive, multiplicative, or a limited number of full homo-
morphic operations [28]. This is far from sufficient for complex machine learning tasks.
It was not until 2009 that Gentry et al. proposed a strictly full homomorphic encryption
scheme (FHE) for the first time [29], which provides a broader application prospect for data
privacy protection and secure computing.

Currently, the mainstream fully homomorphic encryption schemes include BGV, BFV,
GSW, CCKKS, etc.

Entropy 2023, 25, 1550 6 of 15

BFV is similar to BGV, and both of them need to solve the problem of ciphertext
dimensionality expansion brought by homomorphic multiplication through key switch-
ing. Meanwhile, the BGV scheme needs to control the noise growth by using modulus
switching [30]. Unlike the above schemes, the ciphertext form of GSW is a matrix [31]. It
does not have the problem of ciphertext multiplication dimension growth. GSW is theo-
retically simpler, but the performance is not as good as the BGV and BFV. The subsequent
TFHE, FHEW, etc., are based on GSW optimization. In order to perform operations on
floating-point numbers, Cheon et al. proposed the CKKS scheme to generate approximate
results [32].

Suitable FHE algorithms should be selected according to different scenarios. In ma-
chine learning, performance, and accuracy are the main factors to be considered. BGV is
considered to be the most efficient scheme among the current algorithms. In addition, BGV
maps integers to polynomials, which can satisfy the requirement of computational accuracy.

Therefore, we introduce the BGV scheme for global model privacy protection in the
federated learning process. First, the developer encrypts the initial model weights and
sends them down to the learning nodes. Then, the learning node performs the machine
learning task and submits model updates in the ciphertext state. Even if a malicious
node or external attacker steals the machine learning results, it cannot obtain meaningful
model information. This approach ensures the privacy of federated learning results during
computation and transmission.

We implemented the widely used asymmetric cryptography scheme BGV in ZKVM,
and the security of this scheme is based on the ring learning with errors (RLWE) prob-
lem [33]. Its plaintext space is defined as Rp = Zq

[X]
<∅m(X)

>, where ∅m(X) is an m-
dimensional cyclotomic polynomial, p is a prime number, and q is a large integer. This
article sets the basic parameters m, p, and q of BGV as 16, 33554432, and 1073741824,
respectively.

The steps of the BGV scheme are briefly described below:

– BGV.Setup
(
1λ
)
: Input security parameter λ, and output program parameter params.

– BGV.KeyGen(params): Input the params and output the public key pk as well as the
private key sk.

– BGV.Encpk(msg): Input the message msg ∈ Rp and output the encrypted message
c ∈ Rq. This ciphertext consists of two parts, c = c[0]+c[1].

– BGV.decsk(c): Input ciphertext c ∈ Rq. Output plaintext message msg.
– BGV.Add(ca, cb): Let ca and cb be the encrypted message of a and b. Homomorphic

addition requires only the addition of the corresponding components:

ca + cb = (ca[0], ca[1]) + (cb[0], cb[1]) = (ca[0] + cb[0], ca[1] + cb[1]) = ca+b (1)

– BGV.Mul(ca, cb): Homomorphic multiplication is computed via the tensor product of
the ciphertext vectors and causes the length of the ciphertext to grow exponentially:

ca·b := ca
⊗

cb := (ca[0]cb[0], ca[0]cb[1] + ca[1]cb[0], ca[1]cb[1]) (2)

In order to solve the efficiency problem caused by the growing dimensionality of the
ciphertexts, Zvika Brakerski et al. proposed a method called the “relinearization”. The
decryption operation of a long ciphertext C1 with a secret key S1 is converted into a short
ciphertext C2 that is decrypted by a different secret key S2 [34]. In a recent study, Hiroki
Okada et al. proposed that arbitrary binary functions can be realized between ciphertexts
by polynomial interpolation [35].

Entropy 2023, 25, 1550 7 of 15

3. System Design

This section provides a detailed description of the proposed framework and workflow.

3.1. System Overview

In this paper, we construct ZKVM on all federated learning nodes based on the RISC
Zero project.

Considering the cost of zk-proof generation and verification, we only implement the
machine learning algorithm as a guest program and generate zk-proofs for it. Eventually,
when the aggregator receives multiple model updates and proofs, it will use the verified
model updates to aggregate a new global model.

As shown in Figure 2, we describe the framework in terms of two components of
federated learning. The local view includes the components running on the distributed
learning nodes. The global view considers the central aggregator that communicates with
all learning nodes.

Entropy 2023, 25, x FOR PEER REVIEW 7 of 15

Okada et al. proposed that arbitrary binary functions can be realized between ciphertexts
by polynomial interpolation [35].

3. System Design
This section provides a detailed description of the proposed framework and work-

flow.

3.1. System Overview
In this paper, we construct ZKVM on all federated learning nodes based on the RISC

Zero project.
Considering the cost of zk-proof generation and verification, we only implement the

machine learning algorithm as a guest program and generate zk-proofs for it. Eventually,
when the aggregator receives multiple model updates and proofs, it will use the verified
model updates to aggregate a new global model.

As shown in Figure 2, we describe the framework in terms of two components of
federated learning. The local view includes the components running on the distributed
learning nodes. The global view considers the central aggregator that communicates with
all learning nodes.

The federated learning process can be summarized in three steps. 1. Learning nodes
read encrypted model weights and initialization parameters. 2. Learning nodes perform
training tasks to output the ciphertext local model and zk-proof. 3. The aggregator uses
the verified local model to aggregate a new global model. The detailed workflow is shown
in Figure 3.

Figure 2. The proposed federated learning framework.

(1) Aggregator: The aggregator consists of three components, ZK-Verifier, FHE Man-
ager, and Global Model Manager. It is assumed that the aggregator is a trusted node man-
aged by the task initiator; the aggregation process does not need zero-knowledge proof.
In order to reduce the cost of generating proof, all three components are implemented as
host programs.

FHE Manager: It is responsible for initializing the BGV scheme. Homomorphic en-
cryption of the global model makes the model information invisible during transmission
and local learning.

ZK-Verifier: It is responsible for generating ZKP public parameters such as asymmet-
ric keys, which are used to generate proofs for learning nodes during the machine learning
process. It receives and verifies the proof submitted by the learning node.

Global Model Manager: Receiving model updates from all learning nodes, the veri-
fied local models are aggregated to produce a new global model.

(2) Learning Nodes: The learning node consists of three components, Data Source,
Node Manager, and ZK-Trainer. A learning node becomes a malicious node in a federated
learning task when it is attacked. In order to validate the local models submitted by the
learning nodes, we implement the zk-Trainer component as a guest program.

Figure 2. The proposed federated learning framework.

The federated learning process can be summarized in three steps. 1. Learning nodes
read encrypted model weights and initialization parameters. 2. Learning nodes perform
training tasks to output the ciphertext local model and zk-proof. 3. The aggregator uses the
verified local model to aggregate a new global model. The detailed workflow is shown in
Figure 3.

(1) Aggregator: The aggregator consists of three components, ZK-Verifier, FHE Man-
ager, and Global Model Manager. It is assumed that the aggregator is a trusted node
managed by the task initiator; the aggregation process does not need zero-knowledge proof.
In order to reduce the cost of generating proof, all three components are implemented as
host programs.

FHE Manager: It is responsible for initializing the BGV scheme. Homomorphic
encryption of the global model makes the model information invisible during transmission
and local learning.

ZK-Verifier: It is responsible for generating ZKP public parameters such as asymmetric
keys, which are used to generate proofs for learning nodes during the machine learning
process. It receives and verifies the proof submitted by the learning node.

Global Model Manager: Receiving model updates from all learning nodes, the verified
local models are aggregated to produce a new global model.

(2) Learning Nodes: The learning node consists of three components, Data Source,
Node Manager, and ZK-Trainer. A learning node becomes a malicious node in a federated
learning task when it is attacked. In order to validate the local models submitted by the
learning nodes, we implement the zk-Trainer component as a guest program.

Data Source: It is responsible for the storage and management of local privacy data.
Node Manager: It is responsible for the interaction between components. It imple-

ments a client that receives ZKP and FHE public parameters from the aggregator and
initializes the local execution environment. The data management module reads training

Entropy 2023, 25, 1550 8 of 15

data from the data source, preprocesses, and encrypts it. Finally, the local model updates
are forwarded to the central aggregator via Client.

ZK-Trainer: The machine learning task is implemented as a zero-knowledge computa-
tion, using encrypted global model and data as input. In addition to outputting the local
model, zk-trainer generates a proof for the integrity of this local training process.

Entropy 2023, 25, x FOR PEER REVIEW 8 of 15

Data Source: It is responsible for the storage and management of local privacy data.
Node Manager: It is responsible for the interaction between components. It imple-

ments a client that receives ZKP and FHE public parameters from the aggregator and ini-
tializes the local execution environment. The data management module reads training
data from the data source, preprocesses, and encrypts it. Finally, the local model updates
are forwarded to the central aggregator via Client.

ZK-Trainer: The machine learning task is implemented as a zero-knowledge compu-
tation, using encrypted global model and data as input. In addition to outputting the local
model, zk-trainer generates a proof for the integrity of this local training process.

Figure 3. Workflow.

3.2. Workflow
As shown in Figure 3, the workflow of the system consists of a setup phase and a re-

peating update cycle. For simplicity, the aggregator is represented as a single component.
Setup: In the setup phase, the developer deploys the ZKVM application on all the

nodes and initializes the parameters of the BGV scheme. In the federated learning process,
the ZK-Trainer is created as the prover and the aggregator as the verifier.

Cycles: At the beginning of each update cycle, the aggregator first homomorphically
encrypts the global model (1.1). The node manager of the learning node reads private data
from the local data source (1.2). The data are cleaned and sensitive information is removed
before homomorphic encryption (1.3). The zk-trainer reads the latest global model from
the aggregator (1.4) and receives the processed training data from the node manager (1.5).
The zk-trainer performs the zero-knowledge machine learning task to generate the local
model and proof (1.6). The proof is sent to the aggregator (1.7) along with the local model.
The aggregator first validates the proof with the validation key and then updates the
global model with the validated local model (1.8). In successive update cycles, the learning
nodes always update the global model in a ciphertext state, thus enabling the protection
of global model privacy. At the end of federated learning, only the developer decrypts the
global model using the FHE private key to obtain the real machine learning results.

4. Experiments
This section comprehensively evaluates the proposed framework through experi-

ments.

Figure 3. Workflow.

3.2. Workflow

As shown in Figure 3, the workflow of the system consists of a setup phase and a
repeating update cycle. For simplicity, the aggregator is represented as a single component.

Setup: In the setup phase, the developer deploys the ZKVM application on all the
nodes and initializes the parameters of the BGV scheme. In the federated learning process,
the ZK-Trainer is created as the prover and the aggregator as the verifier.

Cycles: At the beginning of each update cycle, the aggregator first homomorphically
encrypts the global model (1.1). The node manager of the learning node reads private data
from the local data source (1.2). The data are cleaned and sensitive information is removed
before homomorphic encryption (1.3). The zk-trainer reads the latest global model from
the aggregator (1.4) and receives the processed training data from the node manager (1.5).
The zk-trainer performs the zero-knowledge machine learning task to generate the local
model and proof (1.6). The proof is sent to the aggregator (1.7) along with the local model.
The aggregator first validates the proof with the validation key and then updates the global
model with the validated local model (1.8). In successive update cycles, the learning nodes
always update the global model in a ciphertext state, thus enabling the protection of global
model privacy. At the end of federated learning, only the developer decrypts the global
model using the FHE private key to obtain the real machine learning results.

Entropy 2023, 25, 1550 9 of 15

4. Experiments

This section comprehensively evaluates the proposed framework through experiments.
First, we analyze the framework in terms of universality, flexibility, and security. Sec-

ondly, we designed the federated learning task and measured the required computational
cost and model performance. The detailed experimental environment is shown in Table 3.

Table 3. Software and hardware of the experimental environment.

Software and Hardware Detailed Information

Rust 1.71.1 (ubuntu20.04)
CPU 12 vCPU Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50 GHz

Random Access Memory 16G
Hard Disk 25G
PyTorch 1.11.0

Cuda 11.3

4.1. Framework Analysis

This section analyzes the proposed framework in terms of universality, flexibility,
and security.

4.1.1. Universality

As shown in Table 4, we summarize the recent research.

Table 4. Zero-knowledge proofs combined with machine learning algorithms. Linear regression (LR);
support vector machine (SVM); differential privacy (DP); neural network (NN); stochastic gradient
descent (SGD).

Paper LR SVM DP NN SGD

[17]
√

[36]
√ √

[8]
√

[37]
√

[38]
√

[39]
√ √

Our
√ √ √ √ √

We use
√

to indicate which machine learning algorithms have been implemented in the literature.

Most of the articles utilize circuit languages such as zk-snarks to generate verifiable
proofs for the training process of learning nodes. To further implement the incentives, Heiss
J. et al. implemented the verification process as smart contracts on the blockchain using
zokrates [37]. However, in these studies, developers need to learn specific zk languages and
redesign the machine learning algorithms. This development approach severely hinders
the integration of applications with zero-knowledge proof techniques. For the first time,
we introduce ZKVM in the federated learning framework to achieve zero-knowledge proof
for generalized machine learning algorithms.

In order to demonstrate the universality of the framework proposed in this article, we
generated proofs for all the machine learning algorithms mentioned above and verified it.

As shown in Figure 4, we summarize the time cost spent by different machine learning
algorithms with the same training samples and computational size. It is obvious that the
latter two tasks cost more time to generate and verify the proof. This is since differential
privacy (DP) introduces additional stochastic algorithms and noise-adding operations.
Similarly, the complex structure and backpropagation of neural networks also lead to an
increase in time cost.

Entropy 2023, 25, 1550 10 of 15Entropy 2023, 25, x FOR PEER REVIEW 10 of 15

(a) (b)

Figure 4. The generation and verification time of proof with different machine learning algo-
rithms: (a) generation time of zk-proof; (b) verification time of zk-proof.

4.1.2. Flexibility
The training and inference of artificial intelligence models require significant hardware

resources. However, federated learning nodes with private data are usually ordinary users
or organizations that lack high-performance devices [40]. We find that there is still a lack of
discussion on how to perform zero-knowledge proofs for operations of arbitrary size.

In the framework proposed in this article, the continuation mechanism automatically
divides large programs into smaller parts that are independently calculated and proven.
These proofs achieve verification of computational integrity for arbitrary programs on
memory-limited devices.

To demonstrate the flexibility of the framework, we gradually increase the cycles of
the guest programs. The cycle is the smallest unit computed in the ZKVM circuit, analo-
gous to a clock cycle on a physical central processing unit (CPU). The complexity of a
program�s execution is measured in cycles as they directly affect the memory, proof size,
and time performance of the ZKVM.

As shown in Figure 5, the time required to generate proofs increases linearly as the
cycles of the guest program increase. However, the RAM consumed by the program no
longer varies when cycles are greater than 1024k. Only when cycles are less than 1024k,
the RAM increases linearly. This is because the framework proposed in this paper splits
applications with cycles larger than 1024k into smaller computation parts, which limits
the memory consumption to 8G. The split part still needs corresponding CPU time to gen-
erate proofs, so it does not affect the generation time of zk-proof.

(a) (b)

Figure 5. The generation time and running RAM with different numbers of cycles: (a) generation
time of zk-proof; (b) running RAM.

Figure 4. The generation and verification time of proof with different machine learning algorithms:
(a) generation time of zk-proof; (b) verification time of zk-proof.

4.1.2. Flexibility

The training and inference of artificial intelligence models require significant hardware
resources. However, federated learning nodes with private data are usually ordinary users
or organizations that lack high-performance devices [40]. We find that there is still a lack of
discussion on how to perform zero-knowledge proofs for operations of arbitrary size.

In the framework proposed in this article, the continuation mechanism automatically
divides large programs into smaller parts that are independently calculated and proven.
These proofs achieve verification of computational integrity for arbitrary programs on
memory-limited devices.

To demonstrate the flexibility of the framework, we gradually increase the cycles of the
guest programs. The cycle is the smallest unit computed in the ZKVM circuit, analogous to
a clock cycle on a physical central processing unit (CPU). The complexity of a program’s
execution is measured in cycles as they directly affect the memory, proof size, and time
performance of the ZKVM.

As shown in Figure 5, the time required to generate proofs increases linearly as the
cycles of the guest program increase. However, the RAM consumed by the program no
longer varies when cycles are greater than 1024k. Only when cycles are less than 1024k,
the RAM increases linearly. This is because the framework proposed in this paper splits
applications with cycles larger than 1024k into smaller computation parts, which limits the
memory consumption to 8G. The split part still needs corresponding CPU time to generate
proofs, so it does not affect the generation time of zk-proof.

Entropy 2023, 25, x FOR PEER REVIEW 10 of 15

(a) (b)

Figure 4. The generation and verification time of proof with different machine learning algo-
rithms: (a) generation time of zk-proof; (b) verification time of zk-proof.

4.1.2. Flexibility
The training and inference of artificial intelligence models require significant hardware

resources. However, federated learning nodes with private data are usually ordinary users
or organizations that lack high-performance devices [40]. We find that there is still a lack of
discussion on how to perform zero-knowledge proofs for operations of arbitrary size.

In the framework proposed in this article, the continuation mechanism automatically
divides large programs into smaller parts that are independently calculated and proven.
These proofs achieve verification of computational integrity for arbitrary programs on
memory-limited devices.

To demonstrate the flexibility of the framework, we gradually increase the cycles of
the guest programs. The cycle is the smallest unit computed in the ZKVM circuit, analo-
gous to a clock cycle on a physical central processing unit (CPU). The complexity of a
program�s execution is measured in cycles as they directly affect the memory, proof size,
and time performance of the ZKVM.

As shown in Figure 5, the time required to generate proofs increases linearly as the
cycles of the guest program increase. However, the RAM consumed by the program no
longer varies when cycles are greater than 1024k. Only when cycles are less than 1024k,
the RAM increases linearly. This is because the framework proposed in this paper splits
applications with cycles larger than 1024k into smaller computation parts, which limits
the memory consumption to 8G. The split part still needs corresponding CPU time to gen-
erate proofs, so it does not affect the generation time of zk-proof.

(a) (b)

Figure 5. The generation time and running RAM with different numbers of cycles: (a) generation
time of zk-proof; (b) running RAM.

Figure 5. The generation time and running RAM with different numbers of cycles: (a) generation
time of zk-proof; (b) running RAM.

Entropy 2023, 25, 1550 11 of 15

Overall, the framework is not limited by the size of computing. No matter how long it
takes, ZKVM can always generate zk-proof for arbitrary programs under memory constraints.

4.1.3. Security

This section analyzes the security of the framework under different malicious behav-
iors. The proposed framework in this paper is built on the premise that the training data
is trustworthy. This means that the learning node correctly collects and manages local
private data.

When the developer designs the federated learning task as a guest program, this
program uniquely corresponds to an image ID. The learning node outputs the local model
and verifiable proof after executing the guest program. This proof includes information
such as image ID, execution trace, and output hash. During this process, malicious nodes
may intentionally tamper with the guest program or return incorrect local training results
to the aggregator. As shown in Table 5, we analyzed the security of the framework under
different malicious behaviors.

Table 5. Security analysis of frameworks under different malicious behaviors.

Malicious Behavior Security Analysis

Modify Program If the program is modified before execution, the image ID in the proof will not match what is expected.

Modify Execution If the execution is modified, then the execution trace will be invalid. For example, run ZKVM in a
debugger and start changing random memory.

Modify Output If the output is modified, then the output hash will not match the hash recorded in the proof.

Overall, the aggregator’s verification of proof identifies all behaviors of malicious
nodes. Aggregating the new global model using only the verified local model guarantees
the correctness of the federated learning results.

4.2. Federated Learning Performance

The federated learning framework proposed in this paper is generic and applicable
to any distributed machine learning task. To gain insight into the performance of this
framework, we implemented a feedforward neural network with a single hidden layer [41],
whose structure is shown in Figure 6, and the sizes of the input and hidden layers are set to
6 and 10, respectively.

Entropy 2023, 25, x FOR PEER REVIEW 11 of 15

Overall, the framework is not limited by the size of computing. No matter how long it
takes, ZKVM can always generate zk-proof for arbitrary programs under memory constraints.

4.1.3. Security
This section analyzes the security of the framework under different malicious behav-

iors. The proposed framework in this paper is built on the premise that the training data
is trustworthy. This means that the learning node correctly collects and manages local
private data.

When the developer designs the federated learning task as a guest program, this pro-
gram uniquely corresponds to an image ID. The learning node outputs the local model
and verifiable proof after executing the guest program. This proof includes information
such as image ID, execution trace, and output hash. During this process, malicious nodes
may intentionally tamper with the guest program or return incorrect local training results
to the aggregator. As shown in Table 5, we analyzed the security of the framework under
different malicious behaviors.

Table 5. Security analysis of frameworks under different malicious behaviors.

Malicious Behavior Security Analysis

Modify Program If the program is modified before execution, the image ID in the proof will not
match what is expected.

Modify Execution
If the execution is modified, then the execution trace will be invalid. For exam-
ple, run ZKVM in a debugger and start changing random memory.

Modify Output
If the output is modified, then the output hash will not match the hash recorded
in the proof.

Overall, the aggregator�s verification of proof identifies all behaviors of malicious
nodes. Aggregating the new global model using only the verified local model guarantees
the correctness of the federated learning results.

4.2. Federated Learning Performance
The federated learning framework proposed in this paper is generic and applicable

to any distributed machine learning task. To gain insight into the performance of this
framework, we implemented a feedforward neural network with a single hidden layer
[41], whose structure is shown in Figure 6, and the sizes of the input and hidden layers
are set to 6 and 10, respectively.

Figure 6. Feedforward neural network with one hidden layer.

4.2.1. Model Accuracy
We construct a binary classification task after screening the classical IRIS dataset.

First, we randomly distribute the dataset on N federated learning nodes, and then perform
the local learning process in the ciphertext state, and finally use the average aggregation
algorithm to obtain the federated learning results. We measured the model accuracy un-
der different numbers of learning nodes.

Figure 6. Feedforward neural network with one hidden layer.

4.2.1. Model Accuracy

We construct a binary classification task after screening the classical IRIS dataset. First,
we randomly distribute the dataset on N federated learning nodes, and then perform
the local learning process in the ciphertext state, and finally use the average aggregation
algorithm to obtain the federated learning results. We measured the model accuracy under
different numbers of learning nodes.

Since ZKVM is essentially a virtual machine, only encryption and homomorphic
operations have an impact on the model performance. As shown in Figure 7, with different
parameter configurations, the global model was able to successfully converge and achieve
high accuracy as the number of federated learning rounds increased. For example, the

Entropy 2023, 25, 1550 12 of 15

model achieves a 90% accuracy when the number of joint learning nodes is set to either 1
or 3. This is considered a satisfactory result considering the impact of the FHE scheme on
computational accuracy and error. The accuracy of the model can be further improved by
constructing neural networks with more complex structures or by using more appropriate
aggregation algorithms.

Entropy 2023, 25, x FOR PEER REVIEW 12 of 15

Since ZKVM is essentially a virtual machine, only encryption and homomorphic op-
erations have an impact on the model performance. As shown in Figure 7, with different
parameter configurations, the global model was able to successfully converge and achieve
high accuracy as the number of federated learning rounds increased. For example, the
model achieves a 90% accuracy when the number of joint learning nodes is set to either 1
or 3. This is considered a satisfactory result considering the impact of the FHE scheme on
computational accuracy and error. The accuracy of the model can be further improved by
constructing neural networks with more complex structures or by using more appropriate
aggregation algorithms.

(a) (b)

Figure 7. The loss and accuracy of the global model trained with different numbers of learning
nodes: (a) model loss; (b) model accuracy.

4.2.2. Computational Cost
In addition to model performance, computational cost is crucial for the evaluation of

federated learning frameworks.
We encrypt each neuron in the model as two polynomials with the highest power of

four. Then, forward propagation and backpropagation are performed in plaintext and ci-
phertext states, respectively, to update the model information. We implemented these ma-
chine learning tasks as guest programs in ZKVM that need to be proved. Then, the re-
quired computational cost was measured under different federated learning rounds.

We summarize the relationship between the number of federated learning rounds
and the generation and verification time of proof in Figure 8. The learning process in the
ciphertext state takes more time to generate and verify proof than the plaintext operations.
The reason for this is due to a simple plaintext algebraic operation transformed into many
operations between polynomials after homomorphic encryption of the model infor-
mation. Although generating proof takes a considerable amount of time, the verification
time is only in milliseconds.

As shown in Figure 9, the running memory required by the guest program shows a
slower growth as the number of federated learning rounds increases. The reason is that
model training is a repetitive arithmetic process, and our guest program based on the rust
language implementation has a better memory management mechanism, so the running
memory changes less. However, due to the increase in computational complexity, the size
of the proof increases linearly with the number of federated learning rounds.

Figure 7. The loss and accuracy of the global model trained with different numbers of learning nodes:
(a) model loss; (b) model accuracy.

4.2.2. Computational Cost

In addition to model performance, computational cost is crucial for the evaluation of
federated learning frameworks.

We encrypt each neuron in the model as two polynomials with the highest power
of four. Then, forward propagation and backpropagation are performed in plaintext and
ciphertext states, respectively, to update the model information. We implemented these
machine learning tasks as guest programs in ZKVM that need to be proved. Then, the
required computational cost was measured under different federated learning rounds.

We summarize the relationship between the number of federated learning rounds
and the generation and verification time of proof in Figure 8. The learning process in the
ciphertext state takes more time to generate and verify proof than the plaintext operations.
The reason for this is due to a simple plaintext algebraic operation transformed into many
operations between polynomials after homomorphic encryption of the model information.
Although generating proof takes a considerable amount of time, the verification time is
only in milliseconds.

As shown in Figure 9, the running memory required by the guest program shows a
slower growth as the number of federated learning rounds increases. The reason is that
model training is a repetitive arithmetic process, and our guest program based on the rust
language implementation has a better memory management mechanism, so the running
memory changes less. However, due to the increase in computational complexity, the size
of the proof increases linearly with the number of federated learning rounds.

Entropy 2023, 25, 1550 13 of 15

Entropy 2023, 25, x FOR PEER REVIEW 13 of 15

(a) (b)

Figure 8. The generation and verification time of proof with different numbers of federated learning
round: (a) generation time of zk-proof; (b) verification time of zk-proof.

(a) (b)

Figure 9. The running RAM and proof size with different numbers of federated learning round: (a)
running RAM; (b) proof size.

5. Limitation
The federated learning framework proposed in this paper verifies the integrity of the

machine learning process and protects the privacy of the global model. However, this pa-
per still has some limitations.

First, to protect model privacy, we implement the BGV fully homomorphic encryp-
tion scheme in ZKVM. We propose to encrypt the initial model and perform local learning
in the ciphertext space. This encryption scheme acting on integers has an impact on the
computational accuracy, which reduces the results of federated learning. Second, encrypt-
ing model weight as polynomials leads to an increase in computation and requires more
time and memory for the validation of machine learning tasks. Nevertheless, as mentioned
above, our framework still achieves high model accuracy. With future developments in
cryptography, we believe the limitations of this framework can be well addressed.

6. Conclusions
In this paper, we propose and implement a federated learning framework based on

ZKVM and homomorphic encryption. We implement the federated learning task as a
guest program in ZKVM, which verifies the integrity of local model training. In addition,
we propose to encrypt the global model, and the learning node outputs the local model in
the ciphertext space, which protects the privacy of the global model during training and
transmission.

Figure 8. The generation and verification time of proof with different numbers of federated learning
round: (a) generation time of zk-proof; (b) verification time of zk-proof.

Entropy 2023, 25, x FOR PEER REVIEW 13 of 15

(a) (b)

Figure 8. The generation and verification time of proof with different numbers of federated learning
round: (a) generation time of zk-proof; (b) verification time of zk-proof.

(a) (b)

Figure 9. The running RAM and proof size with different numbers of federated learning round: (a)
running RAM; (b) proof size.

5. Limitation
The federated learning framework proposed in this paper verifies the integrity of the

machine learning process and protects the privacy of the global model. However, this pa-
per still has some limitations.

First, to protect model privacy, we implement the BGV fully homomorphic encryp-
tion scheme in ZKVM. We propose to encrypt the initial model and perform local learning
in the ciphertext space. This encryption scheme acting on integers has an impact on the
computational accuracy, which reduces the results of federated learning. Second, encrypt-
ing model weight as polynomials leads to an increase in computation and requires more
time and memory for the validation of machine learning tasks. Nevertheless, as mentioned
above, our framework still achieves high model accuracy. With future developments in
cryptography, we believe the limitations of this framework can be well addressed.

6. Conclusions
In this paper, we propose and implement a federated learning framework based on

ZKVM and homomorphic encryption. We implement the federated learning task as a
guest program in ZKVM, which verifies the integrity of local model training. In addition,
we propose to encrypt the global model, and the learning node outputs the local model in
the ciphertext space, which protects the privacy of the global model during training and
transmission.

Figure 9. The running RAM and proof size with different numbers of federated learning round:
(a) running RAM; (b) proof size.

5. Limitation

The federated learning framework proposed in this paper verifies the integrity of the
machine learning process and protects the privacy of the global model. However, this
paper still has some limitations.

First, to protect model privacy, we implement the BGV fully homomorphic encryption
scheme in ZKVM. We propose to encrypt the initial model and perform local learning in
the ciphertext space. This encryption scheme acting on integers has an impact on the com-
putational accuracy, which reduces the results of federated learning. Second, encrypting
model weight as polynomials leads to an increase in computation and requires more time
and memory for the validation of machine learning tasks. Nevertheless, as mentioned
above, our framework still achieves high model accuracy. With future developments in
cryptography, we believe the limitations of this framework can be well addressed.

6. Conclusions

In this paper, we propose and implement a federated learning framework based on
ZKVM and homomorphic encryption. We implement the federated learning task as a
guest program in ZKVM, which verifies the integrity of local model training. In addition,
we propose to encrypt the global model, and the learning node outputs the local model
in the ciphertext space, which protects the privacy of the global model during training
and transmission.

Entropy 2023, 25, 1550 14 of 15

Our framework has broad applicability and can generate zero-knowledge proofs for
machine learning tasks of any class and size. At the same time, our framework is highly
secure and can effectively identify various behaviors of malicious nodes.

We evaluate the training cost and model performance of federated learning tasks on
feedforward neural networks. We find that after implementing machine learning as a ZKP
task, it takes more time to generate proof. In contrast, the time required to verify proof
is only measured in milliseconds. Furthermore, although homomorphic encryption has
an impact on the calculation accuracy, the framework proposed in this paper nevertheless
achieves a satisfactory 90% model accuracy.

In the future work, we will work on improving the computational efficiency and
accuracy of homomorphic encryption schemes to increase the usability of this framework.
In addition, the continuous development of ZKVM technology will help to reduce the time
and resources required for generating proofs, which is conducive to further improving the
overall efficiency of the framework.

Author Contributions: Methodology, B.Z. and G.L.; investigation, P.Q. and X.G.; writing—original
draft, G.L.; writing—review and editing, B.Z. and Y.S.; supervision, B.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
Number 62007024).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of artificial intelligence and machine learning in smart cities.

Comput. Commun. 2020, 154, 313–323. [CrossRef]
2. Boobalan, P.; Ramu, S.P.; Pham, Q.V.; Dev, K.; Pandya, S.; Maddikunta, P.K.R.; Gadekallu, T.R.; Huynh-The, T. Fusion of federated

learning and industrial Internet of Things: A survey. Comput. Netw. 2022, 212, 109048. [CrossRef]
3. Wen, J.; Zhang, Z.; Lan, Y.; Cui, Z.; Cai, J.; Zhang, W. A survey on federated learning: Challenges and applications. Int. J. Mach.

Learn. Cybern. 2023, 14, 513–535. [CrossRef]
4. Zhu, J.; Cao, J.; Saxena, D.; Jiang, S.; Ferradi, H. Blockchain-empowered federated learning: Challenges, solutions, and future directions.

ACM Comput. Surv. 2023, 55, 1–31. [CrossRef]
5. Buyukates, B.; He, C.; Han, S.; Fang, Z.; Zhang, Y.; Long, J.; Farahanchi, A.; Avestimehr, S. Proof-of-Contribution-Based Design

for Collaborative Machine Learning on Blockchain. arXiv 2023, arXiv:2302.14031.
6. Bellés-Muñoz, M.; Isabel, M.; Muñoz-Tapia, J.L.; Rubio, A.; Baylina, J. Circom: A Circuit Description Language for Building

Zero-knowledge Applications. In IEEE Transactions on Dependable and Secure Computing; IEEE: Hong Kong, China, 2022.
7. Arun, A.; Setty, S.; Thaler, J. Jolt: SNARKs for Virtual Machines via Lookups. Cryptol. Eprint Arch. 2023. Available online:

https://eprint.iacr.org/2023/1217 (accessed on 9 August 2023).
8. Rückel, T.; Sedlmeir, J.; Hofmann, P. Fairness, integrity, and privacy in a scalable blockchain-based federated learning system.

Comput. Netw. 2022, 202, 108621. [CrossRef]
9. Gorantala, S.; Springer, R.; Gipson, B. Unlocking the Potential of Fully Homomorphic Encryption. Commun. ACM 2023, 66, 72–81.

[CrossRef]
10. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Agüera y Arcas, B. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR, Fort Lauderdale,
FL, USA, 20–22 April 2017; pp. 1273–1282.

11. Moshawrab, M.; Adda, M.; Bouzouane, A.; Ibrahim, H.; Raad, A. Reviewing Federated Learning Aggregation Algorithms;
Strategies, Contributions, Limitations and Future Perspectives. Electronics 2023, 12, 2287. [CrossRef]

12. Nguyen, D.C.; Pham, Q.V.; Pathirana, P.N.; Ding, M.; Seneviratne, A.; Lin, Z.; Dobre, O.; Hwang, W.-J. Federated learning for
smart healthcare: A survey. ACM Comput. Surv. 2022, 55, 1–37. [CrossRef]

13. Zheng, Z.; Zhou, Y.; Sun, Y.; Wang, Z.; Liu, B.; Li, K. Applications of federated learning in smart cities: Recent advances, taxonomy,
and open challenges. Connect. Sci. 2022, 34, 1–28. [CrossRef]

14. Ghimire, B.; Rawat, D.B. Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for
internet of things. IEEE Internet Things J. 2022, 9, 8229–8249. [CrossRef]

15. Li, W.-H.; Zhang, Z.-Y.; Zhou, Z.-B.; Deng, Y. An Overview on Succinct Non-interactive Zero-knowledge Proofs. J. Cryptol. Res.
2022, 9, 379–447.

https://doi.org/10.1016/j.comcom.2020.02.069
https://doi.org/10.1016/j.comnet.2022.109048
https://doi.org/10.1007/s13042-022-01647-y
https://doi.org/10.1145/3570953
https://eprint.iacr.org/2023/1217
https://doi.org/10.1016/j.comnet.2021.108621
https://doi.org/10.1145/3572832
https://doi.org/10.3390/electronics12102287
https://doi.org/10.1145/3453476
https://doi.org/10.1080/09540091.2021.1936455
https://doi.org/10.1109/JIOT.2022.3150363

Entropy 2023, 25, 1550 15 of 15

16. Ghodsi, Z.; Javaheripi, M.; Sheybani, N.; Zhang, X.; Huang, K.; Koushanfar, F. zPROBE: Zero Peek Robustness Checks for
Federated Learning. arXiv 2022, arXiv:2206.12100.

17. Smahi, A.; Li, H.; Yang, Y.; Yang, X.; Lu, P.; Zhong, Y.; Liu, C. BV-ICVs: A privacy-preserving and verifiable federated learning framework
for V2X environments using blockchain and zkSNARKs. J. King Saud Univ.—Comput. Inf. Sci. 2023, 35, 101542. [CrossRef]

18. Dokchitser, T.; Bulkin, A. Zero Knowledge Virtual Machine step by step. Cryptol. Eprint Arch. 2023. Available online: https://eprint.iacr.
org/2023/1032 (accessed on 9 August 2023).

19. Bayan, T.; Banach, R. Exploring the Privacy Concerns in Permissionless Blockchain Networks and Potential Solutions. arXiv 2023,
arXiv:2305.01038.

20. Bruestle, J.; Gafni, P. RISC Zero ZKVM: Scalable, Transparent Arguments of RISC-V Integrity. Available online: https://dev.
risczero.com/proof-system-in-detail.pdf (accessed on 9 August 2023).

21. Cui, E.; Li, T.; Wei, Q. Risc-v instruction set architecture extensions: A survey. IEEE Access 2023, 11, 24696–24711. [CrossRef]
22. Botrel, G.; El Housni, Y. Faster Montgomery multiplication and Multi-Scalar-Multiplication for SNARKs. IACR Trans. Cryptogr.

Hardw. Embed. Syst. 2023, 2023, 504–521. [CrossRef]
23. Pinkas, B.; Schneider, T.; Tkachenko, O.; Yanai, A. Efficient circuit-based PSI with linear communication. In Advances in Cryptology—

EUROCRYPT 2019, Proceedings of the 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, 19–23 May 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 122–153.

24. Wang, Y.W.; Wu, J.L. A Privacy-Preserving Symptoms Retrieval System with the Aid of Homomorphic Encryption and Private
Set Intersection Schemes. Algorithms 2023, 16, 244. [CrossRef]

25. Stefanov, E.; Shi, E.; Song, D. Policy-enhanced private set intersection: Sharing information while enforcing privacy policies. In
Public Key Cryptography—PKC 2012, Proceedings of the 15th International Conference on Practice and Theory in Public Key Cryptography,
Darmstadt, Germany, 21–23 May 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 413–430.

26. Ménétrey, J.; Göttel, C.; Pasin, M.; Felber, P.; Schiavoni, V. An exploratory study of attestation mechanisms for trusted execution
environments. arXiv 2022, arXiv:2204.06790.

27. Joshi, B.; Joshi, B.; Mishra, A.; Arya, V.; Gupta, A.K.; Peraković, D. A comparative study of privacy-preserving homomorphic
encryption techniques in cloud computing. Int. J. Cloud Appl. Comput. (IJCAC) 2022, 12, 1–11. [CrossRef]

28. Lin, H.; Chen, C.; Hu, Y. Privacy-protected aggregation in federated learning based on semi-homomorphic encryption. In
Proceedings of the 3rd International Conference on Artificial Intelligence, Automation, and High-Performance Computing
(AIAHPC 2023), Wuhan, China, 31 March–2 April 2023; Volume 12717, p. 127171J.

29. Gentry, C. A Fully Homomorphic Encryption Scheme; Stanford University: Stanford, CA, USA, 2009.
30. Mahato, G.K.; Chakraborty, S.K. A comparative review on homomorphic encryption for cloud security. IETE J. Res. 2023, 69, 5124–5133.

[CrossRef]
31. Gupta, S.; Cammarota, R.; Rosing, T.Š. Memfhe: End-to-end computing with fully homomorphic encryption in memory. In ACM

Transactions on Embedded Computing Systems; Association for Computing Machinery: New York, NY, USA, 2022.
32. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In Advances in Cryptology—

ASIACRYPT 2017, Proceedings of the 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, 3–7 December 2017; Springer International Publishing: Cham, Switzerland, 2017; pp. 409–437.

33. Geelen, R.; Vercauteren, F. Bootstrapping for BGV and BFV Revisited. J. Cryptol. 2023, 36, 12. [CrossRef]
34. Masahiro, Y. Fully Homomorphic Encryption without Bootstrapping; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2015.
35. Morimura, K.; Maeda, D.; Nishide, T. Improved integer-wise homomorphic comparison and division based on polynomial evaluation. In

Proceedings of the 17th International Conference on Availability, Reliability and Security, Vienna, Austria, 23–26 August 2022; pp. 1–10.
36. Marzo, S.; Pinto, R.; McKenna, L.; Brennan, R. Privacy-Enhanced ZKP-Inspired Framework for Balanced Federated Learning. In

Artificial Intelligence and Cognitive Science, Proceedings of the 30th Irish Conference, AICS 2022, Munster, Ireland, 8–9 December 2022;
Springer Nature: Cham, Switzerland, 2022; pp. 251–263.

37. Heiss, J.; Grünewald, E.; Tai, S.; Haimerl, N.; Schulte, S. Advancing blockchain-based federated learning through verifiable
off-chain computations. In Proceedings of the 2022 IEEE International Conference on Blockchain (Blockchain), Espoo, Finland,
22–25 August 2022; pp. 194–201.

38. Zhang, Y.; Tang, Y.; Zhang, Z.; Li, M.; Li, Z.; Khan, S.; Chen, H.; Cheng, G. Blockchain-Based Practical and Privacy-Preserving
Federated Learning with Verifiable Fairness. Mathematics 2023, 11, 1091. [CrossRef]

39. Xing, Z.; Zhang, Z.; Li, M.; Liu, J.; Zhu, L.; Russello, G.; Asghar, M.R. Zero-Knowledge Proof-based Practical Federated Learning
on Blockchain. arXiv 2023, arXiv:2304.05590.

40. Abreha, H.G.; Hayajneh, M.; Serhani, M.A. Federated learning in edge computing: A systematic survey. Sensors 2022, 22, 450.
[CrossRef]

41. Chen, Y.; Zhang, C.; Liu, C.; Wang, Y.; Wan, X. Atrial fibrillation detection using a feedforward neural network. J. Med. Biol. Eng.
2022, 42, 63–73. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jksuci.2023.03.020
https://eprint.iacr.org/2023/1032
https://eprint.iacr.org/2023/1032
https://dev.risczero.com/proof-system-in-detail.pdf
https://dev.risczero.com/proof-system-in-detail.pdf
https://doi.org/10.1109/ACCESS.2023.3246491
https://doi.org/10.46586/tches.v2023.i3.504-521
https://doi.org/10.3390/a16050244
https://doi.org/10.4018/IJCAC.309936
https://doi.org/10.1080/03772063.2021.1965918
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.3390/math11051091
https://doi.org/10.3390/s22020450
https://doi.org/10.1007/s40846-022-00681-z

	Introduction
	Background
	Federated Learning
	Zero-Knowledge Proofs and Zero-Knowledge Virtual Machine
	Private Set Intersection
	Trusted Execution Environment
	Homomorphic Encryption

	System Design
	System Overview
	Workflow

	Experiments
	Framework Analysis
	Universality
	Flexibility
	Security

	Federated Learning Performance
	Model Accuracy
	Computational Cost

	Limitation
	Conclusions
	References

