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Abstract: Data sharing and analyzing among different devices in mobile edge computing is valuable
for social innovation and development. The limitation to the achievement of this goal is the data
privacy risk. Therefore, existing studies mainly focus on enhancing the data privacy-protection
capability. On the one hand, direct data leakage is avoided through federated learning by converting
raw data into model parameters for transmission. On the other hand, the security of federated
learning is further strengthened by privacy-protection techniques to defend against inference attack.
However, privacy-protection techniques may reduce the training accuracy of the data while improv-
ing the security. Particularly, trading off data security and accuracy is a major challenge in dynamic
mobile edge computing scenarios. To address this issue, we propose a federated-learning-based
privacy-protection scheme, FLPP. Then, we build a layered adaptive differential privacy model to
dynamically adjust the privacy-protection level in different situations. Finally, we design a differential
evolutionary algorithm to derive the most suitable privacy-protection policy for achieving the optimal
overall performance. The simulation results show that FLPP has an advantage of 8∼34% in overall
performance. This demonstrates that our scheme can enable data to be shared securely and accurately.

Keywords: mobile edge computing; privacy protection; federated learning; differential privacy;
differential evolutionary

1. Introduction

With the rise of mobile edge computing (MEC), massive amounts of data are being
generated by a wide variety of sensors, controllers and smart devices [1]. In the era of
the Internet of Everything, data utilization is key to enabling innovation, driving growth
and solving our major challenges [2]. By data mining, we can reveal the hidden patterns,
trends and correlations. This information helps us make optimal decisions, for instance,
the precise diagnosis and treatment of diseases in the medical field, or the optimization of
traffic flow and resource allocation in urban planning. Evidently, the integrated utilization
of data can bring great value and benefits [3].

However, it is often difficult to derive value from the data of a single user. More user
data needs to be involved in the analysis and refinement to get comprehensive informa-
tion [4]. In traditional centralized machine learning, data is often stored centrally in a
centralized server. This leads to the isolated data island effect, i.e., data cannot be fully
utilized and shared. Meanwhile, data privacy protection has become a key issue because of
the centralization of users’ sensitive personal data [5]. Data from mobile devices generally
should not be shared with others in mobile edge computing scenarios. Therefore, breaking
the isolated data island and ensuring data privacy is a current issue [6].

Federated learning (FL) [7], as a new technology paradigm based on cryptography
and machine learning, can achieve information mining without local data. It can unite data
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distributed in different mobile devices and train them into a unified global model with
more comprehensive information. Thus, it solves the problem of isolated data islands. The
clients and server interact with data information through the model parameters without
sharing the original data, improving their data privacy [8].

However, federated learning also leads to several security and privacy risks [9]. One of
the main threats is model inference attack. Although communication is channeled through
the model parameters, Zhu et al. [10] revealed that exchanged model parameters may
also leak private information about the training data. They demonstrated that the original
training data, including image and text data, can be inferred from the gradients. This poses
a new challenge for data privacy-preserving techniques based on federated learning.

To address the above problems, we propose FLPP: a federated-learning-based scheme
for privacy protection in MEC. FLPP enables data centralization across multiple devices
while protecting data privacy in mobile edge computing scenarios. The main contributions
of this paper are as follows.

(1) Targeting heterogeneous data, we present a federated-learning-based scheme for
privacy protection in MEC. The scheme can improve the accuracy of training by
adjusting the weights of its model parameters according to the amount of different
users’ data. In addition, a differential privacy technique is implemented by adding
noise to the model parameters so as to protect the privacy of user data.

(2) To achieve flexible adjustment of differential privacy, we build a layered adaptive
differential privacy model. During each epoch of training, different levels of noise
can be added to cope with the requirements under various conditions.

(3) Due to the higher privacy level, the model training is influenced by noise resulting
in lower accuracy. In order to trade off the accuracy and security of the model, we
customize a differential evolution algorithm to derive the optimal policy to achieve
the best overall performance.

The rest of the paper is organized as follows. Section 2 discusses the related work.
In Section 3, we present the threat model and formulate the data privacy issues. Section 4
depicts the details of the FLPP scheme. Section 5 evaluates our work with existing methods.
Finally, Section 6 concludes the study.

2. Related Work

Existing studies enhance the security of federated learning by combining with a variety
of privacy-protection techniques, mainly including homomorphic encryption (HE), secure
multi-party computation (SMPC) and differential privacy (DP) [11]. Extensive research
demonstrates that the combination of federated learning with these privacy-protection
techniques can provide sufficiently strong security.

Fang et al. [12] proposed a multi-party privacy-preserving machine learning frame-
work, named PFMLP, based partially on HE and federated learning. Training accuracy is
achieved while also improving the training efficiency. Xu et al. [13] proposed a privacy-
protection scheme to apply HE in IoT-FL scenarios, which is highly adaptable with current
IoT architectures. Zhang et al. [14] propose a privacy-enhanced federated-learning (PEFL)
scheme to protect the gradients over an untrusted server. This is mainly enabled by en-
crypting participants’ local gradients with a Paillier homomorphic cryptosystem. The
HE approach can improve the security of federated learning, although it causes a large
computation load. This poses a challenge to the limited computability of devices in mobile
edge computing scenarios.

Kalapaaking et al. [15] proposed a federated-learning framework that combines
SMPC-based aggregation and Encrypted Inference methods. This framework maintains
data and model privacy. Houda et al. [16] presented a novel framework, called MiTFed, that
allows multiple software defined network (SDN) domains to collaboratively build a global
intrusion detection model without sharing their sensitive datasets. The scheme incorporates
SMPC techniques to securely aggregate local model updates. Sotthiwat et al. [17] propose
to encrypt a critical part of model parameters (gradients) to prevent deep leakage from
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gradient attacks. Fereidooni et al. [18] present SAFELearn, a generic design for efficient
private FL systems that protects against inference attacks. In addition, recent studies [19–21]
on secret sharing techniques as a kind of SMPC also hopefully enable federated learning
and data sharing security. The above studies implement the secure construction of models
but cannot afford the communication overhead of a large number of participants.

The differential privacy technique is a good way to avoid the computation load and
communication overhead. Wang et al. [22] proposed a collaborative filtering algorithm
recommendation system based on federated learning and end–edge–cloud computing. The
exposure of private data was further prevented by adding Laplace noise to the training
model through DP technology. Wei et al. [23] proposed a novel DP-based framework,
NbAFL, in which artificial noise is added to parameters at the clients’ side before aggregat-
ing. The strategy for achieving the optimal performance and privacy level is performed by
selecting the number of clients participating in FL. Zhao et al. [24] propose an anonymous
and privacy-preserving federated-learning scheme for the mining of industrial big data,
which leverages differential privacy on shared parameters. They also test the effect of
different privacy levels on accuracy. Adnan et al. [25] conduct a case study of applying a
differentially private federated-learning framework for analysis of histopathology images,
the largest and perhaps most complex medical images. Their work indicates that differen-
tially private federated learning is a viable and reliable framework for the collaborative
development of machine learning models in medical image analysis. However, the DP
privacy level of these works is fixed so it cannot adapt to the dynamically changing sets of
participating aggregation clients. In particular, non-IID data distribution with fixed privacy
level may slow down the speed of FL model training to reach the anticipated accuracy.

In summary, the DP technique with adjustable privacy levels is clearly more suitable
for privacy protection for federated learning in mobile edge computing. To this end, we
propose FLPP, a privacy-protection scheme based on federated learning to adaptively
determine a privacy level strategy, aiming to jointly optimize the accuracy and security of
the training model.

3. System Model and Problem Formulation

In this section, we elaborate a federated-learning-based MEC system, as shown in
Figure 1. Firstly, we propose a data privacy threat model for the MEC system. In order
to achieve data centralization and privacy protection across multiple devices, we present
mathematical models for data protection, parameter protection and problem statement.

3.1. Threat Model

In the system, a trusted MEC server acquires data from the mobile devices under its
range and classifies the data for aggregation. These mobile devices can offload data to
adjacent base stations via wireless transmission. And BSs are wired connected with the
MEC server, forming a fundamental mobile edge computing network.

We assume that there are M = {1, 2, · · · , m} mobile devices connected to this MEC
server in the scenario. At each slot t, the mobile devices have data D = {d1, d2, · · · , dm}
to be transmitted to the MEC server for data aggregation. At the same time, the mobile
devices can also request the aggregation results from the MEC server. In this case, some
data privacy issues may occur [26].

(1) Eavesdropping: Also called sniffing or snooping attack, eavesdropping refers to
picking up a transmitted packet sent over the network. The edge nodes directly
offloaded will be vulnerable to malicious attacks against the data itself, causing
privacy leakage.

(2) Membership Inference Attacks: As the name denotes, an inference attack is a way to
infer training data details. Attackers obtain the gradient information of the aggrega-
tion process by eavesdropping or other methods. Then, this information can be used
to infer more valuable intelligence.
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Figure 1. Overview of federated-learning-based MEC system.

3.2. Data Protection Model

To address the above risks, we employ federated learning for data protection, which is
a machine learning framework. It can achieve the target of joint modeling by transmitting
parameters without local data from multiple participants. The FL task flow mainly includes
local training, parameter upload, model aggregation and parameter distribution [27]. The
total dataset associated with the task is given by

D =
M

∑
m=1

dm. (1)

• step 1 Local Training: Each node trains the model locally according to its own data
after the MEC server distributes the initial model to each edge node.
Gradient descent of client i can be expressed as

gi = Fi(ωg), (2)

where ωg is the distributed model parameter and Fi denotes the loss function of
client i.
The updated model parameter of client i can be calculated by

ωi = ωg − ηgi, (3)

where η is the learning rate.
• step 2 Model Uploading: The participating nodes upload the model parameters

obtained from local training to the MEC server.
• step 3 Model Aggregating: The MEC server securely aggregates the uploaded model

parameters to get the updated global model parameter.
Each aggregated weight is related to the size of the node dataset and the updated
global model parameter can be expressed as

ωg
′ = ∑

i∈I

di

∑
i∈I

di
ωi, (4)
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where I stands for the set of participating clients.
• step 4 Model Broadcasting: The server broadcasts the updated global model parameter

to each edge node and starts a new round of training.

ωg = ωg
′. (5)

The outcome of the training can be evaluated by using accuracy as a criterion. The
accuracy is defined as the test accuracy of the aggregated global model on the test dataset
which can be represented by the loss functions as

A = F(dtest, ωg), (6)

where dtest is the test dataset.
However, there are still some potential risks in achieving data protection by federated

learning. Scholars have found that exchanged model parameters may also disclose private
information about the training data [28,29].

3.3. Model Parameter Protection Model

Although the node uploads a model parameter rather than the data themselves under
the structure of federated learning, it is undeniable that the model gradients are trained
directly from the private data of the participants. Therefore, there is a possibility of privacy
leakage by inference on the gradient information. Differential privacy uses the randomized
response method to ensure that the dataset is always affected by a single record below
a certain threshold when outputting information. Consequently, third parties cannot
determine changes in the data itself based on differences in the output.

For an arbitrary query function f , D and D′ are adjacent datasets that differ by at most
one record. The sensitivity is determined by comparing the maximum change value of the
two datasets, denoted as

∆ f = max
D,D′
‖ f (D)− f (D′)‖t, (7)

where t represents the norm.
To reduce the sensitivity, we can use a differential privacy algorithm to make the

output of querying two datasets similar, when there is a randomized algorithm Q satisfying

Pr[Q(D) = O] ≤ eεPr[Q(D′) = O], (8)

where O is the output of the algorithm Q. In this case, we consider that the algorithm
satisfies differential privacy.

Obviously, the smaller the ε, the stronger the privacy protection. However, the strength
of privacy protection decreases as the data availability increases.

Laplace noise as a common noise mechanism can satisfy ε−difference privacy. Laplace
noise serves to add a noise of the same scale as the model parameters to the actual output.
The probability of the amount of noise added is positively correlated with the λ value.
This helps to hide the real model parameters. However, adding noise will inevitably affect
the accuracy of the model training because of fluctuations in the actual parameters. We
should ensure that the privacy-protection technique has a certain strength of protection.
Meanwhile, the final training results are not interfered with too much by noise. We add
Laplace noise to the users’ model parameters at each round of aggregation, which can be
expressed as

ω′i = ωi + [Lap1(λ), Lap2(λ), . . . , Lapn(λ)], (9)

λ =
∆ f

ε
, (10)

where n indicates the round of aggregation. This fuzzification prevents malicious partici-
pants from inferring the user’s private data while enabling the model training function.
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In addition, this approach achieves model parameter protection without increasing
the security overhead of the client compared to homomorphic encryption and secure
multi-party computation.

3.4. Problem Statement

Both accuracy and security of federated learning need to be considered in the data
aggregation process. However, the implementation of gradient protection changes the orig-
inal gradient information, which affects the accuracy. Moreover, higher privacy-protection
strength leads to lower accuracy. Therefore, the goal of optimizing privacy protection is

P : arg max
D,j

AJ +

J
∑

j=1
λj

Jλmax
, (11a)

s.t. AJ ≥ 0.7, (11b)

j ∈ J, (11c)

λmin ≤ λj ≤ λmax. (11d)

Constraint (11b) indicates that the final accuracy should exceed 0.7. Constraint (11c)
indicates that the round number j is within the total round number J of federated-learning
training. Constraint (11d) defines the available range of the privacy level in each round.

The challenge in solving problem P is to trade off global accuracy and security. Also,
the selection of parameters for each communication round is crucial to the final result.
Therefore, we propose a differential evolution-based algorithm to solve problem P and
formulate the privacy-protection scheme FLPP. On the one hand, the differential evolution
algorithm has better global search capability and higher convergence speed. On the other
hand, the algorithm has low complexity and is easy to implement so that it does not impose
a computational load on the system.

4. FLPP Scheme

The details of the FLPP scheme are presented in this section, as shown in Figure 2.
This scheme first uses federated learning to convert raw data into a model parameter
for transmission to avoid data leakage directly. Then, a differential privacy technique is
employed to defend against inference attacks targeting federated learning, which enhances
the privacy-protection capability of the scheme. Finally, the scheme can adaptively deter-
mine the privacy level policy in order to jointly optimize the accuracy and security of the
training model. This effectively improves the dynamic privacy protection of user data in
mobile scenarios, while ensuring data availability. The FLPP scheme is organized into two
parts: the federated-learning algorithm and the privacy-protection optimization algorithm.
Further descriptions are as follows.

4.1. Algorithmic Framework of Federated Learning

With the emergence of isolated data islands and increasing concern for personal
privacy protection, the mobile edge computing scenario requires a distributed machine
learning framework to support it. As one of the contributions of this paper, we propose
a privacy-protection scheme based on federated learning. On the one hand, federated
learning can aggregate data from multiple independently distributed edge nodes, effectively
solving the problem of isolated data islands. On the other hand, the mode of local training
and gradient interaction ensures that data does not leave the local area. The traditional
data privacy dilemma is tackled. The entire federated-learning algorithm framework is
shown in Algorithm 1.
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Figure 2. Overview of FLPP scheme.

Algorithm 1 Federated Learning
Input: The client set M; the dataset D; the number of local epochs E; the learning

rate η
Output: Updated global model parameter ω′g

1 Initialization: global model parameter ωg;
2 Server execute:
3 for j=1,2,. . . , do
4 foreach i ∈ I, do
5 ωi = ClientUpdate(I, ωg)
6 ω′g = ∑i∈I

di
∑
i∈I

di
ωi

7 end
8 end
9 ClientUpdate(I, ωg):

10 foreach local epoch e from 1 to E, do
11 ωi = ωg − ηgi
12 end
13 return ωi to server

Federated learning is the basis of the FLPP scheme. After receiving the initial model
from the MEC server, the edge nodes train through the local data separately and indepen-
dently. Then, the results of the model training are evaluated by the loss function. The loss
function is related to the predicted and real values of the nodes on the sample dataset,
which can be defined as

F(ω) = ∑
i∈I

di

∑
i∈I

di
Hi(p, q). (12)

We employ the cross-entropy function to assist in calculating the loss function, which can
be expressed as

H(p, q) = −∑
j∈J

p(j) log q(j), (13)
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where p denotes the true value, q represents the predicted value and H(p, q) stands for the
cross-entropy loss. In order to obtain the optimal model parameters, the loss function is
required to be minimized, such that

ω = arg min Fi(ω). (14)

In this paper, the approach for updating the model parameters is Adam, combining
the advantages of Momentum and AdaGrad. It can both accommodate sparse gradients
and mitigate gradient oscillation. The process of the Adam algorithm can be expressed as

mt = β1mt−1 + (1− β1)gt, (15)

vt = β2vt−1 + (1− β2)g2
t , (16)

m̂t =
mt

1− βt
1

, (17)

v̂t =
vt

1− βt
2

, (18)

θt+1 = θt − η
1√

v̂t + ε
m̂t. (19)

Until obtaining the optimal local model parameter, the client transmits the parameter back
to the server.

4.2. Privacy-Protection Optimization Algorithm

Due to the performance inadequacy of federated-learning privacy protection, addi-
tional privacy techniques are needed to enhance protection. We guarantee differential
privacy protection by injecting Laplacian noise of equal scale into the optimal model
parameter.

ω′i = ωi + N(0, λ), (20)

where N is the Laplace noise. The probability density function of the Laplace distribution
is expressed as

p(x) =
1

2λ
e−
|x|
λ , (21)

where λ controls scaling of the function. It can be seen that the larger lambda, the more
noise is added so that the security is increased. However, the accuracy of the model will
decrease at the same time.

Meanwhile, FL tasks require multiple rounds of iterative training to complete. Each
round of training has different participating nodes, resulting in different amounts of data
and different data types. It is impossible to adapt the training rounds to different data
distributions by still using a fixed λ. In particular, an inappropriate λ would interfere with
the speed of global model building and decrease the accuracy rate.

Therefore, we propose a multi-layer adaptive differential privacy-protection scheme.
We set Λ = [0.1, 0.2, . . . , 0.5] to meet the privacy-protection requirements in different
situations. The parameter can be adaptively adjusted at each training round according to
the demand of model training accuracy and security.

The FLPP scheme employs the differential evolutionary algorithm (DE) to obtain the
optimal policy. DE is an intelligent optimizing algorithm inspired by biological evolu-
tion, which is based on the genetic algorithm (GA) [30]. The DE algorithm achieves a
heuristic search for complex search spaces by simulating the genetic process, which can
eventually find the global optimal solution with higher probability. It also supports parallel
computation, which shortens the search time. The algorithm firstly randomly generates
privacy-protection policies as initial populations. Through mutation, crossover and se-
lection, the optimal privacy-protection policy is finally obtained. The privacy-protection
optimization algorithm is described specifically as below and shown in Algorithm 2.
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Algorithm 2 Differential Evolution
Input: Privacy level range Λ
Output: Privacy-protection policy R(k + 1)

1 Initialization: Population count pop− size, Step size parameter F and Crossover
rate CR

2 Initialization: Original population Rα(0), α = 1, 2, 3, . . . , N
3 while t < Tmax do
4 for every search agent do
5 randomly select three numbers r1, r2, r3 with the interval [1, N]
6 Mutation:
7 V(k + 1) = Rr1(k) + F(Rr2(k)− Rr3(k))
8 Crossover:if rand(0,1) ≤ CR then
9 U(k + 1) = V(k + 1)

10 end
11 else
12 U(k + 1) = R(k)
13 end
14 Selection:if f [U(k + 1)] ≤ f [R(k)] then
15 R(k + 1) = U(k + 1)
16 end
17 else
18 R(k + 1) = R(k)
19 end
20 end
21 end

Chromosome and Fitness Function : In DE, each individual is defined by a chromo-
some, implying that an individual’s chromosome is a part of the solution to problem P. In
this problem P, the chromosome of each individual is a privacy policy, which consists of
the privacy level for J training rounds. To reduce the number of variables to be optimized,
we transfer {λ1, λ2, . . . , λJ} to R, which is denoted by

Rα(0) = [λ1, λ2, . . . , λJ ]
T , α = {1, 2, 3, . . . , N} (22)

where λ is the privacy level in each training round.
Initialization: The initial population (i.e., initialization in Algorithm 2) is generated

randomly in this framework, but under constraints 11e and 11d of Problem P. The original
population’s genes are created as follows:

λj(0) = random.sample(Λ, 1), j ∈ J (23)

where random.sample(Λ, 1) is a generator function outputting a random value in the
range Λ.

Mutation: DE achieves individual mutation through a difference policy. We employ
a commonly used difference policy where two different individuals in the population
are randomly selected, and their vector differences are scaled and synthesized with the
individuals to be mutated:

V(k + 1) = Rr1(k) + F(Rr2(k)− Rr3(k)) (24)

where r1, r2 and r3 are three random numbers with the interval [1, N], F is a deterministic
constant representing the scaling factor and k denotes the number of generations.

Crossover: The purpose of this step is to randomly select individuals. Since differential
evolution is also a randomized algorithm, so the crossover is performed by
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U(k + 1) =
{
V(k + 1) i f rand(0, 1) ≤ CR

R(k) otherwise
(25)

where CR is the crossover probability; namely, new individuals are generated with a
random probability.

Selection: DE adopts a greedy strategy to select an optimal individual among the
results of crossover to continue evolution.

R(k + 1) =
{

U(k + 1) i f f [U(k + 1)] ≤ f [R(k)]
R(k) otherwise,

(26)

where

f = AJ +

J
∑

j=1
λj

Jλmax
. (27)

This indicates that the overall performance of the algorithm is determined by both accuracy
and security.

5. Simulation and Discussion

In this section, we simulate a scenario containing a MEC server and 50 mobile devices.
The server coordinates all mobile devices in the scenario for federated-learning training
to obtain an accurate data model. The experiments are performed on python 3.7.13 and
pytorch 1.13.1 under the Ubuntu 18.04 operating system. We conduct experiments on the
standard MNIST dataset for handwritten digit recognition, consisting of 60,000 training
examples and 10,000 testing examples. Each example is a 28 × 28 size gray-level image.
We randomly assign the dataset to each client and ensure that a certain number of clients
participate in training in each round. The relevant simulation parameters are shown
in Table 1.

In order to realize data sharing and privacy protection, this proposal employs accuracy
and security as performance metrics. Accuracy is obtained from Equation (6). Security is
obtained from the privacy level set by the scheme. Accuracy is a prerequisite for data to
be shared correctly. Security is the key for data not to be leaked. The overall performance
consists of accuracy and security, which can reflect the effect of the scheme more compre-
hensively. Therefore, we analyze and evaluate it in terms of training, security, accuracy and
overall performance. Under different training rounds, this research proposal compares with
other existing research proposals [23,31,32]. These studies protect the federated-learning
model with fixed privacy level parameters, such as NbAFL. In contrast to fixed privacy
level parameters, the FLPP scheme employs adaptively adjustable privacy level parameters.
Based on their studies, the comparison proposals are privacy protected by different fixed
privacy level parameters within the range of the defined privacy level, which are the actual
intent of the NbAFL. Therefore, we believe that the distinction between the FLPP scheme
and these existing proposals can be shown in equivalent experimental scenarios. The
specific evaluation results are as follows.

Table 1. Simulation parameters.

Parameter Value

Number of clients 50
Data volume of clients [1, 60,000]

Number of participating clients [4, 10]
Privacy level range [0.1, 0.5]

Learning rate 0.005
Number of local epochs 10

Crossover rate 0.7
Step size parameter 0.5
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5.1. Performance of Training

Figure 3 represents the convergence curves of the DE algorithm for 5 and 10 training
rounds. The horizontal axis denotes the number of population evolution generations and
the vertical axis indicates the objective value. It can be observed that the DE algorithm
converges well and obtains the best objective value at the 35th and 49th generation, re-
spectively. Meanwhile, the average objective value also converges and has the maximum
value at the 49th and 54th generation, respectively. This shows that the algorithm evolves
correctly and the best objective value obtained is the global optimal solution.

(a) (b)

Figure 3. Convergence curves of DE. (a) Five rounds of training. (b) Ten rounds of training.

5.2. Overall Performance

Figure 4 illustrates the comparison between the FLPP and five fixed privacy level
schemes. We denote the objective value of the scheme, i.e., the overall performance,
by Equation (27). It can obviously be seen that the overall performance of FLPP is better
than other fixed schemes at different numbers of training rounds. This indicates that FLPP
can achieve the optimal decision according to different numbers of training rounds. At five
rounds of training, FLPP has an advantage of 34%, 22%, 13%, 21% and 30% over the fixed
privacy level schemes, respectively. At 10 rounds of training, the overall performance of
FLPP improves by 33%, 18%, 8%, 18% and 28%, respectively, over the comparison schemes.
We can conclude from the results as below. A fixed privacy level cannot effectively cope
with the changeable training environment. The FLPP scheme can dynamically adjust the
privacy level according to the actual situation of each training round to achieve the best
training outcome. In addition, the increase in training rounds can narrow the gap between
the comparison schemes and FLPP. However, the number of training rounds is limited in
mobile edge computing scenarios. Mobile devices cannot stay in the range of one server
for a long time to participate in federated learning. Therefore the FLPP scheme is suitable
for this research scenario.
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Figure 4. Overall performance. (a) Five rounds of training. (b) Ten rounds of training.
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5.3. Accuracy Performance

Figure 5 depicts the performance of the global model accuracy obtained by federated
learning for the FLPP scheme versus the other comparison schemes. At five rounds of
training, the accuracy of the FLPP scheme increases by 88%, 45% and 6% over λ = 0.5,
λ = 0.4 and λ = 0.3 while decreasing by 1% and 7% over λ = 0.2 and λ = 0.1. At
10 rounds of training, the FLPP scheme has 90%, 40% and 2% improvement, and 3% and 8%
reduction in accuracy from the same comparison scheme. In addition to normal training
loss, the main factor affecting model accuracy is the privacy level of the added noise. In
case the privacy level is increased, the model accuracy decreases accordingly. Figure 5
demonstrates that the accuracy of the FLPP scheme is greatly improved compared to the
high privacy level scheme. Compared to the low privacy level scheme, the accuracy margin
of the FLPP scheme is not significant. This indicates that the FLPP scheme is sufficient to
train global models with good accuracy.
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Figure 5. Accuracy performance. (a) Five rounds of training. (b) Ten rounds of training.

5.4. Security Performance

Figure 6 demonstrates the comparison of different schemes in terms of their security
performance. The security performance is defined as the ratio of the sum of the privacy
levels used in each round to the sum of the maximum privacy levels employed in each
round. A greater value indicates a better security performance. At five rounds of training,
the FLPP scheme reduces its security by 32% and 5% compared to λ = 0.5 and λ = 0.4 as
well as increases it by 21%, 47% and 74% compared to λ = 0.3, λ = 0.2 and λ = 0.1.
Similarly, the FLPP scheme decreases security by 39% and 11% over λ = 0.5 and λ = 0.4
while improving it by 16%, 44% and 72% over λ =0.3, λ = 0.2 and λ = 0.1 at 10 rounds
of training. Merely considering the security, FLPP is not the optimal solution. This is due
to the fact that the λ = 0.5 and λ = 0.4 schemes only take into account the security and
neglect the accuracy of the model training.
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Figure 6. Security performance. (a) Five rounds of training. (b) Ten rounds of training.
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6. Conclusions

In order to break the isolated data island and prevent data privacy leakage, this
paper proposes a federated-learning-based privacy-protection scheme FLPP in mobile edge
computing scenarios. In the dynamic training situation, this scheme takes into account
the accuracy and security of the data model. First, we establish a training framework of
federated learning to convert raw data into model parameters. Afterwards, we employ the
differential privacy technique to protect the privacy of model parameters. Finally, the DE
algorithm dynamically adjusts the parameters of the privacy-protection level according
to actual situations and further obtains the optimal privacy policy. Simulation results
show that the FLPP scheme has the best overall performance by integrating accuracy and
security. This provides an effective solution for data privacy protection in mobile edge
computing scenarios.
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The following abbreviations are used in this manuscript:

Notation Meaning
M Set of mobile devices
η Learning rate
D Set of data volume of mobile devices
dtest Test dataset
I Set of participating clients
ε Privacy budget
J Total training rounds
∆ f Sensitivity of dataset
ωg Global model parameter
λ Privacy level
ωi Model parameter of client i
A Training accuracy
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