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Abstract: We consider a random geometric hypergraph model based on an underlying bipartite
graph. Nodes and hyperedges are sampled uniformly in a domain, and a node is assigned to those
hyperedges that lie within a certain radius. From a modelling perspective, we explain how the model
captures higher-order connections that arise in real data sets. Our main contribution is to study
the connectivity properties of the model. In an asymptotic limit where the number of nodes and
hyperedges grow in tandem, we give a condition on the radius that guarantees connectivity.
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1. Motivation

There is growing interest in the development of models and algorithms that capture
group-level interactions [1–3]. For example, multiple co-authors may be involved in a
collaboration, multiple workers may share an office space, and multiple proteins may
contribute in a cellular process. In such cases, representing the connectivity via a network
of pairwise interactions is an obvious, and often avoidable, simplification. Hypergraphs,
where any number of nodes may be grouped together to form a hyperedge, form a natural
generalisation. Hypergraph-based techniques have been developed for the following:

• Studying the propagation of disease or information [4–9];
• Investigating the importance or structural roles of individual components [10–12];
• Discovering and quantifying clusters [13–15];
• Predicting future connections [16,17];
• Inferring a connectivity structure from time-series data [18].

Just as in the pairwise setting, it is also of interest to consider processes that create
hypergraphs [19–21]. Comparing generative hypergraph models against real data sets may
help us to understand the mechanisms through which interactions arise. Furthermore,
realistic models can be used to produce synthetic data sets on which to base simulations
and also to form null models for studying features of interest.

Models that use a geometric construction, with connectivity between elements de-
termined by distance, have proved useful in many settings. Random geometric graphs
were first introduced in [22] to model communication between radio stations, although
the author also mentioned their relevance to the spread of disease. These models have
subsequently proved useful in many application areas, ranging from studies of the pro-
teome [23–25] to academic citations [26]. In many settings, the notion of distance may relate
to the embedding of nodes into a latent space that captures key features. Here, similarity
is interpreted in an indirect or abstract sense. Random geometric graphs have also been
studied theoretically, with many interesting results arising from the perspectives of analysis,
probability, and statistical physics [27–32].

Our aim in this work is to motivate and analyse a random geometric hypergraph
model. In a similar manner to [19], we make use of the connection between hypergraphs
and bipartite graphs. The model is introduced and motivated in Section 2, where we also
show the results of illustrative computational experiments concerning connectivity. Our
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main contribution is to derive a condition on the thresholding radius that asymptotically
guarantees connectivity of the hypergraph. The result is stated and proved in Section 3.
Some further computations concerning the expected degree are presented and interpreted
in Section 4, and directions for future work are described in Section 5.

2. The Random Geometric Model and Its Connectivity

In this section, we motivate and informally describe a random geometric hypergraph
model and computationally investigate its connectivity. We make use of a well-known
equivalence between hypergraphs and bipartite graphs [19,33]. Suppose we are given an
undirected bipartite graph where nodes have been separated into two groups, A and B. By
construction, any edge must join one node in group A with one node in group B. We may
form a hypergraph on the nodes in group A with the following rule:

• Nodes in group A appear in the same hyperedge if and only if, in the underlying
bipartite graph, they both have an edge to the same node in group B.

In this way, the nodes in set B may be viewed as hyperedge “centres.” Two nodes from
group A that are attracted to the same centre are allocated to the same hyperedge. In
many graph settings, there is a natural concept of distance between nodes. For example,
in social networks, geographical distance between places of work or residences may play
a strong role in determining connectivity. More generally, there may be a more nuanced
set of features (hobbies, tastes in music, pet ownership, etc.) that help to explain whether
pairwise relationships arise. This argument extends readily to the bipartite/hypergraph
scenario. Hyperedge centres may correspond, for example, to shops, office buildings, gyms,
train stations, restaurants, concert venues, churches, etc., with an individual joining a
hyperedge if they are sufficiently close to that centre, for example, exercising at a local gym.
In the absence of specific information, it is natural to assume that the features possessed by
a node arise at random, so that a node is randomly embedded in Rd for some dimension d.
In a similar way, we may simultaneously embed our hyperedge centres in Rd and assign a
node to a hyperedge if and only if it is within some threshold distance of the centre.

Figure 1 illustrates the idea in the two-dimensional case. We have a bipartite graph
with two types of nodes. Groups A and B are represented by circles and stars, respectively.
We form a hypergraph by placing a circle node in a hyperedge if and only if it is within
a certain distance of the corresponding star. Colours in the figure distinguish between
the different hyperedges. We emphasise that mathematically the resulting hypergraph
consists only of the list of hypergraph nodes and hyperedges. Information about the
existence/number of hyperedge centres and the locations of all nodes in R2 is lost.

Our aim in this work is to study connectivity: a basic property that is of practical
importance in many areas, including disease propagation, communication, and percolation.
We consider the random geometric hypergraph to be connected if the underlying random
geometric bipartite graph is connected. We focus on the smallest distance threshold that
produces a connected network and study an asymptotic limit where the number of nodes
tends to infinity.

We motivate our analytical results with computational experiments. To produce
Figure 2, we formed random geometric bipartite graphs based on n points embedded in R2.
For each graph, the points had components chosen uniformly and independently in the
range (0, 1). We separated these points into two groups of size n1 = 0.8n and n2 = 0.2n. We
then used a bisection algorithm to compute the smallest radius r that produced a connected
bipartite graph. In other words, we found the smallest r such that a connected graph arose
when we created edges between pairs of nodes from different groups that were separated
by a Euclidean distance less than r. (Equivalently, we assigned n1 = 0.8n points to the role
of the nodes in a random geometric hypergraph and n2 = 0.2n points to the role of the
hyperedge centres, and we computed the smallest node–hyperedge centre radius that gave
connectivity.) We ran the experiment for a range of n values between 103 and 104. For each
choice of n, we repeated the computation for 500 independent random node embeddings.
Figure 2 shows the mean, maximum, and minimum radius arising for each n. Note that the
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axes are scaled logarithmically. We have superimposed a reference line of the form Cn−
1
2 ,

which is seen to be consistent with the behaviour of the radius.

Figure 1. When this construction is regarded as a bipartite graph, the solid circles and solid stars
represent two types of nodes. Edges are created only between nodes of a different type; this happens
if and only if they are close enough in Euclidean distance. When regarded as a hypergraph, the solid
circles represent nodes and the solid stars represent “centres” of hyperedges. A node is a member
of a hyperedge if and only if it is sufficiently close to the corresponding centre. Mathematically,
the resulting hypergraph may be defined by labelling the nodes {1, 2, 3, 4, 5, 6, 7} and listing the
hyperedges as {1}, {2, 3}, {4, 5, 6, 7}, and {5, 6, 7}.

Figure 2. Euclidean distance at which random geometric hypergraph becomes connected. Here, we
have 0.8n nodes and 0.2n hyperedge centres in R2, for values of n between 103 and 104. The plots
show the mean, maximum, and minimum value of this distance over 500 independent trials. A
reference slope corresponding to Cn−

1
2 is shown. Axes are logarithmically scaled. Largest standard

error for the mean computations was below 10−3.
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Figures 3 and 4 repeat these computations with the points embedded into R4 and
R10, respectively. We see that the behaviour remains consistent with a decay roughly
proportional to, and perhaps slightly slower than, n−1/d for dimension d.

In the next section, we formalise our definition of a random geometric hypergraph
and establish a condition on the radius decay rate for connectivity that agrees with n−1/d,
up to log-dependent factors (which of course would be extremely difficult to pin down
in computational experiments). We also note for comparison that a threshold of the form
(log(n)/n)1/d has previously arisen in the study of random geometric graphs, refs. [30,34].

Figure 3. As for Figure 2, with nodes embedded in R4 and a reference slope corresponding to Cn−
1
4 .

Largest standard error for the mean computations was below 10−2.

Figure 4. As for Figure 2, with nodes embedded in R10 and a reference slope corresponding to Cn−
1
10 .

Largest standard error for the mean computations was below 10−2.

In related work, we note that Barthelemy [19] proposed and studied a wide class of
random hypergraph models, including examples where nodes are embedded in space and
connections arise via a distance measure. That approach to defining a random geometric
hypergraph differs from ours by assuming that the number of hyperedges is given and by
considering a process where new nodes are added to the network, with new connections
arising based on the current hyperedge memberships (Figure 6 in [19]).
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3. Connectivity Analysis

We now give a formal definition of a random geometric hypergraph and show that
under reasonable conditions a thresholding radius of order (log(n)/n)1/d ensures connec-
tivity, asymptotically.

Let D be a bounded Euclidean domain in Rd such that D has a Lipschitz boundary.
Given n ∈ N, we let Pn be a Poisson point process sampled from D with respect to some
continuous and bounded distribution f such that f > 0 everywhere on D. We use | · | to
denote the Euclidean norm. Let n ∈ N, and let n1 be the expeted number of nodes and n2
be the expected number of hyperedges, chosen such that n = n1 + n2. Let rn be a function
of n, tending to 0 as n→ ∞.

Definition 1. Let G(n1, n2, rn) be the probability space on the set of geometric hypergraphs, where
the random nodes are chosen as a Poisson point process Pn1 in D sampled with respect to f ; the
random hyperedges are induced by another Poisson point process Pn2 in D sampled with respect
to f ; and where, using bipartite graph–hypergraph equivalence, a node x ∈ Pn1 and a hyperedge
y ∈ Pn2 are connected by an edge if |x− y| < rn.

Suppose that the expected number of nodes n1 and of hyperedges n2 satisfy

n1

n2
= Θ(1).

Equivalently, this means that n1 and n2 as functions of n satisfy

n1 = Θ(n), n2 = Θ(n).

Let K > 0 be the smallest constant such that for all n ∈ N,

n1 ≥
1
K

n and n2 ≥
1
K

n. (1)

Partition Rd into a grid of cubes {Ci,n}i of width γrn, where rn = o(1) and γ > 0
is to be determined. Let Sn := {i | Ci,n ⊂ D}, and for each i ∈ Sn, let I(i, n) := {j 6∈
Sn | Cj,n is adjacent to Ci,n}, and let

Qi,n := ∪j∈I(i,n)(Cj,n ∩ D).

Because D has a Lipschitz boundary, by compactness there exists C > 0 depending on
D and d (but not on γ), such that we can choose n0 ∈ N sufficiently large such that for all
n ≥ n0 and all i ∈ Sn

∀ x, y ∈ Qi,n, |x− y| < Cγrn.

We then choose γ := 1
C , so that for all i ∈ Sn,

∀ x, y ∈ Qi,n, |x− y| < rn. (2)

Note also that we have ν(Qi,n) ≥ ν(Ci,n) ≥ fminγdrd
n = fmin

Cd rd
n, where fmin :=

min{ f (x) | x ∈ Ω}.

Lemma 1 (Asymptotic coverage). Suppose that m as a function of n satisfies, for all n ∈ N,

m ≥ 1
K

n,

and suppose that rn satisfies

n
fmin

KCd rd
n ≥ log n− log log n + w(n), (3)
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where w(n)→ ∞ arbitrarily slowly as n→ ∞. With the probability tending to 1 as n→ ∞, for
all i ∈ Sn,

Pm ∩Qi,n 6= ∅.

Proof. It suffices to show that the RHS in

P(∃ i ∈ Sn,Pm(Qi,n) = 0) ≤ ∑
i∈Sn

P(Pn(Qi,n) = 0)

tends to 0 as n→ ∞.
Because Pm is a homogeneous Poisson point process, we have, using (3), for all i ∈ Sn,

P(Pm(Qi,n) = 0) = exp(−mν(Qi,n)) ≤ exp
(
−n

fmin

KCd rd
n

)
≤ n−1(log n)e−w(n),

and by the pigeonhole principle, |Sn| . (γrn)−d . n(log n)−1. Hence,

P(∃ i ∈ Sn,Pn(Qi,n) = 0) . e−w(n).

Note that with our choice of γ, we have

{∀ i ∈ Sn | Pm ∩Qi,n 6= ∅} ⊂ {D ⊂ ∪x∈Pm B(x, rn)}.

Hence, Lemma 1 gives us a lower-bound estimate on the decay of rn as a function of n, to
ensure that the balls centred at the points of Pm and of radius rn tend to form a covering of
the domain D as n→ ∞. This is an asymptotic result.

From a practical point of view, it is more useful to have a non-asymptotic version of
Lemma 1, even if we must increase slightly the constraint on the decay of rn. This is the
object of Lemma 2.

Lemma 2 (Non-asymptotic coverage). Suppose that m as a function of n satisfies, for all n ∈ N,

m ≥ 1
K

n,

and suppose this time that rn satisfies

n
fmin

KCd rd
n ≥ 2 log n + ε log log n, (4)

for some fixed ε > 0, then a.s., there exists N ∈ N such that for all n ≥ N and all i ∈ Sn

Pm ∩Qi,n 6= ∅.

Proof. A proof proceeds similarly to that of Lemma 1, but the different constraint on rn
instead yields

P(∃ i ∈ Sn,Pm(Qi,n) = 0) .
1

n(log n)1+ε
,

and the required result then follows by using the Borel–Cantelli lemma, because then, the
series

N

∑
n=0

P(∃ i ∈ Sn,Pm(Qi,n) = 0)

converges as N → ∞.
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We believe that the lower-bound condition on the decay of rn found in Lemma 1 is
sharp and that the lower-bound condition in Lemma 2 is close to being sharp. In Theorem 1,
we apply Lemmas 1 and 2 to obtain a sufficient lower-bound condition on rn for the
connectivity of random geometric hypergraphs, with an extra factor of 2. We suspect that
this factor could be reduced with a more sophisticated analysis.

Theorem 1. For every n ∈ N, let (n1, n2) ∈ N2 satisfy (1) and n = n1 + n2.

• If rn satisfies (3), then with the probability tending to 1 as n → ∞, the random geometric
bipartite graph G(n1, n2, 2rn) is connected.

• If rn satisfies (4), then a.s. there exists N ∈ N, such that for all n ≥ N, the random geometric
bipartite graph G(n1, n2, 2rn) is connected.

Proof. The result is a consequence of Lemmas 1 and 2 and the triangle inequality.
Suppose that n ∈ N is such that for all i ∈ Sn,

Pn1 ∩Qi,n 6= ∅ and Pn2 ∩Qi,n 6= ∅. (5)

Given two points x, y ∈ Pn1 , we can find a path of adjacent cubes from Qn such that the
first cube contains x and the last cube contains y. From (2) and the triangle inequality, the
distance between a point in one cube and another point in an adjacent cube is at most 2rn.
Because for each cube in the path we can find a point from Pn1 and a point from Pn2 , we
can then form a path of edges of a length that is at most 2rn from x to y, alternating between
points in Pn1 and points in Pn2 , and such a path is then a path in G(n1, n2, 2rn).

This shows the connectivity of the graph for all n, satisfying condition (5).
This condition is true with the probability tending to 1 as n→ ∞, if we assume that

rn satisfies (3), using Lemma 1 with n1 and n2 instead of m, giving us the first part of the
theorem.

Using Lemma 2 with n1 and n2 instead of m, if rn satisfies (4), there exists N ∈ N such
that (5) is true for all n ≥ N, giving us the second part of the theorem.

4. Expected Degree at Connectivity Threshold

We now present some further computations that expand on the results in Section 3. We
recall that in Figures 2–4 we evaluated the threshold radius at which connectivity occurred.
In Figures 5–7 we used the same random geometric hypergraph samples, each evaluated at
its connectivity threshold. For each hypergraph, we computed the expected node degree
and expected hyperedge degree, that is, for the underlying bipartite graph, the expected
degree of the nodes in group A and in group B. The figures, which again are on a log–log
scale, indicate that the two expected degrees grow slowly with n. In each figure, we have
included a reference curve proportional to log(n).

We can offer a heuristic explanation for these curves. To be concrete, we focus on
the nodes in group A of the bipartite graph. Here, because the group B nodes are placed
uniformly at random, the expected degree is roughly the number of group A nodes con-
tained in a general ball of radius r, where r is the connectivity radius. We can compute this
quantity as the sum of the independent probabilities that each node is in the ball, which
is of the order of the volume of the ball, that is, rd. Because there are order n nodes, this
suggests an expected degree of the order nrd. Using r ∼ (log n/n)1/d from Section 3 for
the threshold radius, we arrive at an expected degree of order log n. This prediction gives a
reasonable match to the results in Figures 5 and 6, where the embedding dimensions are
two and four, respectively.
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Figure 5. For the geometric random hypergraphs in Figure 2, we show the mean node degree
and mean hyperedge degree. A reference slope corresponding to C log n is also plotted. Axes are
logarithmically scaled. Largest standard error for the mean computations was below 0.2 for nodal
degree and below 0.6 for hyperedge degree.

Figure 6. As for Figure 5, with nodes embedded in R4. Largest standard error for the mean computa-
tions was below 0.3 for nodal degree and below 1 for hyperedge degree.

Figure 7. As for Figure 5, with nodes embedded in R10. Largest standard error for the mean
computations was below 0.5 for nodal degree and below 2 for hyperedge degree.
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However, we note that in Figure 7, where the embedding dimension is ten, the mean
node degree and hyperedge degree appear to grow slightly faster than C log(n). We believe
that in a high dimension, a concentration-of-measure effect becomes relevant. In order to
have more meaningful information on the mean degree, we would like to be able to control
simultaneously the number of nodes of graph A in the n balls of radius r centred at the n
nodes of graph B and to be able to argue that this random number behaves asymptotically
like n times the volume of the ball (the expected number), i.e., remains near its expected
value for each of the n balls. For this to be true, we would need some concentration
inequalities, which would ensure that the empirical measure induced by the random
sample of the nodes of graph A yields a good approximation of the underlying sampling
measure when evaluated at n random balls of radius r. Such concentration inequalities are
known to hold in a regime slightly more restrictive than that of connectivity, i.e., where
nrd grows slightly faster than C log(n); see, for instance, Lemma 3.2 in [35], where such
concentration inequalities are valid provided nrd = ω(log n).

A second issue is that the effect of interchanging the order in which the expectation
operation and lim n → ∞ operation are applied cannot be understood without careful
analysis.

We leave for future work the task of formalising and proving appropriate asymptotic
statements about the degree structure for this random geometric hypergraph model.

5. Discussion

There are a number of promising avenues for further work in this area. From a
theoretical perspective, it would be of interest to derive sharper upper and lower bounds,
or indeed exact expressions, for the connectivity radius threshold associated with this
class of random geometric hypergraphs. More general hypergraph models could also be
developed and studied, for example, using a softer version of the distance cut-off that has
been considered in the graph setting [31,32], and other properties of the model could be
investigated.

From a more practical viewpoint, the related inverse problem is both challenging
and potentially useful: given a data set that corresponds to a hypergraph, for the model
considered here, what is the best choice of (a) embedding dimension, (b) node locations,
and (c) hypergraph centre locations? A similar question was addressed in [21] for a different
generative random hypergraph model based on the assumption that nodes are located
in a latent space and hyperedges arise preferentially between nearby nodes (without the
concept of hyperedge centres). This challenge also leads into the model selection question:
given a data set and a collection of hypergraph models, which model best describes the
data, and what insights arise?
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