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Abstract: We have recently shown that the critical Anderson electron in D=3 dimensions effectively
occupies a spatial region of the infrared (IR) scaling dimension dIR≈8/3. Here, we inquire about the
dimensional substructure involved. We partition space into regions of equal quantum occurrence
probabilities, such that the points comprising a region are of similar relevance, and calculate the IR
scaling dimension d of each. This allows us to infer the probability density p(d) for dimension d
to be accessed by the electron. We find that p(d) has a strong peak at d very close to two. In fact,
our data suggest that p(d) is non-zero on the interval [dmin, dmax] ≈ [4/3, 8/3] and may develop
a discrete part (δ-function) at d = 2 in the infinite-volume limit. The latter invokes the possibility
that a combination of quantum mechanics and pure disorder can lead to the emergence of integer
(topological) dimensions. Although dIR is based on effective counting, of which p(d) has no a priori
knowledge, dIR ≥ dmax is an exact feature of the ensuing formalism. A possible connection of our
results to the recent findings of dIR≈2 in Dirac near-zero modes of thermal quantum chromodynamics
is emphasized.

Keywords: Anderson transition; localization; effective counting dimension; effective number theory;
effective support; dimension content; emergent space

1. Introduction

Understanding the spatial geometry of Anderson transitions [1] is an intriguing
problem. Indeed, although studied quite extensively, the complicated structure of critical
electronic states (see e.g., [2]) leaves room for new insights. Novel characterization may
reveal unknown details of disorder-driven metal-insulator transitions and, for example,
lead to a deeper understanding of their renormalization group description [3].

Another reason to study the geometry of Anderson transitions arises by seeing them
as quantum dimension transitions, a viewpoint taken in Ref. [4]. Using effective number
theory (ENT) [5,6], which entails a unique measure-based dimension dIR [7,8] for spaces
with probabilities, it was shown there that the transition is a two-step dimension reduction

dIR = 3 −→ ≈ 8/3 −→ 0 (1)

Here the flow is from the extended to critical to localized states, and exponential localization
was assumed. A remarkable property of the above is that these reductions are complete [9].
Indeed, the probability does not leak away from subdimensional effective supports, and the
electron is fully confined to them in infinite volume. It is thus meaningful to say that the
space available to quantum particles collapses into a lower-dimensional one under the
influence of strong enough disorder. As such, it represents a mechanism for generating
lower-dimensional spaces by simple combination of quantum mechanics and disorder.

While dimension is the most basic characteristic of space available to a critical electron,
this space may contain subsets with dimensions d < dIR. Such a substructure may be
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physically significant if electron mostly resides there. The aim of this work is to characterize
the critical spatial geometry in such a manner: we will compute the probability distribution
p(d) that the electron is present in a space of dimension d. We refer to p(d) as the dimension
content of the Anderson criticality or that of the probability distribution in general.

Critical states at Anderson transitions were recognized to have fractal-like features long
ago, first interpreting them in analogy to scale-invariant fractals [10,11] and, later, to more
complex multifractals [12–15]. The formalism used in the latter mimics one that describes
the ultraviolet (UV) measure singularities occurring in turbulence and strange attractors
(see, e.g., [16,17]). More recent works in the Anderson context are [18–22]. However,
the focus of multifractal analysis does not make it convenient for computing p(d). We thus
proceed by proposing a method that organizes the calculation in terms of probabilities from
the outset and zooms in on dimensions by the degree of their actual presence. Moreover,
the d involved is simply the IR Minkowski dimension of a subset and thus manifestly a
measure-based dimension of space. In the ensuing multidimensionality formalism, a given
wave function is

subdimensional if dIR < D

multidimensional if p(d) 6= δ(d− dmax)

of proper dimension if dIR = dmax

(2)

where dmax = sup {d | p(d) > 0}, D = 3 is the IR dimension of the underlying space,
and dIR ≥ dmax holds in general.

Before proceeding to define p(d), we illustrate the idea on a “shovel” in RD=3 space
(Figure 1). The shovel consists of 2D square blade and 1D handle with the uniformly
distributed masses Mb >0 and Mh >0, respectively. If the relevance of space points is set
by the mass they carry, the probabilities of encountering the handle, the blade, and the rest
of space are P = Mh/(Mb+Mh), 1−P and 0, respectively. Note that the UV cutoff a and
IR cutoff L are also indicated.
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Figure 1. The “shovel” (left) and d(q) (right) associated with its UV dimension content in R3. See
the discussion in the text.

Above, we implicitly assumed that d is the usual UV dimension (a→0 at a fixed L),
in which case we have by inspection p(d) = P δ(d− 1) + (1−P) δ(d− 2). However, how
would this p(d) be concluded by a computer that cannot “see” and only processes regular-
ized probability vectors P(a)=(p1, p2, . . . , pN(a))? Here, N(a)=(L/a)3, pi is the probability
within an elementary cube at the point xi of a latticized space, and a ∈ {L/k | k = 2, 3, . . .}.

Anticipating that any number J of discrete dimensions 0 ≤ d1 < d2 < . . . < dJ ≤ 3
with probabilities Pj >0 could be present, the computer first orders pi in each P(a) so that
p1 ≥ p2 ≥ . . . ≥ pN(a). The rationale is that, with decreasing a, this increasingly better
separates out populations related to a different dj. Indeed, the typical size of p associated
with dj is ∝ adj and so P(a) gradually organizes into J sequential blocks starting with d1.
The above ordering in P will always be assumed from now on.

To detect possible blocks/dimensions, the computer uses the variable q ∈ [0, 1] for
cumulative probability, and associates with each P(a) the function ν(q, a), namely the
number of first elements in P(a) (space points) whose probabilities add up to q. Keeping
track of the fractional boundary contributions at each q makes it a continuous, convex,
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increasing, piecewise linear function such that ν(0, a)=0 and ν(1, a)=N(a). The number
of points in the interval (q − ε, q] is ν(q, a) − ν(q − ε, a) and scales as a−d(q,ε) for a→ 0.
When processing P(a) for the shovel, the computer finds perfect scaling (`h/a) × ε/P
for ε ≤ q ≤ P , and (`b/a)2 × ε/(1− P) for P + ε < q < 1. It will thus conclude d(q)
shown in Figure 1 upon ε→ 0. The value at q=1 represents the spatial complement of the
shovel (zero probability). Collecting the probability of d, namely p(d) =

∫ 1
0 dq δ(d− d(q)),

produces the inspected result.
Two points are relevant here. (1) The above approach does not change if a continuous

set of dimensions is present. In this case the obtained d(q) is not piecewise-constant
but rather a piecewise-continuous, non-decreasing function, possibly with constant parts
identifying discrete dimensions. (2) The IR case is fully analogous, but it is useful to recall
the meaning of the IR dimension (L→∞, a fixed) which is somewhat non-standard. Thus,
if both `h and `b are fixed as L→∞ (the usual case), then p(d)=δ(d) since the populations
at each q remain constant. However, if e.g. `b is fixed while the handle responds by `h ∝ L
(the shovel reaches anywhere in space), then p(d)=(1−P)δ(d) + Pδ(d− 1).

2. The Formalism

We now define p(d) in the IR setting of the Anderson transitions. Such analysis
pertains to the wave functions ψ = ψ(ri) on a cubic lattice of N(L) = (L/a)D sites ri,
with L the IR regulator and a set to unity. With ψ, we associate the probability vector
P=(p1, p2, . . . , pN=N(L)), where pi = ψ+ψ(ri), the effective number of sites [5,6]

N?[ψ] =
N

∑
i=1

n?
(

Npi
)

, n?(c) = min {c, 1} (3)

and the cumulative count ν[q, ψ] defined as follows. Consider the cumulative probabilities
(q0, q1, . . . , qN) with q0 = 0 and qj = ∑

j
i=1 p(i) for j > 0. Let j(q), q∈ (0, 1) be the largest j

such that qj <q. Then ν[0, ψ]=0, ν[1, ψ]=N and

ν[q, ψ] = j(q) +
q− qj

qj+1 − qj
, 0 < q < 1 (4)

Recalling the order in P, ν[q, ψ] is increasing and convex.
Consider the Anderson model in the orthogonal class [1]. With cri , the electron

operators, the Hamiltonian is

H = ∑
i

εri c†
ri

cri + ∑
i,j

c†
ri

cri−ej + h.c. (5)

where ej (j=1, ..., D) are unit lattice vectors and random potentials εri ∈ [−W/2,+W/2] are
uniformly distributed. The physics of the model involves averaging over disorder {εri}.
For N? and ν of one-particle eigenstates ψ at an energy E, we have

N?[ψ]→ N?(E, W, L) , ν[q, ψ]→ ν(q, E, W, L) (6)

Keeping the dependence on E and W implicit, the L→∞ behavior defines the dimensional
characteristics dIR and d(q) via

N?(L) ∝ LdIR , ν(q, L)− ν(q− ε, L) ∝ Ld(q,ε) (7)

with d(q)= limε→0 d(q, ε). Due to the convexity of cumulative counts, d(q, ε) and d(q) are
non-decreasing. The probability density of finding the IR dimension d in a state is then

p(d, ε) =
∫ 1

0
dq δ

(
d− d(q, ε)

)
, p(d) = lim

ε→0
p(d, ε) (8)
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If d(q) is differentiable at q, then p(d = d(q)) = 1/d′(q). The range of d(q), equal to the
support of p(d), specifies the IR dimensions occurring with non-zero probability in states
of interest. It is a subset of [dmin, dmax] where

dmin= inf{d | p(d)>0} , dmax=sup{d | p(d)>0} (9)

Important feature of the ensuing formalism is that

dmax ≤ dIR ≤ D (10)

Here, the inequalities involving D are obvious and the last one can be most easily seen
in discrete cases. Indeed, let p(d) = ∑J

j=1 Pjδ(d−dj) with 0 ≤ d1 < . . . < dJ ≤ D,
Pj > 0, and assume that dIR < dJ = dmax. Consider q such that 1−PJ < q < 1. Then,
ν(q, L)−ν(q− ε, L)=ε v(q, ε, L)Ld(q,ε) for sufficiently small ε, where limε→0 d(q, ε)=dJ and
limε→0 limL→∞ v(q, ε, L)=v(q)>0. The size of the individual p=ε/(ν(q, L)−ν(q− ε, L))
in this population is then L−d(q,ε)/v(q, L, ε). Hence, if dJ < D, then min{1, Np} in the
definition of N? yields one for a sufficient L and ε, while if dJ =D, it yields 1/v(q). In both
cases, the contribution of this population to N? is ∝ LdJ . Hence, dIR ≥ dJ , which contradicts
the assumption and leads to (10).

3. Anderson Criticality

We now perform the dimensional analysis for critical states of D=3 Anderson Hamilto-
nian (5) with periodic boundary conditions at the critical point (Ec, Wc)=(0, 16.543(2)) [23].
The calculations in Ref. [4] yielded dIR = 2.665(2)≈ 8/3. For d(q) we follow [4], keeping
track of dimension defined at a finite L and extrapolating it directly. In particular,

d(q, ε, L) =
1

log s
log

ν(q, L)− ν(q− ε, L)
ν(q, L/s)− ν(q− ε, L/s)

(11)

with fixed s>1, and d(q, ε)= limL→∞ d(q, ε, L). In the analysis, we set s=2. For 34 sizes in
the range 16≤ L≤ 144, two near-zero eigenmodes were computed at 40k–100k disorder
samples using the JADAMILU package [24]. We set ε= 10−3, thus splitting the interval
q ∈ [0, 1] into 1000 bins and evaluating d(qb, ε, L) at qb = b× 10−3, b = 1, . . . , 1000. We
verified that this is fine enough to directly represent the ε→ 0 limits for our purposes.

Given that, we show d(q, L) at L=40 and L=144 in Figure 2. An important feature of
the obtained behavior is the flatness in the middle part of q, indicating large probabilities
for dimensions in the corresponding range. An increase of L results in a flatter d(q, L) and
yet a sharper range of prominent dimensions. The visible linear parts at small q mark
regions where finite-size effects lead to non-convex ν(q). Their extent shrinks toward zero
with growing L. Linearity was imposed to keep the behavior regular.

0 0.2 0.4 0.6 0.8 1
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0

1

2
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0.45 0.5 0.55 0.6
1.9

2

2.1

40

40

40

144

144

144

Figure 2. Function d(q, ε, L) at ε=10−3 for L=40 and L=144 (largest) systems. Shaded region marks
the range d∈ [4/3, 8/3].

The corresponding p(d, L) obtained via (8) are shown in Figure 3. We observe sharp
peaks of decreasing width, centered at dm≈2. The error bars, too small to be visible, were
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obtained via the Jackknife procedure with respect to disorder samples. The stability of
dm and its proximity to 2 is quite remarkable, as shown in the inset for the largest sizes
studied. The quoted values were obtained from quadratic fits in the displayed vicinity of
the maximum. The constant parts at a small d correspond to the linear segments in Figure 2.

0 1 2 3
d

0

0.5

1

p

L= 144

L =  40
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1.1
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144  d
m

 = 1.9996(10)

128  d
m

 = 2.0030(10)

112  d
m

 = 2.0049(7)

Figure 3. Function p(d, ε, L) at ε = 10−3 for L = 40 and L = 144 (largest) systems. Shaded region
marks the range d∈ [4/3, 8/3].

Among the key chracteristics of the dimension content p(d) is its support, i.e. dimen-
sions that can contribute to physical processes with non-zero probability density. The above
properties of p(d, L) imply that the support in fact spans certain [dmin, dmax], and its specifi-
cation thus reduces to finding dmin and dmax. To that effect, we evaluate the probabilities
p(d<d0, L) of dimensions smaller than d0 and vary d0 upward. For each d0, p(d<d0, L) is
the L→∞ extrapolated by fitting to a constant with general power correction. The result,
shown in Figure 4 panel (a), features a probability threshold turning on near d0=1.3. We
take d0=4/3 as a reference value: in panel (c), we show its extrapolation leading to a clean
statistical zero. The analogous procedure based on p(d> d0) yields the results shown in
panels (b) and (d) with d0=8/3 referencing the other threshold.
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0.0004(20)
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Figure 4. Probabilities p(d < d0) and p(d > d0) (panels (a,b)) in L→ ∞ limit. Panels (c,d) show
extrapolations for d0 =4/3 and d0 =8/3.

Given the strong dominance of dm, the second key question is whether dm could be a
discrete dimension present in Anderson critical states. This would mean that, in the L→∞
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limit, d(q, L) (see Figure 2) develops a strictly constant part in certain range of q. We will
test this possibility for the observed dm =2 via the following procedure. Given a d(q, L),
we find q2(L) such that d(q2, L) = 2 and calculate

I(ρ, L) =
∫ q2+ρ/2

q2−ρ/2
dq
(

2− d(q, L)
)2

(12)

which is only zero if d(q, L) = 2 on the interval. For a given ρ, we perform the L→ ∞
extrapolation via fit to a constant I(ρ) with general power correction. Fitting data for
systems with L>28 leads to the results shown in Figure 5 (circles). Notice a steep decay of
I(ρ) with decreasing ρ, reaching I≈0 at ρ≈0.4 with errors becoming large below this point.
While this could simply indicate a very steep analytic behavior of I(ρ), further analysis
suggests otherwise. Indeed, restricting fits to larger systems, namely L> 32 (diamonds)
and L>40 (triangles), results in an increasingly steeper decay toward zero at yet larger ρ.
The natural interpretation of these tendencies is that I(ρ) ≡ 0 for ρ<ρ0≈0.5, pointing to
the discrete nature of dm.

0 0.2 0.4 0.6 0.8 1
ρ

-0.01

0

0.01

0.02

0.03

0.04

0.05

I

L > 28
L > 32
L > 40

0 0.01 0.02 0.03
1/L

0.014

0.016
ρ = 0.45
I = 0.0014(40)

L > 32

Figure 5. Function I(ρ, L→∞) obtained by fitting in L-ranges containing increasingly larger lattices.
Inset shows example of a fit in the vicinity of ρ0 such that I(ρ0)≈0.

The synthesis of our results suggests the following form of the spatial dimension
content at the Anderson criticality

p(d) = P δ(d− dm) + (1−P)π(d) (13)

where π(d) is a continuous probability distribution with support on the interval [dmin, dmax].
The parameters are

dm≈2 , dmin≈4/3 , dmax≈8/3 , P ' 1/2 (14)

where we estimate the accuracy of dm at the couple ‰ and that of dmin, dmax at the couple
%. The graphical representation of this result in terms of d(q) and p(d) is shown in Figure 6.

0  4/3 2 8/3   31
d
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8/3 (a) (b)
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Figure 6. Schematic representation of the concluded function d(q) (panel (a)) and the dimensional
content p(d) (panel (b)) at Anderson criticality. The narrow spike in (b) represents the δ-function.



Entropy 2023, 25, 1557 7 of 9

4. Discussion

We proposed that, in addition to their measure-based effective dimension (dUV or
dIR) [5–8], probability distributions on metric spaces can be characterized by the associated
dimension content p(d). The method was applied to the structure of critical states in the
D = 3 Anderson transition (O class). Here, p(d) identifies the dimensions of regions in
which the electron can in fact be found, i.e. those relevant to its physics. Critical wave
functions are subdimensional, multidimensional, and our new results are summarized by
Equations (13) and (14). A few comments should be made.

(i) The picture of the Anderson transition as a spatial dimension transformation (1)
receives key refinements by virtue of p(d). Indeed, although the critical electron is fully
confined to the spatial effective support S? of Minkowski dimension dIR≈8/3 [4,9],
its key substructure has dm≈2, and the continuum of lower- and higher-dimensional
features is also present. Geometrically, S? may thus also be viewed as a surface-like
structure endowed with complex lower-dimensional “hair” and higher-dimensional
“halo”.

(ii) Our results suggest that dm is a discrete dimension and that it may assume an exact
topological value of dm=2. [The mathematical meaning of “topological” in the context
of IR dimension would, of course, need some clarification.] This invokes a possibility
that quantum mechanics combined with pure disorder can lead to the emergence of
integer dimensions. Apart from an understanding of Anderson transitions, variations
on such dynamics could find relevance in modeling an emergent space in the early
universe. A more detailed description of this geometry would be needed.

(iii) The connection between dIR and p(d) results from the built-in additivity that makes
both measure-based: in the case of dIR it is the additivity of effective counting with
respect to combining the systems [5,6], and in the case of d(q) the familiar additivity
of ordinary counting. This aspect is key to the interpretation of these concepts as
spatial dimensions. Indeed, it is because the Hausdorff measure and the Minkowski
count properly quantify volume that dimensions based on them became useful and
accepted characteristics of space.

(iv) It is natural to ask whether some features of the described spatial structure have
analogues in the multifractal approach [16,17] adopted to the IR Anderson setting via
the moment method [25]. Here the focus is on the so-called dimensional spectrum f (α).
Inner workings of the method give special status to the information dimension [26] in a
way somewhat similar to dm. It would be interesting to study the possible association
between the two in detail. (See also the debate regarding dIR in Refs. [27–29].)

(v) Our data are consistent with critical wave functions being of proper dimension (dIR =
dmax). However, albeit state of the art, their statistical power is not sufficient to reach
a sharper conclusion at this point.

(vi) Our findings acquire another angle in light of recent results [7,30] in quantum chromo-
dynamics (QCD). The original proposal that the Anderson-like mobility edge λA >0
appears in the QCD Dirac spectrum upon thermal chiral transition [31,32], worked
out by Refs. [33–35], became more structured. Indeed, the existence of a new mobility
edge λIR≡ 0 has been concluded, and its simultaneous appearance with λA at tem-
perature TIR was conjectured [30]. Here TIR marks the transition to a phase featuring
the IR scale invariance of glue fields [36]. The approach to IR criticality (λ→ λ+

IR)
was found to proceed via dIR≈2 Dirac modes [7], with the topological origin of the
dimension suspected. Clarifying a possible relation of this to dm≈2 found here may
shed new light on the QCD–Anderson localization connection.

(vii) The proposed IR/UV guises of multidimensionality formalism easily extend to more
general situations without the metric. Here the sequence {Ok} involving collections
Ok =(ok,1, ok,2, . . . , ok,Nk

) with an increasing number Nk of arbitrary objects comes with
the associated sequence {Pk} of the relevance (probability) vectors. The role of dIR

and dUV is taken by the effective counting dimension 0 ≤ ∆ ≤ 1 defined via scaling
N?[Pk] ∝ N ∆

k for k→ ∞ [8]. The dimension function d(q) is replaced by an analogous
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γ(q) and the dimension content p(d) by p(γ). The target (k→ ∞) effective collection
defined by {Ok}, {Pk} is then

subdimensional if ∆ < 1
multidimensional if p(γ) 6= δ(γ− γmax)

of proper dimension if ∆ = γmax

(15)

where γmax = sup {γ | p(γ) > 0} and γmax ≤ ∆.
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