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Abstract: Network attack and defence games are gradually becoming a new approach through which
to study the protection of infrastructure networks such as power grids and transportation networks.
Uncertainty factors, such as the subjective decision preferences of attackers and defenders, are not
considered in existing attack and defence game studies for infrastructure networks. In this paper,
we introduce, respectively, the attacker’s and defender’s expectation value, rejection value, and
hesitation degree of the target, as well as construct an intuitionistic fuzzy goal-based attack and
defence game model for infrastructure networks that are based on the maximum connectivity slice
size, which is a network performance index. The intuitionistic fuzzy two-player, zero-sum game
model is converted into a linear programming problem for solving, and the results are analysed to
verify the applicability and feasibility of the model proposed in this paper. Furthermore, different
situations, such as single-round games and multi-round repeated games, are also considered. The
experimental results show that, when attacking the network, the attacker rarely attacks the nodes
with higher importance in the network, but instead pays more attention to the nodes that are not
prominent in the network neutrality and median; meanwhile, the defender is more inclined to protect
the more important nodes in the network to ensure the normal performance of the network.

Keywords: infrastructure networks; attack and defence games; intuitionistic fuzzy set; network
science; repeated games

1. Introduction

With the continuous development of science and technology, people’s daily lives are
more and more inseparable from the support of various infrastructure networks. Whether it
is a larger network such as the power network and aviation network, or a smaller network
such as the underground line network, the paralysis of any infrastructure network will
bring about immeasurable social impact and economic property losses. However, security
incidents on infrastructure networks are frequent. For example, on 16 September 2022,
a fire broke out in the Changsha Telecom Building, which affected the voice function of
some users’ mobile phones, as well as caused huge economic and property losses. While
these infrastructure networks bring great convenience to people’s lives, they also face great
security and defence challenges, and they are more likely to become important military
targets in wartime. Research points out the ever-growing importance of network resilience
against targeted attack and error [1,2]. Therefore, how to respond to the attacks of terrorist
organisations on infrastructure and how to make use of existing resources for effective
protection are the focus of attention for the security and defence departments of various
countries [3].

From the current information, most of the research on attack and defence games in
infrastructure networks is now set in the context of deterministic conditions [4–6], which
rely on objective indicators in complex networks for modelling [7,8], such as node degree,
network efficiency, etc. In practice, however, the situation is so intricate and confusing that
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it is difficult to model and predict, with certainty, the realistic conditions faced by both
attackers and defenders. In addition, the huge amount of data information involved in the
game, as well as the subjective decision preferences of both attackers and defenders, further
increase the uncertainty of the game. Therefore, it is necessary to more comprehensively
consider the ambiguities and uncertainties involved in real-world problems on the basis of
the existing research on attack and defence games in infrastructure networks.

This paper introduces the membership degree and non-membership degree of intu-
itionistic fuzzy sets to quantitatively reflect the uncertainty of game objectives induced
by the subjective decision-making preferences of players, based on the existing objective
attack and defense game models. This article’s game model gives more information for
players’ strategy choices by developing the expectation value, rejection value, and hesita-
tion degree of the target, bringing the game model closer to reality and making decisions
more sensible. When compared to existing models, the game model in this article gives
more information for players’ strategy choosing, bringing the game model closer to reality
and making judgments more rational.Therefore, the main work and innovations of this
paper are as follows:

1. Modelling offensive and defensive games from a network science perspective.
2. An intuitionistic fuzzy, goal-based game model for the attack and defence scenarios

of infrastructure networks is developed.
3. Algorithms are designed to solve the developed model, and the results are analysed.
4. The repeated game process is studied.

The rest of the paper is organised as follows: Section 2 contains the literature review
of this study; Section 3 provides a detailed portrayal of the game model; Section 4 gives the
methodology for solving the game model; Section 5 is the experimental analysis part of the
paper; and Section 6 concludes the full paper.

2. Literature Review

Realistic critical infrastructure networks often have thousands of nodes, with indi-
vidual nodes interconnecting and interacting with each other to form a complex network
structure. In the late 1950s, the Hungarian mathematicians Erdős and Rényi proposed the
stochastic network model [9], which initiated the study of complex networks. It was not un-
til the recent last few decades—after Watts and Strogatz proposed the small-world network
model [10] and Barabási and Albert proposed the scale-free network model [11,12], that the
number of studies on complex networks increased significantly. Numerous scholars have
studied complex networks from the perspective of complex network models, as well as
analysed the topological features of different models and their applications [13–16], which
have continuously promoted the development of complex network-related research.

With the increasing threats to infrastructure networks, game theory has become a
powerful research tool in infrastructure network security problems. Furthermore, many
scholars have combined game theory with critical infrastructure networks, as well as con-
structed different complex network attack and defence game models to study the attack
and protection problems of critical infrastructure networks. Borwn et al. [17] applied
game theory to military strikes and homeland defence as early as 2003, and they also
conducted a great deal of studies based on it. In addition, they studied a dynamic game
model through two-layer and three-layer planning models, as well as analysed optimal
attack strategies under the three defensive strategies of no defensive behaviour, protecting
critical nodes, and protecting three-quarters of nodes [18]. Li et al. [19–21] established
a two-player static game model on complex networks, as well as studied equilibrium
strategies and node degrees. The relationship between equilibrium strategies and node
degree values, as well as the effects of network structure, cost constraints, and cost sen-
sitivity on the equilibrium outcome were investigated. Fu et al. [22] added a dynamic
game model in which the defender first protects the network through protection or cam-
ouflage behaviours, whereby the attacker then takes measures to destroy the network.
Following this, they investigated the effect of the defender’s willingness on the defender
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by using evolutionary games. Gu et al. [23] developed a Bayesian Starkelberg game model
to analyse the effect of type distribution on an equilibrium solution in the face of the
attacker having different utility functions. Jiang et al. [24] developed a Bayesian Starkel-
berg game model to study the water supply network protection problem, including four
private information situations. Zeng et al. [25,26] focused on the problem of scheduling
critical infrastructure network defence resources under conditions of asymmetric infor-
mation, thereby introducing the Stackelberg active deception game and the Bayesian
Stackelberg game to build the model. Zhang et al. [8] investigated the optimal allocation
of resources between the defender and the attacker’s multiple true/false objectives by
building an asynchronous action game. Thompson et al. [27,28] developed and solved a
defender–attacker–defender optimisation model to plan the optimal defence and response
to intelligent attacks on the US air transport network. Yuan et al. [29] proposed to extend
the traditional defender–attacker–defender model to post-incident corrective line switching
operations as an effective post-incident mitigation method through which to protect the
power infrastructure network. Abidi, M.H. et al. [30] proposed a vulnerability model for a
CPS resource allocation process using a two-stage min-max game to minimise the value of
loss costs. R. B. Benisha et al. [31] developed a two-step tracking model for UVI attacks
against power grids using game theory ideas to improve detection efficiency and secu-
rity. Li et al. [32] constructed an infrastructure network protection strategy solution model
with “uncertain attack resources and limited protection resources”, as well as explored
the effectiveness and practicality of the PSDA algorithm under conditions of incomplete
information. Wang et al. [33] proposed an active defence strategy selection method for
military information networks in the form of pure strategies. Jiang et al. [34] established
an attack–defence two-layer game model, as well as a defence–attack–defence three-layer
sequential game model for different infrastructure network attack–defence scenarios; fol-
lowing this, it was found that the effectiveness of the obtained defence strategies was
significantly improved. As shown in Table 1, the literature review table provides a more
visual display of related studies.

However, there are a large number of uncertainties in real situations that are difficult
to model and to quantify effectively [35]. Moreover, the theory of intuitionistic fuzzy games
provides a good idea for the solution of the above problems. In 1986, Atanassov, a Bulgarian
scholar, proposed the concept of the intuitionistic fuzzy set (IFS) [36], which laid the theoret-
ical foundation for the development of intuitionistic fuzzy games. Subsequently, Delgado
defined two characteristics of fuzzy numbers [37], Angelov studied the intuitionistic fuzzy
optimisation model [38], and Aggarwal gave a two-player zero-sum game solution method
with the goal of the intuitionistic fuzzy set (which pushed the theory of the intuitionistic
fuzzy game to maturity) [39]. In recent years, the establishment of the model in this paper is
mainly based on the intuitionistic fuzzy goal zero-sum game model of Li and Nan [40,41].

Table 1. Summary of the application of game theory in the field of attack and defence game for
infrastructure networks.

Game Model Author Research Methods

Starkberg game model Zeng [25,26]

Generate a pseudo network, disclose
false network structure information to
attackers, and use asymmetric
information to actively defend against
cost constraints.

Gu [23]
Analyze the influence of different utility
function types of attackers on the
equilibrium solution.

Jiang [24]

Developed a Bayesian Starkelberg game
model to study the water supply network
protection problem, including four
private information situations.
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Table 1. Cont.

Game Model Author Research Methods

Dynamic game model Borwn [17] Establish two-layer and three-layer
planning models.

Fu [22]

The defender first protects the network
through protection or camouflage
behaviors, then the attacker takes
measures to destroy it.

Wang [33] The selection of active defense strategies
is carried out in the form of pure policies.

Two-player zero-sum game model Li [19–21]

Define the strategy and benefit according
to the topology of the infrastructure
system, and construct the benefit matrix
by enumerating all the strategies to solve
the problem.

Defender-attacker-defender sequential
game model

Jiang [34],
Thompson [27,28],
Yuan [29]

The offensive and defensive process is
modeled into three phases: (1) the
defender invests in the infrastructure
system with limited resources; (2) the
attacker sees these investments and
attacks the system to maximize the
damage effect; (3) The defender repairs
the network at the minimum cost
according to the existing investment and
attack to reduce losses, such as swapping
edges and reducing load.

Asynchronous game model Zhang [8]

Defenders allocate defensive resources to
construct false targets to fortify real
targets; Attackers allocate resources to
identify false targets and attack real
targets, enabling the allocation of defense
resources among multiple targets.

3. Model

A complete game model is mainly composed of model assumptions, strategy sets, and
payoff functions, and these aspects are mainly modelled and introduced in this section.

3.1. Symbol Definitions

The definitions and explanations of the symbols used in this paper are presented in
Definitions.

3.2. Model Assumptions

The game model in this paper contains only two players—namely the attacker, that is,
the player p1, and the defender, that is, the player p2. Under limited resource constraints,
the offensive and defensive sides conduct offensive and defensive games around certain
nodes in a complex network. Among them, the goal of the attacker is to destroy the
topology of the complex network to the greatest extent by attacking some nodes in the
network, thereby reducing the performance of the complex network and making it unable
to maximise its effectiveness; the goal of the defender is to make the complex network work
properly by protecting certain nodes in a complex network. In view of the game model in
this chapter, the following assumptions are made.

1. In this game model, only one attacker and one defender are involved. And both
sides have complete information, that is, they both know the complete topology of
the complex network, as well as understand all the potential strategies and benefits
of each other’s strategies. Furthermore, the offensive and defensive sides are abso-
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lutely rational, and they can respond accordingly according to each other’s actions to
maximise their own interests.

2. The attack and defence are targeted at the nodes. Attackers will choose certain nodes
to attack, and defenders will choose certain nodes to protect. If a node is successfully
attacked, the edges connected to the node will also be removed.

3. If a node is attacked by an attacker without the protection of the defender, it will be
considered to be successfully attacked and removed from the network. However,
if the node is protected by the defender, the attacker’s attack on it will be deemed
invalid, and the node will continue to play its role in the network.

4. Attackers and defenders act simultaneously, that is, both sides do not know the
specific strategies adopted by each other before they act. The game can be carried
out in one round or multiple rounds. Specifically, the offensive and defensive sides
deliver corresponding action strategies, as well as calculate the income values of the
offensive and defensive sides under this strategy profile so as to obtain the income
matrix. If a multi-round game is carried out, the game between the two sides will be
carried out on a complex network after removing the successfully attacked nodes.

5. The cost of an attacker attacking each node is the same and is not affected by the
attributes of the node itself; similarly, the cost of defenders defending each node is
the same.

3.3. Network Modeling

The complex networks studied in this game model are all unweighted and undirected
graphs, which can be represented by G = (V, E), where V = [v1, v2, . . . , vN ] represents the
set of all nodes, and E ⊆ V ×V is the set of all edges. Let N = |V| denote the number of
nodes, then A(G) =

(
aij
)

N×N can be used to represent the adjacency matrix of the network.
If there is an edge connection between the node vi and the node vj, then aij = aji = 1,
otherwise, aij = aji = 0, which means that there is no edge connection between the node vi
and the node vj.

3.4. Game Strategy

The network attack–defence game model studied in this paper aims at the nodes in
the network; as such, the strategy set is the nodes in the network. It is assumed that the cost
of both sides of the game to attack and defend each node is 1, the available resources of the
attacker are nA, and the available resources of the defender are nD, that is, the total number
of nodes that the attacker can attack at one time is nA, and the total number of nodes that
the defender can defend at one time is nD. The vector XA = [x1, x2, . . . xN ] ∈ SA is defined
as an attack strategy, where N is the number of nodes in a complex network, and SA is the
set of all attack strategies. If the attacker chooses to attack the i node, then xi = 1, otherwise,

xi = 0. From this we can obtain that, for any attack strategy
N
∑

i=1
xi = nA holds. Similarly,

the vector YD = [y1, y2, · · · , yN ] ∈ SD represents a defensive strategy, where SD is a set of
all defensive strategies, yi = 1 and yi = 0 represent the defender’s choice of defensive and

non-defensive i nodes, respectively, and
N
∑

i=1
yi = nD exists for any defensive strategy.

According to the assumption in the previous section, when the node vi is not protected
by the defender and is attacked by the attacker, it will be considered as successfully attacked
and removed from the network, that is, when xi = 1 and yi = 0, the node vi will be removed.
As shown in Figure 1, this is a schematic diagram of the attack and defence process around
the node in the attack and defence game for infrastructure networks.
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Figure 1. This figure shows the process of attack and defense game for infrastructure networks. The
nodes in this picture that are covered in blue are those that the defender chooses to defend, and the
nodes that are covered in red are those that the attacker decides to attack. The nodes with the red
dotted line indicate that the attacker has successfully attacked them when it is not defended, and the
nodes with the blue solid line indicate that the defender has successfully defended them.

After a round of a game, the set of all removed nodes is V̂ ⊆ V, the set of all remaining
edges after removing nodes is Ê ⊆ (V − V̂)× (V − V̂), and the network at this time is
recorded as Ĝ = (V − V̂, Ê). Thus, V̂ can be obtained by the following equation:

V̂ = VA −VA ∩VD (1)

Among them, VA ⊆ V is the set of all the attack nodes; VD ⊆ V is the set of all the
defensive nodes.

3.5. Payoff Function

The payoff function is used to calculate the payoff of the offensive and defensive sides
under different strategic profiles. In this chapter, we define the payoff function of both
sides based on the network performance evaluation function. The network performance
evaluation function can reflect the overall topology of the network and reflect the impact of
different node deletions on the performance of the entire network. Generally, the maximum
connected slice size, the number of reachable node pairs, and the network efficiency are
used to evaluate the network performance. Furthermore, UA(XA, YD) is defined as the
attacker’s payoff function, where XA is the attack strategy selected by the attacker, and YD
is the defensive strategy selected by the defender. The calculation formula is as follows:

UA(XA, YD) =
Γ(G)− Γ(Ĝ)

Γ(G)
∈ [0, 1] (2)

Similarly, UD(X, Y) is defined as the defender’s payoff function, which is computed
as follows:

UD(XA, YD) =
Γ(Ĝ)− Γ(G)

Γ(G)
∈ [−1, 0] (3)

Among them, Γ is the network performance evaluation function, which does not increase
monotonously with the decrease in the number of network nodes. Thus, the complex
network Ĝ after the nodes are removed is a subgraph of the original complex network G,
which means Γ(Ĝ) ≤ Γ(G). This attribute indicates that the network’s performance suffers
when nodes are removed.
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This chapter selects the maximum connected slice size as an indicator to evaluate the
network performance. The maximum connected slice size in a complex network refers
to the number of nodes contained in the greatest connected subgraph, which determines
the network’s reachability and information transmission efficiency. If there are several
disconnected subgraphs in the network, there is no information exchange between them,
and the network’s goals cannot be met. As a result, the maximum connectivity slice size
can be utilized to assess the network’s connection and information transmission efficiency.
The following formula can be used to calculate the maximum connected slice size:

Lmax = maxn
i=1|Ci| (4)

Among them, n represents the total number of nodes in the complex network, Ci represents
the connected subgraph where node i is located, and |Ci| indicates the number of nodes in
the subgraph.

4. Methods

In order to better describe the uncertainty in the game process and to make the
network attack and defence game model more in line with the actual situation, the game
model used in this chapter is an intuitionistic fuzzy target, zero-sum game model, and the
solution method will be introduced below. According to the research of Nan and Li on the
intuitionistic fuzzy goal zero-sum game model [40], we define our intuitionistic fuzzy goal
zero-sum game model as the following multivariate array:

IFG = (X, Y, F, va, pa, vr, pr, ωa, qa, ωr, qr) (5)

Here, X and Y are the mixed strategy spaces of player p1 and player p2, respectively, and
this is denoted by the following:

X =

{
x ∈ Rm |

m

∑
i=1

xi = 1, xi > 0, i = 1, 2, L, m

}
(6)

and

Y =

{
y ∈ Rn |

n

∑
j=1

yj = 1, yj > 0, j = 1, 2, · · · , n

}
(7)

where the payoff matrix for player p1 is concisely expressed as the matrix F = (bij)m×n,
and the payoff matrix for player p2 is −F = (−bij)m×n since the matrix game is zero-sum.
Among them, va is the expected value of the player p1 to the target, and the error is pa ≥ 0;
in addition, vr is the rejection value of the player p1 to the target, and the error is pr ≥ 0.
Similarly, ωa and ωr represent the expected value and rejection value of the player p2 to
the target, respectively, and qa ≥ 0 and qr ≥ 0 are the corresponding errors, respectively.

Let D =
{

xTFy | (x, y) ∈ X×Y
}
⊆ R be an intuitionistic fuzzy set on D, where the

payoff goal of p1 is A =
{〈

xTFy, µA
(
xTFy

)
, vA

(
xTFy

)〉
| xTFy ∈ D

}
. Among these, we

can express them as follows:

µA : D → [0, 1]

xTFy ∈ D µA
(
xTFy

)
∈ [0, 1]

(8)

and
vA : D → [0, 1]

xTFy ∈ D vA
(

xTFy
)
∈ [0, 1]

(9)

and satisfy
0 6 µA

(
xTFy

)
+ vA

(
xTFy

)
6 1 (10)
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Similarly, for the player p2, its goal on the payoff value is also an intuitionistic fuzzy
set on D, which is in the form of B =

{〈
xTFy, µB

(
xTFy

)
, vB
(
xTFy

)〉
| xTFy ∈ D

}
. Among

these, we can express them as follows:

µB : D → [0, 1]

xTFy ∈ D µB
(
xTFy

)
∈ [0, 1]

(11)

and
vB : D → [0, 1]

xTFy ∈ D vB
(
xTFy

)
∈ [0, 1]

(12)

and satisfy
0 6 µB

(
xTFy

)
+ vB

(
xTFy

)
6 1 (13)

Among them, the membership degree µA
(

xTFy
)

is the acceptance degree of the player
p1 to the payment value, and the non-membership degree vA

(
xTFy

)
is the rejection degree

of the player p1 to the payment value; similarly, the membership degree µB
(
xTFy

)
and the

non-membership degree vB
(

xTFy
)

represent the degree of acceptance and rejection of the
payoff value by the player p2, respectively.

It is assumed that the membership function and non-membership function of the
player p1 are linear as follows:

µA

(
xTFy

)
=


0

(
xTFy < va − pa

)
1−

(
va − xTFy

)
/pa

(
va − pa 6 xTFy < va

)
1

(
xTFy > va

) (14)

vA

(
xTFy

)
=


1

(
xTFy < vr − pr

)
(
vr − xTFy

)
/pr

(
vr − pr 6 xTFy < vr

)
0

(
xTFy > vr

) (15)

A schematic diagram of the membership function and non-membership function of
the player p1 is shown in Figure 2.

Figure 2. This figure shows the membership function and non-membership function image of player
p1. And the membership function monotonically non-decreasing as the payment value increases;
While the non-membership function monotonically non-increasing as the payment value increases.

From the function image, we can obtain that, when xTFy ≤ vr − pr, the satisfaction
degree of the player p1 is 0, and the rejection degree is 1; when vr − pr < xTFy ≤ va − pa,
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then the satisfaction degree of the player p1 is 0, but because the player p1 has a certain
degree of hesitation, it will not completely refuse at this time; when vr < xTFy ≤ va, then
the degree of rejection of the player p1 is reduced to 0, but because the player p1 has a
certain degree of hesitation, it will not be fully satisfied at this time; and when xTFy > va,
then the satisfaction degree of the player p1 is 1, and the rejection degree is 0. It can be seen
that the intuitionistic fuzzy set reflects the degree of satisfaction, rejection, and hesitation
of the player p1 for the target in all aspects, and it can fully characterise the fuzziness and
uncertainty in the real game problem.

Similarly, the membership function and non-membership function of the player p2 are
also linear.

µB

(
xTFy

)
=


1

(
xTFy < ωa

)
1−

(
xTFy−ωa

)
/qa

(
ωa 6 xTFy < ωa + qa

)
0

(
xTFy > ωa + qa

) (16)

vB

(
xTFy

)
=


0

(
xTFy < ωr

)
(
xTFy−ωr

)
/qr

(
ωr 6 xTFy < ωr + qr

)
1

(
xTFy > ωr + qr

) (17)

A schematic diagram of the membership function and non-membership function of
the player p2 is shown in Figure 3. According to the image, it can also be interpreted
similarly to the player p1.

Figure 3. This figure shows the membership function and non-membership function image of player
p2. And the membership function monotonically non-increasing as the payment value increases;
While the non-membership function monotonically non-decreasing as the payment value increases.

In the two-person zero-sum game, a gain for one player means a loss for the other. For
the players p1 and p2, both sides want to maximise their own benefits and minimise their
own losses. Since the membership function and non-membership function of player p1 are
both linear functions, the maximum-minimum strategy x∗ of player p1 can be obtained by
solving the following linear programming problem.
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max{α− β}

s.t.



m
∑

i=1
aijxi + pa − va > paα (j = 1, 2, · · · , n)

m
∑

i=1
aijxi − vr > −prβ (j = 1, 2, · · · , n)

x1 + x2 + L + xm = 1

xi > 0(i = 1, 2, · · · , m)

0 6 α 6 1, 0 6 β 6 1

α + β 6 1

(18)

Among them, α, β, xi (i = 1, 2, · · · , m) are decision variables.
Similarly, the membership function and non-membership function of player p2 are

also linear functions, thus the minimum-maximum strategy y∗ of player p2 can be obtained
by solving the following linear programming problem.

min{η − λ}

s.t.



n
∑

j=1
aijyj −ωa − qa 6 −qaλ (i = 1, 2, · · · , m)

n
∑

j=1
aijyj −ωr 6 qrη (i = 1, 2, · · · , m)

y1 + y2 + L + yn = 1

yj > 0(j = 1, 2, · · · , n)

0 6 λ 6 1, 0 6 η 6 1

λ + η 6 1

(19)

Among them, η, λ, yi (i = 1, 2, · · · , n) are decision variables.
By solving the above two linear programming problems, the mixed strategy Nash

equilibrium of the game model can be obtained.

5. Results

In this paper, the experiments use the following environment configuration: GPU
model NVIDIA GeForce RTX 3060, 2.3 GHz CPU and 64 GB RAM.

5.1. Infrastructure Network Model Example

In this paper, the target infrastructure network shown in Figure 4 is used. The target
network contains 16 nodes and 27 edges, of which the maximum degree of node 6 is 7, and
the minimum degree of nodes 8, 12, 15, and 16 is 1. This target infrastructure network is
a model of real-world infrastructure network topologies such high-speed rail networks,
airport networks, and power transmission networks. Using the high-speed railway network
as an example, the nodes in the complex network topology diagram represent different
stations in the high-speed railway network, and the connecting edges between the nodes
indicate the lines that trains travel between. In the actual world, if a station is attacked and
compromised, and its train transfer function is lost, all lines that pass through the station
are disabled.
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In this chapter, we use the maximum connected patch size as the network performance
evaluation function Γ, and we stipulate that the resources available to the attacker and the
defender are equal, both of which are 4—that is, nA = nD = 4.

5.2. Results of Single Attack and Defense Game

The experimental steps of this section are as follows :

1. Generate adjacency matrix. According to the topological structure diagram of the
target network, the corresponding adjacency matrix A(G) =

(
aij
)

N×N is calculated.
If there is an edge connection between the node vi and the node vj, then aij = aji = 1,
otherwise, aij = aji = 0.

2. Generate a revenue matrix. The attacker gives an attack strategy, and the defender
gives a defence strategy. Such a combination of attack and defence strategies consti-
tutes a strategy profile. By traversing all strategy combinations, the gains of attackers
and defenders under different strategy profiles are calculated, and finally the gain
matrix is obtained.

3. Solve the mixed strategy Nash equilibrium. Based on the solution method in the
previous section, we set the attacker’s expectation value va for the target, and the
corresponding error pa; furthermore, the attacker’s rejection value of the target vr
corresponds to the error pr. Set the defender’s expectations of the target value wa and
the corresponding error qa; moreover, the defender’s rejection of the target value wr
correspond to the error qr. By calling the MATLAB linear programming solver, the
mixed strategy Nash equilibrium is obtained.
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Figure 4. This figure shows the topology of the target infrastructure network. Nodes represent
stations with specialized purposes in real-world complex networks, such as high-speed train stations,
airports, and power stations; A linked edge is defined as a physical or logical connection between
two nodes that allows them to exchange information or matter.

In this experiment, we stipulated that the resources available to the attacker and the
defender are equal, that is nA = nD = 4, which means the attacker can only attack 4
nodes at a time, and the defender can only defend 4 nodes at a time. Thus, the attacker’s
policy set contains a total of C4

16 = 1820 policies; similarly, the defender’s strategy set
contains a total of C4

16 = 1820 strategies, and the number of strategy profiles reaches 3,
312,400. By traversing these policy profiles, the payoff function is used to calculate the
payoff of attackers and defenders under different policy profiles, and the corresponding
payoff matrix is obtained.

According to the payoff matrix, we set the attacker’s expectation of the target va = 0.4,
which corresponds to the error pa = 0.3; furthermore, the attacker’s rejection value of the
target is vr = 0.25, which corresponds to the error pr = 0.2. That is, when the attack strategy
reduces the performance of the target network by less than 5%, the attacker’s satisfaction
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degree is 0, and the rejection degree is 1; when the attack strategy reduces the performance
of the target network by 5∼10%, the attacker’s satisfaction is 0, but because the attacker has
a certain degree of hesitation, it will not be completely rejected at this time; when the attack
strategy reduces the performance of the target network by 25 ∼40%, the attacker’s rejection
degree is reduced to 0, but because the attacker has a certain degree of hesitation, it is not
completely satisfied at this time; and when the attack strategy reduces the performance of
the target network by more than 40%, the attacker’s satisfaction degree is 1 and the rejection
degree is 0. The image of the attacker ’s membership and non-membership functions is
shown in Figure 5.

Set the defender’s expectations of the target value wa = 0.1, and the corresponding
error is qa = 0.2; the defender’s rejection of the target value is wr = 0.15, which corresponds
to the error qr = 0.25. The specific explanation is similar to the attacker. The membership
function and non-membership function images of the defender are shown in Figure 6.

0.40.250.10.05

Figure 5. This figure shows the image of the attacker’s membership function and non-membership
function. And the image of attacker’s membership and non-membership function are obtained with
va = 0.4, pa = 0.3, vr = 0.25, pr = 0.2.

0.1 0.15 0.3 0.4

Figure 6. This figure shows the image of the defender’s membership function and non-membership
function. And the image of defender’s membership and non-membership function are obtained with
wa = 0.1, qa = 0.2, wr = 0.15, qr = 0.25.

The MATLAB linear programming solver was called, and the results of the mixed
strategy Nash equilibrium are shown in Table 2. The pure strategy with a probability that
was not equal to 0 in an equilibrium state and its corresponding equilibrium probability are
given in the table. It can be seen from the equilibrium results that the attacker had 11 pure
strategies with a probability greater than 0 to choose from, among which the probability
assigned to { 3, 6, 13, and 14 } was the highest, and the degree of the remaining nodes was
not prominent except for 6 nodes. The defender had 10 pure strategies with a probability
greater than 0 to choose from, among which the probability assigned to { 1, 3, 9, and 11 }
was the highest, and the degree of these four nodes was more prominent.
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Table 2. Mixed strategy probability distribution table under equilibrium state.

Attack Strategy Probability Defence Strategy Probability

{ 1, 3, 5, 14 } 0.0104 {1, 3, 6, 9 } 0.1077
{ 1, 4, 6, 11 } 0.0414 { 1, 3, 9, 11 } 0.2500
{ 1, 4, 7, 10 } 0.0473 { 1, 6, 9, 13 } 0.0828
{ 1, 5, 6, 11 } 0.0518 { 1, 6, 13, 14 } 0.0594

{ 1, 5, 12, 14 } 0.1760 { 3, 4, 6, 14 } 0.0947
{ 1, 6, 13, 14 } 0.0207 { 3, 10, 11, 14 } 0.0476
{ 3, 5, 6, 11 } 0.0104 { 6, 9, 13, 14 } 0.0361

{ 3, 6, 11, 13 } 0.0207 { 6, 10, 11, 13 } 0.1238
{ 3, 6, 13, 14 } 0.2899 { 9, 11, 13, 14 } 0.1297

{ 3, 11, 12, 13 } 0.1657 { 10, 11, 13, 14 } 0.0727
{ 4, 7, 9, 10 } 0.1657

When the attacker chooses the hybrid Nash equilibrium strategy, the minimum degree
of reaching the expected goal is 0.5268, the maximum degree of reaching the rejection
goal is 0, and the degree of hesitation is 0.4732. When the defender chooses the mixed
strategy Nash equilibrium, the minimum degree of reaching the expected goal is 0.4322,
the maximum degree of reaching the rejection goal is 0.2098, and the degree of hesitation
is 0.3580.

In order to further explore the preferences of attackers and defenders to attack and
defend nodes, we mapped the mixed strategy probability distribution to nodes as shown
in Equations (19) and (20) as follows:

ρA =
1

nA

|SA |

∑
i=1

pi · Xi =
1

nA
σA · X|SA |×N (20)

ρD =
1

nD

|SD |

∑
j=1

qj ·Yj =
1

nD
σD ·Y|SD |×N (21)

Among them, ρA = [ p̃1, p̃2, . . . , p̃i, . . . , p̃N ] represents the probability that the at-
tacker allocates to each node in the Nash equilibrium, and ρD =

[
q̃1, q̃2, . . . , q̃j, . . . , q̃N

]
represents the probability the defender allocates to each node in the Nash equilibrium.
σA =

[
p1, p2, . . . , pi, . . . , p|SA |

]
and σD =

[
q1, q2, . . . , qj, . . . , q|sD |

]
denote the probability

distribution of all pure strategies in the Nash equilibrium.
The probability distribution of the equilibrium results mapped to different nodes in

Table 2 is shown in Table 3. From Table 3, it can be seen that attackers pay high attention to
nodes 1, 3, 6, 12, 13, and 14, while the degree and betweenness of nodes 1, 3, 13, and 14 are at
a medium level. In addition, nodes 12, and even edge nodes, indicated that, when attacking
the network, the attackers rarely attacked nodes with high importance in the network, but
rather paid more attention to the nodes at a medium level and betweenness in the network.
The attackers improved their success rate and the revenue of their attacks through such
attack strategies. On the other hand, the defenders had the highest probability of defending
node 11, which had the largest betweenness and highest degree in the network, thereby
indicating that defenders are more inclined to protect the more important nodes in the
network to ensure the normal performance of the network. In addition, the betweenness of
nodes 2, 8, 15, and 16 was 0, and the probability that the attacker and the defender chose
the node was also 0, thus indicating that these nodes were not of concern by both sides.
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Table 3. Probability distribution tables on different nodes.

Node 1 2 3 4 5 6 7 8
Degree 5 2 5 5 3 7 2 1

Betweenness 16.9 0 14.5 14.5 2.1 29.5 4 0
Attack probability 0.087 0 0.124 0.064 0.062 0.109 0.053 0

Defence probability 0.125 0 0.125 0.024 0 0.125 0 0

Node 9 10 11 12 13 14 15 16
Degree 4 4 4 1 3 2 1 1

Betweenness 21.1 11.5 29 0 14 14 0 0
Attack probability 0.041 0.053 0.073 0.085 0.124 0.124 0 0

Defence probability 0.151 0.061 0.156 0 0.125 0.109 0 0

The probability diagrams of different nodes being attacked or defended in the equilib-
rium state are respectively shown in Figure 7.
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Figure 7. This picture shows the probability of different nodes being attacked or defended. The
darker the colour is, the greater the probability that the node is attacked or defended. And a node
with no color indicates that it is not selected by attackers or defenders. (a) The probability of different
nodes being defended. (b) The probability of different nodes being attacked.

In order to verify the effectiveness of the game model in obtaining the equilibrium
strategy, we selected the maximum degree strategy, the minimum degree strategy, and the
random strategy to compare with the equilibrium strategy. The maximum degree strategy
refers to the attack and defence of the largest nodes in the network. In contrast, if the
offensive and defensive sides attack and defend the smallest nodes in the network, then this
represents the minimum degree strategy; the random strategy means that the attacker and
the defender do not consider the indicators of the nodes and randomly select several nodes
in the network to attack and defend. Table 4 shows the gains of attackers when attackers
and defenders adopt four different respective strategies. Due to the great uncertainty of the
selection of random strategies, we conducted 3000 independent experiments and used the
average of the final results as the final equilibrium result.

Table 4. Table of equilibrium gains for the attacker under four different strategies.

Attack
Defense

Nash Max Min Random

Nash 0.2580 0.2836 0.5072 0.3541

Max 0.2441 0 0.5 0.3495

Min 0.25 0.25 0 0.1871

Random 0.2266 0.2358 0.2939 0.2562
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We calculated the Nash equilibrium again for the equilibrium income matrix that was
obtained in Table 3, and the results were ( [ 1, 0, 0, 0 ], [ 1, 0, 0, 0 ] ), that is, (equilibrium
strategy, equilibrium strategy) was the Nash equilibrium point. Further, both the offensive
and defensive sides chose the equilibrium strategy to obtain the maximum income, which
further verifies the effectiveness of the equilibrium strategy that was obtained in this section.

5.3. Results of Repeated Network Attack and Defense Game

In the previous section, we only studied the situation of one round in a game. In reality,
the offensive and defensive sides will carry out multiple rounds of attack and defence
around complex networks such as traffic networks and communication networks. The end
state of each round of game will become the starting state of the next round of the game.
Therefore, in order to be closer to the reality, we will repeat the game around the target
network in this section.

In the repeated game model, we will add the following assumptions: (1) At the
beginning of each round of a game, the strategy choice of the attacker and the defender
is only related to the topology of the complex network in the current state, and it is not
affected by the strategy choice of the two sides in the previous round of the game—that
is, the repeated game has a Markov property. (2) The starting state of each round of the
game is the current complex network model, and the ending state is the complex network
model after deleting the successfully attacked nodes. Moreover, the ending state of that
round of the game is the starting state of the next round of the game. (3) The termination
condition of the repeated game is as follows: no matter what attack strategy the attacker
adopts, the repeated game terminates when the node in the target network cannot be
successfully attacked.

The remaining assumptions are the same.
Based on the above assumptions, the design of repeated game experiment steps was

as follows:

1. Calculate the adjacency matrix.
2. Generate the income matrix
3. Solve for the mixed strategy Nash equilibrium based on the equilibrium payoff matrix.
4. Solving for mixed strategy Nash equilibrium based on the equilibrium payoff matrix.
5. Based on the mixed-strategy Nash equilibrium result, the attacker and the defender

each select a pure strategy to play. We adopted a “roulette” approach for selecting
pure strategies from among the equilibrium strategies.

6. Obtain the number of nodes that were successfully attacked and calculate the value
of the attacker’s gain in this game. The defender’s gain is the negative of the at-
tacker’s gain.

7. Update the complex network diagrams.

After modelling and solving, this repeated game was played 5 times to reach the
termination state, and the progress of the repeated game is shown in Figure 8. For ease of
record keeping, we used Max, Min, Random and Nash to represent the maximum degree
strategy, minimum degree strategy, random strategy, and equilibrium strategy, respectively.
The attacker’s strategy choice for each round of the game was Nash→Min→ Nash→
Nash→ Nash; the defender’s strategy choice for each round of the game was Nash→
Nash→ Nash→ Nash→ Nash.

In the repeated game process, we found that the attacker chose the minimum degree
strategy in the second round of the game, and that the gain was higher than that of the
equilibrium strategy. That is to say, although the equilibrium strategy will bring more
robust benefits, the equilibrium strategy is not the optimal choice in certain cases. For the
defender, he has always chosen the equilibrium strategy in the repeated game process,
thereby indicating that, although other strategies may bring higher earnings, the defender
cannot bear the risks brought by other strategies.

The actual income in each round of the game and the equilibrium income in the current
state are given in Figure 9. We find that the actual earnings of each round of the game was
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not the same as the equilibrium earnings in the current state. This is because we used the
’roulette’ method to select the pure strategy from the equilibrium strategy, which results in
a great deal of randomness.

Now, we assume that, if the attacker knows the defender’s defence strategy before
choosing the attack strategy every time, then the attacker will perfectly avoid the defender’s
choice of the defender’s node every time they choose the attack node. Under this assump-
tion, the attacker only needs to carry out three rounds of attacks to achieve the termination
condition of the repeated game. However, in the experiment of this section, the attacker
carried out a total of five rounds of attacks to terminate the repeated game. The target
network used in this paper only contains 16 nodes. However, the scale of complex networks
in reality is huge. Repeated games on such networks may take thousands of rounds to reach
the termination condition. It is of great practical significance to study the convergence of
this problem and how to reach the termination condition of repeated games more quickly.
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Figure 8. This picture shows the specific process of each round of a game in the process of a repeated
game. Among them, the picture of the left column represents the topology of the infrastructure
network at the beginning of each round of the attack and defence game. The picture in the right
column shows the strategy choice of each round of attackers and defenders. The marked red node
represents the node that successfully attacked, the green node represents the node that successfully
defended, and the blue node represents the node that was defended but not attacked. (a) Topology of
the first round of the complex network. (b) The first round of attack and defence strategy. (c) Topology
of the second round of the complex network. (d) The second round of attack and defence strategy.
(e) Topology of the third round of the complex network. (f) The third round of attack and defence
strategy. (g) Topology of the fourth round of the complex network. (h) The fourth round of attack
and defence strategy. (i) Topology of the fifth round of the complex network. (j) The fifth round of
attack and defence strategy.

Figure 9. This figure shows the comparison between the actual earnings and the equilibrium earnings
under the repeated game. The theoretical equilibrium and actual earnings of each game are shown by
the blue box and red triangle nodes. And the blue dotted and red dotted lines represent the average
equilibrium earnings and the average actual earnings.
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6. Discussion

It is difficult for players to accurately assess the game aim in the game process due to
the availability of complicated components such as information, knowledge, and subjective
consciousness of the players involved in the real game. As a result, the player’s impression
of the game goal is ambiguous. It is precisely because of this uncertainty that the players
would be hesitant about the degree of achievement of the game aim. The intuitionistic fuzzy
set can be used to represent the degree to which the player accomplishes the predetermined
goal and the degree of hesitancy to achieve the predetermined goal while picking the
strategy, which gives the players more information to choose their strategy.

The model established by this method not only considers objective conditions such
as network topology and payoff function when solving the equilibrium strategy, but it
also quantitatively analyzes and evaluates subjective factors such as decision-makers’
preferences and hesitation. Simultaneously, this paper for the first time introduces the
two-player zero-sum game model with the goal of intuitionistic fuzzy set into the complex
network attack and defense game, broadening the boundary of research on the attack and
defense game of infrastructure network and providing a new research idea for solving the
uncertainty problem of quantitative analysis in the field of attack and defense game of
infrastructure network. Therefore, the model established in this paper has good theoretical
and practical significance.

However, in the course of creating the model, this study adds additional model
assumptions and strongly limits the model’s field of use. In reality, obtaining the complete
information required in this paper is impossible, and typically, the defender has a complete
understanding of the network topology information, whereas the attacker has only limited
information, which also contains false information intentionally created by the defender.
Furthermore, because the importance and scale of nodes in the critical infrastructure
network vary, the defender’s investment cost for each node varies, as does the attacker’s
cost of assaulting each node. Furthermore, both defense and attack have a success rate,
which ignores the reality that the node can still perform part of its duties after being
attacked. Finally, this model does not work with several participants. This will become
new study directions in the field of infrastructure network attack and defense games.

7. Conclusions

In this paper, a two-person, zero-sum game model, with the goal of intuitionistic fuzzy
sets, was introduced into the research on complex network attack–defence games. In order
to simplify the problem, we make basic assumptions in the model, as well as conduct
modelling and research on the basis of assumptions. We found that, when attacking the
network, attackers rarely attack the nodes with high importance in the network; instead,
they pay more attention to the nodes with moderate importance and betweenness in the
network, whereas defenders are more inclined to protect the more important nodes in the
network to ensure the normal performance of the network. After this finding, we compared
the obtained equilibrium strategy with three typical strategies, and we found that both
offensive and defensive sides chose the equilibrium strategy to obtain the maximum benefit,
which further verifies the effectiveness of the equilibrium strategy obtained in this paper.
Finally, we conducted a repeated game modelling to simulate the actual situation in reality,
and we found that, for attackers (although the equilibrium strategy will bring more robust
benefits), the equilibrium strategy was not the optimal choice in certain cases; for defenders,
although other strategies may bring higher earnings, the defender could not bear the
risks brought by other strategies. The game model in this paper provides a new research
framework and ideas for later network attack and defence game modelling. The paper
concludes by discussing the theoretical and practical significance of the proposed model,
as well as its application scope.
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Definitions

Symbols Definitions

p1, p2 Two players in the game model

G Scale-free network

V Set of all nodes

E Set of all edges

|Ci| Number of nodes in the subgraph

XA An attack strategy

YD An defensive strategy

SA Set of all attack strategies

SD Set of all defensive strategies

nA, nD Available resources of the player p1 and player p2

UA(X, Y), UD(X, Y) Payoff function of the player p1 and player p2

Γ(G) Network performance evaluation function

IFG Intuitionistic fuzzy goal zero-sum game model

X, Y Mixed strategy spaces of player p1 and player p2

va, vr Expected value and rejection value of player p1

ωa, ωr Expected value and rejection value of player p2

pa, pr, qa, qr Corresponding errors

µA
(

xTFy
)
, vA

(
xTFy

)
Membership degree and non-membership degree of player p1

µB
(

xTFy
)
, vB

(
xTFy

)
Membership degree and non-membership degree of player p2
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