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Abstract: The diffusion coefficient of heavy quarks in a deconfined medium is examined in this
research using a deep convolutional neural network (CNN) that is trained with data from relativistic
heavy ion collisions involving heavy flavor hadrons. The CNN is trained using observables such as the
nuclear modification factor RAA and the elliptic flow v2 of non-prompt J/ψ from the B-hadron decay
in different centralities, where B meson evolutions are calculated using the Langevin equation and
the instantaneous coalescence model. The CNN outputs the parameters, thereby characterizing the
temperature and momentum dependence of the heavy quark diffusion coefficient. By inputting the
experimental data of the non-prompt J/ψ (RAA, v2) from various collision centralities into multiple
channels of a well-trained network, we derive the values of the diffusion coefficient parameters.
Additionally, we evaluate the uncertainty in determining the diffusion coefficient by taking into
account the uncertainties present in the experimental data (RAA, v2), which serve as inputs to the
deep neural network.

Keywords: quark-gluon plasma; relativistic heavy-ion collisions; heavy quark; machine learning;
diffusion coefficient

1. Introduction

In recent years, there has been rapid development in deep learning methods, which
are increasingly being widely applied in industry and scientific research. In particular,
deep learning methods are being used to handle high-dimensional data and to uncover
patterns, such as in image recognition. In the realm of scientific research, deep learning has
already found applications in many aspects of physics [1–3]. In the theoretical research of
high-energy nuclear physics, an increasing number of studies are utilizing deep learning
methods to analyze the computational data from theoretical models, such as the study
of the equation of the state of QGP matter [4], the dynamical evolutions of QGP [5] and
identifications of the spinodal clumping in high-energy nuclear collisions [6].

In the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) [7–9],
a new kind of deconfined state, called the Quark-Gluon Plasma (QGP), was predicted and
produced. Properties such as the initial energy density and coupling strength of QGP have
been typically studied through the final-state light hadron spectra [10–13] or through the
distribution of heavy flavor particles [14–19]. For heavy flavor particles, their distribution
is initially influenced by the cold nuclear effect, and then they will interact with the QGP
medium, thus resulting in energy loss [20–23]. Numerous models have been established to
account for the various effects mentioned above [24–29], whereby the aim is to ultimately
predict the nuclear modification factor and the anisotropic flows of open heavy flavor
hadrons. These models have been used to investigate the energy loss mechanisms of heavy
quarks in the QGP from different perspectives. Relevant nuclear modification factors and
the collective flows of D mesons or B mesons have also been experimentally measured
by STAR [30], ALICE [31–33] and CMS [34,35] collaborations, which are closely related
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to the energy loss process of heavy quarks. As it is not straightforward to explain the
experimental observables of RAA and v2(pT) at the same time when using a simple value
for the diffusion coefficient Ds2πT, a more realistic expression with temperature and
momentum dependence is needed. Due to the complex process involving the heavy quark
diffusion and hydrodynamic evolution, it is necessary to employ deep neural networks to
analyze the relationship between the diffusion coefficient and experimental observables.
CNN has been proven to be suitable for analyzing high-dimensional datasets and for
quantifying the value of a diffusion coefficient when considering multiple hot and cold
nuclear matter effects.

In previous studies, Bayesian statistical analysis has been employed to analyze the
experimental data of soft particles [36–39], whereby the diffusion coefficient is quanti-
tatively extracted with experimental observables of the charmed hadrons in heavy-ion
collisions [40]. Although there is abundant experimental data on D mesons, our main focus
is on studying the evolution of B mesons. This is because the diffusion coefficient is directly
related to the drag term in the Langevin equation, which arises from elastic scattering
processes rather than medium-induced gluon radiation. Therefore, as the mass of a heavy
quark increases, the contribution from elastic scattering processes becomes more significant
in the energy loss process, while the contribution from gluon radiation is relatively weaker.
In this work, we treat the RAA and v2 of non-prompt J/ψ from the B meson decay as inputs
of the CNN, and the parameters in the diffusion coefficient are treated as outputs of the
network. After training the neural network with supervision, the inputs of the neural
network are selected from values within the error bars of the experimental data points in
order to generate the corresponding diffusion coefficient (albeit with some uncertainty).

This paper is organized as follows: in Section 2, we introduce the Langevin plus
instantaneous coalescence model (LICM) to generate datasets of heavy flavor evolutions
that had different values in terms of their parameters (which were then used as training
datasets for the CNN model). In Section 3, the values of the shadowing factor, temperature
and momentum dependence of the diffusion coefficient are quantitatively extracted based
on the experimental data of the non-prompt J/ψ from B meson decay. A final summary is
given in Section 4.

2. Frameworks
2.1. Generating Datasets with LICM

Bottom quarks are produced in the hard scatterings of nucleon partons. We adopted
the fixed-order plus next-to-leading log formula (FONLL) [41,42], and the NNPDF30NLO
PDF set [43] was used to calculated the initial momentum distribution of the bottom quarks
in nucleon–nucleon collisions. Due to the fact that Pb–Pb collisions can be regarded as
a superposition of nucleon–nucleon collisions, which are accompanied by cold nuclear
matter effects, the initial momentum distribution of the bottom quarks in Pb–Pb collisions
can be considered as the momentum distribution in the pp collisions that are multiplied
by a shadowing factor. The nuclear shadowing factor was calculated with the EPS09
NLO package [44] in 5.02 TeV Pb-Pb collisions. The production of the bottom quarks
primarily arose from binary collision processes; hence, the spatial distribution of the
bottom quarks in nuclear collisions was proportional to the distribution of binary collisions
dNbb̄/dxT ∝ TA(xT − b/2)TB(xT + b/2) [45]. Here, TA(B) =

∫
dzρA(B)(xT , z) represents

the thickness functions of the two nuclei. The nucleon distribution ρ(xT , z) in the nucleus
follows a Woods–Saxon distribution.

After the production of bottom quarks, they propagate within the high-temperature
QGP medium and are accompanied by energy loss. The energy loss of bottom quarks in the
QGP is primarily attributed to the scattering processes between bottom quarks and thermal
partons, as well as medium-induced parton radiation. Considering that the mass of the
bottom quark is much larger than the typical temperature of the medium, the momentum
change during each interaction of the bottom quarks in the medium is relatively small, and
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it can be regarded as Brownian motion. Consequently, the momentum evolution of bottom
quarks can be described using the Langevin equation:

dp
dt

= −ηDp + ξ + fg. (1)

On the right-hand side, the first two terms represent the drag and noise terms, which come
from the elastic collisions with thermal light partons. The drag coefficient is defined as

ηD(p) = κ/(2TEb), where the energy of the bottom quark is given by Eb =
√

m2
b + p2.

The mass of the bottom quark is taken to be mb = 4.75 GeV. κ represents the momen-
tum–diffusion coefficient. It is related to the spatial diffusion coefficient Ds via Dsκ = 2T2.
In the noise term ξ, the time correlation and momentum dependence are both neglected
for simplicity, where ξ is treated as a Gaussian-shaped white noise that satisfies the follow-
ing relation:

〈ξ i(t)ξ j(t′)〉 = κδijδ(t− t′). (2)

The third term fg = −dpg/dt, with pg being the momentum of the emitted gluon, repre-
sents the recoil force on the bottom quark from the emitted gluon. The number of emitted
gluons in a small time interval t ∼ t + ∆t is [46] are represented by

Prad(t, ∆t) = 〈Ng(t, ∆t)〉 = ∆t
∫

dxdk2
T

dNg

dxdk2
Tdt

. (3)

Here, x = Eg/Eb represents the ratio of the energy carried by the gluons that are radiated
from the bottom quarks. dNg/dxdk2

Tdt is the the spectrum of an emitted gluon from a higher
twist calculation [22,23]. kT is the transverse momentum of the gluon. The position of a
heavy quark is updated in each time step as x(t + ∆t) = x(t) + p/Eb · ∆t.

Heavy quarks are randomly generated based on the initial spatial and momentum
distributions, and they propagate in the QGP with an energy loss that is described by
Equation (1). When bottom quarks diffuse and move into certain regions, wherein the QGP
local temperature is low, heavy quarks undergo hadronization by combining with light
quarks to form B mesons, or by combining with an anti-heavy quark to form quarkonium.
In the high-momentum region, the production of B mesons from bottom quarks is predom-
inantly through fragmentation processes, while in the intermediate- and low-momentum
regions, it is mainly through the coalescence process. In this study, we primarily focused
on bottom quarks with a transverse momentum of pT ≤ 15 GeV/c. Therefore, we utilized
a coalescence model to describe the hadronization process of bottom quarks into B mesons
as follows:

dNM
dpM

=
∫ dp1

(2π)3
dp2

(2π)3
dN1
dp1

dN2
dp2

f W
M (qr)δ

(3)(pM − p1 − p2), (4)

The momentum distribution of the B meson dNM/dpM is proportional to the distri-
butions of the bottom quarks dN1/dp1 and also to the thermal light quarks dN2/dp2. The
heavy quark distribution is given by the Langevin equation, while thermal light quarks are
taken as a Fermi distribution. Their coalescence probability is determined by the Wigner
function f W

M (qr), which can be obtained via the Weyl transform of the B meson wave
function. In principle, the complete Wigner function f W(qr, xr) provides constraints on
the relative distance and relative momentum that occurs between two particles in the
formation of a bound state. The spatial constraint becomes crucial and can significantly
reduce the coalescence probability when the two particles are rare in the QGP, as observed
in the case of the charmonium coalescence process. However, in the case of a B meson
composed of one heavy and one light anti-quark, with a plentiful number of light quarks
in the QGP, we assume that the heavy quark can readily find a light quark in proximity,
thus satisfying the spatial constraint. By integrating over the spatial part of the complete
Wigner function, we simplify it to a normalized Gaussian function A0 exp(−q2

r σ2), where
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A0 represents the normalization factor. The width of the Gaussian function is connected

with the root–mean–square radius of the B meson σ2 = 4
3
(m1+m2)

2

m2
1+m2

2
〈r2〉B [47], where the

value is to be
√
〈r2〉B = 0.43 fm [45]. m1 is the bottom quark mass, while the thermal mass

of the light quark is approximated to be m2 = 0.3 GeV, which is used in the coalescence
process. qr = (Ecm

2 pcm
1 − Ecm

1 pcm
2 )/(Ecm

1 + Ecm
2 ) is the relative momentum between the

bottom quark and the light quark in the center of mass (COM) frame. pcm
1 and pcm

2 are the
momenta of the bottom quark and the light quark in the COM frame. The delta function
ensures the momentum conservation in the coalescence process pM = p1 + p2. As the
phase transition between QGP and hadronic gas crossover at LHC energies, we performed
the coalescence process at the critical temperature Tc = 150 MeV. The time and spatial
evolutions of bulk media have been well described with hydrodynamic equations. We
employed the MUSIC package to provide the information for the hot medium at 5.02 TeV
Pb–Pb collisions [27,48,49]. The local temperatures of the medium varied with coordinates
and time, and these variations were then incorporated into the Langevin equation. After
hadronization, the B mesons continue their diffusion in the hadronic gas with a different
value of the diffusion coefficient, and they then decay into a non-prompt J/ψ after a kinetic
freeze out at a temperature of Tfo = 120 MeV.

Recently, through lattice QCD calculations, new calculations of the spatial diffusion
coefficient of heavy quarks at different temperatures have been presented [20], and they
were found to be smaller than the previous quenched lattice QCD [50,51] and recent
phenomenological estimates [40,52–54]. This conclusion was also observed in other the-
oretical results [55–57]. This prompted us to re-examine the relationship between the
experimental measurements of heavy quarks and the diffusion coefficient. In high tem-
perature and momentum regimes, the diffusion coefficient can be calculated through
perturbative QCD [58–60]. However, this calculation is not sufficient for simultaneously
explaining the RAA and v2 of open heavy flavor particles that are measured in nuclear colli-
sions [61], thus suggesting that non-perturbative processes play an indispensable role in
the temperature and momentum dependence of the diffusion coefficient. In Bayesian
statistical analysis, a parameterized form of the diffusion coefficient is proposed, in-
cluding a linear temperature dependence term and a perturbative QCD term such as
Ds2πT ∝ A(p)(α + βT) + (1− A(p))8π/(q̂/T3) [40]. The first term represents the contri-
bution from non-perturbative processes, while the second term represents the contribution
from perturbative processes. q̂ is the heavy quark transport coefficient, which is calculated
by the elastic scatterings between heavy and light quarks [62]. The spatial diffusion coeffi-
cient from lattice QCD calculations was found in the p = 0 case. In this work, we introduce
the following concise formula to consider the temperature and momentum dependence of
the spatial diffusion coefficient:

Ds2πT = [α + β(
T
Tc
− 1)]× (

mQ

EQ
)γ. (5)

The temperature and momentum dependence were encoded in the terms T/Tc and mQ/EQ,

where mQ and EQ =
√

m2
Q + p2

Q are the mass and energy of heavy quarks, respectively.
The parameter α represents the value of Ds2πT at a critical temperature, where the momen-
tum is p = 0. The parameters β and γ control the degree of temperature and momentum
dependence. In hadronic gas, the coupling strength between B and D mesons with the
medium becomes much smaller. Their contribution on the RAA and v2 of open heavy flavor
particles are limited. In hadronic gas, the mean value of the spatial diffusion coefficient of
B mesons is approximated to be DM

s 2πT = 9 before the kinetic freeze out of B mesons in
0.8Tc < T < Tc [63].

2.2. Deep Neural Networks

In the dynamical evolution of bottom quarks, our theoretical model produces a wide
range of RAA and v2 values for the non-prompt J/ψ in 5.02 TeV Pb–Pb collisions by
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varying the shadowing factor (which is denoted as S) and the three parameters of (α, β, γ)
in Equation (5). This dataset will serve as the training data for the CNN. Experimental
measurements were conducted to determine the nuclear modification factor RAA(pT) for
the non-prompt J/ψ in three different centralities, as well as the elliptic flow coefficient of
v2(pT). In our approach, we treat the three centralities of RAA(pT) as separate channels,
while v2(pT) acts as an additional channel in the input layer of the CNN. The output layer
of the CNN incorporates the corresponding parameter values in the diffusion coefficient
and the shadowing factor, which are considered labels for the input data. Theoretical
calculations based on the LICM model establish a mapping relationship between the
parameter combination values (S, α, β, γ) and the experimental observables (RAA, v2).
Figure 1 provides a graphical representation of the network structure, which consists
of four hidden layers, including the average pooling layers and fully connected layers.
The ReLU activation function was chosen for these layers. The three output channels
related to the diffusion coefficient parameters were projected to have positive values, while
the channel associated with the shadowing effect was projected within the range of 0–1
when using the Sigmoid function.

Figure 1. Schematic figure that shows the structure of the convolutional neural network. The RAA(pT)

in the three centralities and the one v2(pT) are taken as four channels of the input layer, while the
parameters related to the spatial diffusion coefficient are the output.

To generate the training dataset, we randomly selected parameter values within the
regions specified in Table 1 using the Langevin model. Due to the significant uncertainty
surrounding the shadowing factor S in the model calculations, which can notably impact
the final observables of the B meson, we considered the shadowing factor as a parameter to
be optimized within the deep neural network. The values of the shadowing factor were
constrained within the range of 0.6 to 1.0. For the 5.02 TeV Pb–Pb collisions, the values of
S used to generate the training dataset were randomly selected from the range of 0.6 to
1.0. The spatial diffusion coefficient Ds2πT at the critical temperature of Tc was selected
within the range of 2.0 ≤ α ≤ 6.0, while the values of β and γ that characterized the
temperature and momentum dependence were chosen within the ranges of 0 ≤ β ≤ 8.0
and 0 ≤ γ ≤ 1.0, respectively. We generated 20 K events as the training and validation
datasets, where each event corresponded to one of the combinations of the parameters. The
performance of the neural network was influenced by both the size of the training dataset
and the structure of the deep neural network. This type of uncertainty has been examined
in previous studies [64], and it will be partially investigated in this work by varying the
size of the training datasets. However, such uncertainties were not as significant as those
arising from the error bars of the experimental data points of heavy flavor particles that
were used as the input for the CNN.
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Table 1. The samples of the parameters used in the training dataset.

Parameters Region

Shadow factor S ∈ [0.6, 1.0]

Ds2πT α ∈ [2.0, 6.0]
with

T-dependence β ∈ [0.0, 8.0]
pT-dependence γ ∈ [0.0, 1.0]

3. Results and Analyses

In the previous sections, we introduced the theoretical model to generate the training
dataset for the CNN by varying the values of the parameters in the model. We plotted
some events ((RAA(pT), v2(pT))), and these were randomly selected from one channel of
the training datasets, as shown in Figure 2. The lines could cover the experimental data,
which indicated that the training range of the model encompassed the distribution of the
experimental data. The model was able to be effectively applied to analyze the experimental
data. As the experimental data points about RAA were located in pT ≥ 2 GeV/c, and as v2
was located in pT ≥ 4 GeV/c, we truncated the training data by only retaining the data
with pT values above 4 GeV/c. This ensured that the shape of the training data aligned as
closely as possible with the experimental data, thus making it easier to incorporate them
into the input (please see Figure 2).

Figure 2. Some of the events that were randomly selected from one channel of the training dataset.
The lines represent the nuclear modification factors of the non-prompt J/ψ, which was calculated
with different parameter values in the centrality of 30–100% in the 5.02 TeV Pb–Pb collisions.

We partitioned 70% of the total datasets as the training data, while the remaining
30% of the datasets served as the validation data. By treating (RAA, v2) as the inputs
for the CNN and the parameter values as labels, we could calculate the loss of the CNN
for both the training and validation datasets. The learning curve shown in Figure 3
demonstrates that the loss decreased to below 5% after 250 training epochs. Notably,
the loss of the CNN for the training datasets closely aligned with the loss observed when
using the validation datasets. This indicated that the CNN model did not exhibit significant
overfitting or underfitting.
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Figure 3. The loss of the CNN model as a function of the training epochs. The loss of the model
calculated with the training datasets and the validation datasets are respectively plotted.

In using the well-trained CNN model, we fed the experimental data points into the
neural network. Considering the presence of error bars in the experimental data points (as
depicted in Figure 4), we sampled within the error bars associated with the experimental
data points. These samples were then utilized as inputs to the neural network, thus allow-
ing us to account for the impact of experimental uncertainties on the diffusion coefficient
parameters. To capture the influence of the experimental uncertainty, we randomly gen-
erated 10 K samples within the range of experimental error bars around the data points,
as illustrated in Figure 4.

Figure 4. To consider the error bars of the experimental data about non-prompt J/ψ in the 5.02 TeV
Pb–Pb collisions, we sampled the values of RAA and v2 within the error bars of each data point, and
we took them as inputs of the deep neural network. Some of the lines representing random events are
plotted in the figures. The four figures represent the four channels of the network. The experimental
data were cited from CMS Collaboration [34,35].

Consequently, we obtained 10 K different outputs, which are plotted in Figure 5.
Each data point represents an individual event, with the corresponding values of α and
β represented on the x- and y-axes, respectively. As previously mentioned, α signifies
the value of Ds2πT at critical temperature and zero momentum, while β represents its
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temperature dependence. The majority of events were concentrated within the region of
4 ≤ α ≤ 6.5 and 0 ≤ β ≤ 5.0. Furthermore, we also plotted the values of γ, which helped
with characterizing the transverse momentum dependence, as well as the shadowing factor
S that arises from the cold nuclear matter effect shown in Figure 6. From the distributions,
it was observed that the majority of the events fell within the range of 0.0 ≤ γ ≤ 0.2 and
0.75 ≤ S ≤ 0.9, as depicted in Figure 6. The distribution of the events in the figure reflected
the uncertainty in the parameter values that resulted from the experimental data errors, as
well as the neural network structure.

Figure 5. The distribution of the parameter values (α, β) from the CNN. The x-axis represents α,
while the y-axis represents β. Each point represents one event.

Figure 6. The distribution of the parameter values (S, γ) obtained from the CNN model is shown
in the plot. The x-axis corresponds to the values of S or γ, while the y-axis represents the number
of events.

Based on the distributions obtained from the CNN outputs, we can directly extract the
mean values of these parameters, which are presented in Table 2. It is worth noting that
the value of α remains larger than the results obtained from the lattice QCD calculations at
T = Tc [20], and these are consistent with the values given by previous model calculations.
Additionally, the temperature dependence (β) was found to be strong, while the momentum
dependence (γ) was relatively weak.
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Table 2. The mean values and the standard deviation of the parameters were extracted using the
experimental data points for the non-prompt J/ψ RAA(pT) and v2(pT) in the 5.02 TeV Pb–Pb Collisions.

Parameters Mean Values Standard Deviation

Shadow factor 〈S〉 = 0.82 0.050

Ds2πT 〈α〉 = 4.87 0.90
with

T-dependence 〈β〉 = 4.16 2.32
pT-dependence 〈γ〉 = 0.058 0.12

4. Summary

In this study, a convolutional neural network was employed to extract the temperature
and momentum dependence in the spatial diffusion coefficient of heavy quarks with the
experimental data obtained from the non-prompt J/ψ decays in B mesons. The Langevin
equation was utilized to describe the dynamical evolution of the heavy quarks in the
QGP and the B mesons in the hadronic gas. Additionally, the instantaneous coalescence
model was used to describe the hadronization process from the bottom quarks to the B
mesons. By taking different values for the shadowing factor and diffusion coefficient,
the nuclear modification factors and elliptic flows of the non-prompt J/ψ in multiple
centralities of 5.02 TeV Pb–Pb collisions were generated. The CNN model was trained
under supervision with model calculations. To extract the values of the diffusion coefficient,
we sampled (RAA, v2) from the experimental data points along with their error bars, which
were then used as inputs for the CNN. By doing so, the corresponding values of the
diffusion coefficient and shadowing factor were obtained concurrently. The dispersion in
the diffusion coefficient values can be partially attributed to the uncertainties present in the
experimental data. The mean values of the diffusion coefficient were also extracted. This
research contributes to the understanding of the heavy quark diffusion coefficient through
a data-driven analysis approach.
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