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Abstract: Quantum networks have experienced rapid advancements in both theoretical and ex-
perimental domains over the last decade, making it increasingly important to understand their
large-scale features from the viewpoint of statistical physics. This review paper discusses a funda-
mental question: how can entanglement be effectively and indirectly (e.g., through intermediate
nodes) distributed between distant nodes in an imperfect quantum network, where the connections
are only partially entangled and subject to quantum noise? We survey recent studies addressing this
issue by drawing exact or approximate mappings to percolation theory, a branch of statistical physics
centered on network connectivity. Notably, we show that the classical percolation frameworks do
not uniquely define the network’s indirect connectivity. This realization leads to the emergence of
an alternative theory called “concurrence percolation”, which uncovers a previously unrecognized
quantum advantage that emerges at large scales, suggesting that quantum networks are more resilient
than initially assumed within classical percolation contexts, offering refreshing insights into future
quantum network design.

Keywords: percolation; quantum network; entanglement distribution; critical phenomena; networks
of networks; hypergraph

1. Introduction

Quantum information [1] is a fast-developing field that has transcended its roots
originally in quantum mechanics and information theory to other areas like condensed
matter physics [2], statistical physics [3–5], and network science [6,7]. At the core of
quantum information lies the quantum bit, or qubit, the basic quantum information carrier.
Two qubits can be designed into a relationship, called entanglement, which is an essential
quantum resource [8] for quantum computing. Yet, entanglement is notoriously fragile,
especially when qubits are spatially distant. Fortunately, by path routing and adding
in-between sites for replaying, entanglement between remote qubits may eventually be
established in an indirect way. Such an action, called entanglement distribution [9], is a
fundamental benefit of quantum networks (QN) [10–30].

In general, a QN is a network representation of different parties (nodes) that share
entanglement (links) as connections. A significant part of our interest lies in distribut-
ing entanglement between two arbitrary nodes in the network, a process we refer to as
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“entanglement transmission”. Entanglement across different parties is essentially transmit-
ted through quantum communication protocols. Successful demonstrations of quantum
communication protocols have already been made on small-scale QN using diamond
nitrogen–vacancy centers [31–33] and ion traps [34,35]. However, the big question that
looms is how to scale this to much larger networks. A large-scale, practical QN would offer
significant advantages for many industrial and scientific applications. For example, finan-
cial institutions and governments would benefit from quantum cybersecurity providing
an unprecedented level of secure communication. Researchers could also use networked
quantum computers to dramatically increase the simulation speed of the physical and
chemical processes of many interacting particles. Yet, if the individual channels (links)
along the routed path are too noisy, the entanglement transmission may fail. The study
of such dependence of the “indirect” transmission ability on the noise level of individual
links requires tools from statistical physics and complex network theories.

One theory that has proven to be useful is percolation theory [36–39]. Percolation
theory offers a mathematical framework for understanding how networks behave when
subjected to random processes (can be treated as a form of noise), such as how water
percolates through soil or how diseases spread through populations. In the context of
QN, percolation could provide valuable insights into the robustness and efficiency of
entanglement distribution. By applying percolation theory, we can model and analyze the
network structure directly and identify the most effective ways to maintain and distribute
quantum entanglement across it. This lays the groundwork for examining QNs through the
lens of statistical physics and opens up new avenues for understanding the upper limits of
entanglement distribution in these networks.

In this work, we will explore and summarize the developments of the QN frame-
work and how a mapping to percolation offers unique tools for dissecting the problem
of entanglement transmission. Specifically, we will show that the mapping to percolation
theories—and a definition of how a combination of pairwise edges combines into indirect
connectivity—are, indeed, not unique. A new, alternative percolation-like theory termed
concurrence percolation [40] emerges, and it underlies an unexpected “quantum advantage”,
revealing that QNs are more robust than we initially thought within the classical percolation
framework. Moreover, the finding is scalable with network size and adaptable to different
network topologies, suggesting a macroscopic improvement over classical considerations
from a statistical physics perspective.

This paper focuses on the comparison between classical percolation and concurrence
percolation when mapped based on QN. It is structured as follows: In Section 2, we
give a definition of the QN theoretical framework as well as its possible generalizations
to other QN-based structures (e.g., hypergraphs). In Section 3, we briefly review the
concept and definition of percolation theory and, in particular, how it relates to network
connectivity at large scales. In Sections 4 and 5, we focus on the discoveries that the new
concurrence percolation theory surpasses the traditional percolation theory (which we refer
to as “classical percolation” for comparison). In Section 6, we delve into the algorithms
developed for calculating concurrence percolation. Finally, in Section 7, we will discuss
the open questions and practical implications of the findings, both theoretically and for
real-world communications.

2. Quantum Networks (QN)

As in traditional network theories, a QN resembles a topological graph or a graph-like
structure, comprising nodes and links. This paper primarily focuses on a pure-state version
of QN (Figure 1) [10,41]. The QN is defined based on the following three principles:

1. Each node (purple) comprises a collection of qubits (gray dots) that are entangled with
qubits belonging to other nodes.

2. Each link (gray line) represents a bipartite entangled pure state |φ〉 connecting the two
qubits at its endpoints.

3. A weight θ is assigned to each link to characterize the degree of the link’s entanglement.
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Quantum network

|ϕ〉=cosθ|00〉+sinθ|11〉

θ∈[0,π /4]

Qudit-based quantum network

|λ〉 =

j=1

d
λ j | jj〉

λ=(λ1,λ2,…,λd )

Tensor network

|x1〉

1
|x2〉

2

|x3〉

3

|x4〉

4

|Ψ(x1,x2,x3,x4 )〉

= 1234 |QN〉

Multipartite quantum network

|ϕGHZ〉=cosδ|000〉+sinδ|111〉

δ∈[0,π /4]

Figure 1. A pure-state quantum network (QN) consists of nodes (purple) and links (gray line). Each
node comprises a collection of qubits (gray dots) that are entangled with qubits belonging to other
nodes, and each link represents a bipartite entangled pure state |φ〉 connecting the two qubits at its
endpoints. This QN model can be extended to d-dimensional qudits (bottom left), which allow higher
bandwidth for transmitting information, or to tensor networks (bottom middle) by employing linear
transformations Ti at each node i. Moreover, the QN can be adapted to higher-order graphs (bottom
right), where each link manifests as a hyperedge, denoting a multipartite entangled pure state.

Using the Dirac notation, a link, which corresponds to a bipartite entangled pure state
connecting two nodes (e.g., Alice and Bob), can be written as |φ〉 = cos θ|00〉+ sin θ|11〉.
Here, w.l.o.g., the weight parameter θ is constrained within the range 0 ≤ θ ≤ π/4,
ensuring that cos θ ≥ sin θ is satisfied. In this notation, the first “0” in |00〉 and the
first “1” in |11〉 represents the two possible states of Alice’s qubit, |0〉Alice and |1〉Alice,
respectively. Similarly, the second “0” and “1” represent the two possible states of Bob’s
qubit, |0〉Bob and |1〉Bob. The entanglement between Alice’s and Bob’s qubits is evident by
the presence of only two terms |00〉 and |11〉 in |φ〉, while |01〉 and |10〉 are absent. This
implies that upon measuring the state |φ〉 in the |0〉, |1〉 basis from either Alice’s or Bob’s
side, the state will randomly collapse to either |00〉 or |11〉. Consequently, if Alice’s (or
Bob’s) measurement yields “0”, it guarantees that the other party’s measurement result will
also be “0”. This highlights a correlation feature that can be harnessed for communication
in the quantum realm. Similar to how correlation in classical communication is measured
using mutual information, we can quantify this quantum correlation using quantum mutual
information [1], which is given by −2 cos2 θ ln

(
cos2 θ

)
− 2 sin2 θ ln

(
sin2 θ

)
. The quantum

mutual information reaches its maximum value when θ = π/4, which corresponds to a
maximally entangled state, |φ⊥〉 =

√
1/2|00〉+

√
1/2|11〉, commonly referred to as a Bell

state or a singlet [10].
The entire QN, comprising many links, can be regarded as a huge pure state |QN〉—

the tensor product of all the individual bipartite pure states associated with each link.
Consequently, the QN solely focuses on “quantum noise”, which comes from the fact that
when θ < π/4, the link exhibits only partial entanglement. This partial entanglement,
when employed in quantum communication tasks such as quantum teleportation, leads to
errors in the teleported qubits, affecting the overall communication capacity of the QN. Yet,
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as a pure state, the QN does not involve any classical noise (i.e., mixed states). This makes
|QN〉 an excellent medium for examining quantum phenomena without the interference
of classical noise. Thus, this “minimalist” construction of the QN can serve as an ideal
framework for investigating quantum theories and concepts on large scales.

At present, the choice to define nodes as collections of qubits rather than individual
qubits may appear arbitrary. What is the physical meaning of a node as a collection of
qubits? And what about the qubits that belong to the same node—are they also entangled?

To answer these questions, it is crucial to comprehend the concept of locality. While the
theoretical framework of quantum mechanics is inherently nonlocal, practical implemen-
tations of quantum information technologies often necessitate considering a “distant lab”
paradigm [42]. In such scenarios, when a quantum system is distributed among multiple
spatially distant parties or laboratories, it becomes unrealistic to assume the feasibility
of executing global quantum operations. Instead, the parties are typically constrained to
apply quantum operations exclusively to their respective subsystems (in their own “labs”),
rather than collectively to the global system. This subset of quantum operations is known
as local operations (LO).

For example, given the entangled state |φ〉 = cos θ|00〉+ sin θ|11〉 between Alice and
Bob, Alice may apply local unitary transformation on her qubit (e.g., a rotation {|0〉, |1〉} →
{ (|0〉+|1〉)√

2
, (|0〉−|1〉)√

2
), and Bob may apply the same transformation as well. This yields a

new state |φ〉 → |φ′〉 = cos θ
(|0〉+|1〉)(|0〉+|1〉)

2 + sin θ
(|0〉−|1〉)(|0〉−|1〉)

2 . Furthermore, LO also
allows Alice or Bob to locally measure their qubits as well, resulting in the random collapse
of |φ〉 to one of its eigenstates. However, Alice and Bob cannot transform their state globally
and obtain a singlet, |φ〉 → |φ⊥〉 =

√
1/2|00〉+

√
1/2|11〉. This is not counted as LO.

On top of LO, Alice and Bob are also free to communicate classical information (CC),
sharing their results of quantum measurements. Together, this set of operations is called the
local operations and classical communication (LOCC). The LOCC defines a set of strategies
to share and manipulate quantum information under the locality constraint. One of the
most powerful theorems in quantum information states that the average entanglement
between two parties can never be increased if only LOCC is allowed for the two parties.
This establishes the role of entanglement as a quantum resource, given that LOCC is the
“free operations” of the system [8].

Therefore, qubits belonging to the same node are not constrained by LOCC. They
can be freely entangled or disentangled as needed, but the entanglement is not viewed
as a resource for communication. Only the entanglement of qubits belonging to different
nodes matters. In other words, quantum networks are an effective representation of
the fundamental constraints of locality, manifested by assigning qubits to different local
compartments and entanglement to inter-compartment connections.

2.1. Qudit-Based Quantum Networks

A natural extension of QN is to use more general d-dimensional “qudits” (qutrits,
ququarts, etc.) instead of qubits (Figure 1). Each link, as a bipartite pure state of qudits, can
be written as

|λ〉 =
d

∑
j=1

√
λj|jj〉. (1)

Here, λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 and ∑d
j=1 λj = 1. In this generalization, the weight

of each link is no longer a single number but a list of non-negative numbers known as
Schmidt numbers, denoted as λ = (λ1, λ2, · · · , λd). When d = 2, the bipartite pure state
reduces to qubits, where λ1 = cos2 θ and λ2 = sin2 θ.

The consideration of qudit-based QN offers both theoretical and practical advantages.
Theoretically, a d-dimensional qudit inherently carries log2 d times more information than a
qubit. Therefore, as the value of d increases, a single carrier can transmit more information,
increasing the bandwidth. This enhanced capability is also evident in the robustness of
entanglement for entangled states of qudits. Indeed, even when some coefficients are erased
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(λj → 0) from λ in the presence of noise, the pure state |λ〉 can still remain entangled,
as long as the two largest Schmidt numbers λ1 and λ2 remain positive.

In experiments, qubit systems are commonly realized using two-level atoms or su-
perconducting states. However, isolating these two levels from other nearby levels can be
challenging. By including nearby levels and increasing the potential dimension d, the ex-
perimental design may become more feasible. In fact, several experiments have employed
qudits to achieve better performance, including applications in quantum scrambling [43]
and superdense coding [44].

2.2. Quantum Networks Are the Basis of Tensor Networks

There is also an interesting and deep connection between QN and tensor networks
(Figure 1), the latter being a familiar and powerful tool in condensed matter physics, mostly
used for the purpose of facilitating computations and simulations in quantum physics
and materials science. To be specific, tensor networks are designed to efficiently represent
many-body quantum states [45]. These quantum states, which are essentially large, high-
dimensional tensors in mathematical terms, can be factorized into smaller tensors using
tensor networks. In particular, tensor networks are useful for representing the ground
state of quantum systems, which typically exhibit strong ordering compared to excited
states. This strong ordering often means that entanglement does not grow very fast with
the length scale, which, in turn, allows for easier and more efficient factorization of the
corresponding ground state.

To delve deeper into the concept, note that a general N-body quantum state reads

|Ψ〉 =
D

∑
x1,x2,··· ,xN=1

Tx1x2···xN |x1〉|x1〉 · · · |xN〉, (2)

which lives in a DN-dimensional Hilbert space that is the tensor product of N “single-body”
Hilbert spaces (i = 1, 2, · · · , N). Each space is spanned by a basis of D vectors, |xi〉, where
xi = 1, 2, · · · , D. The complex tensor T that stores the coefficients is exponentially large
(∼DN), effectively preventing direct computations of the quantum state |Ψ〉’s characteristics.
However, there may be a significant level of redundancy in the coefficients present stored
in the tensor. Consider an example where every entry in T can be fully factorized such that
T = a⊗ b⊗ c⊗ · · · where a, b, c, · · · are D-dimensional vectors. In this case, it becomes
unnecessary to store the entire tensor or perform calculations on it. Rather, it suffices to
simply store the vectors a, b, c, · · · of which the total size is DN.

This, indeed, is how a tensor network works—by leveraging different ways of factor-
ization that can be depicted through different graphical network structures [46]. Among
various tensor networks, the matrix product state (MPS) is among the most researched [47].
In computer science, it is often called the tensor-train network [48]. The MPS is commonly
utilized to represent one-dimensional many-body quantum states. When extended to higher
dimensions, this becomes what is known as the projected entangled pair state (PEPS) [49].
More involved tensor network structures, such as the multiscale entanglement renormalization
ansatz (MERA) [50], are also routinely used to study critical quantum systems.

For example, a MPS representation of Equation (2) can be written as

|Ψ〉 =
D

∑
x1,x2,··· ,xN

tr
{

Ax1
1 Ax2

2 · · · A
xN
N
}
|x1〉|x1〉 · · · |xN〉, (3)

where for each single-body i, a set of D different matrices, A1
i , A2

i , · · · , AD
i , are introduced.

Each matrix is of size d× d, where d is called the bond dimension. Thus, the total number
of parameters is NDd2, which is linear in N. For a sufficiently large d, the MPS has enough
degrees of freedom to exactly represent any tensor T. However, it is frequently observed
that a small d can approximately, if not perfectly, reproduce T. This occurs when the
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information stored in T scales linearly with N, a condition often found in the ground states
of one-dimensional noncritical quantum systems.

Intriguingly, the MPS offers a new physical perspective—the valence-bond picture [49].
To be specific, we map each single-body Hilbert space (spanned by |xi〉) to a physical
site and assume that there are two d-dimensional qudits located at each site. For every
two neighboring sites (1 ↔ 2, 2 ↔ 3, · · · , N ↔ 1), two qudits from each site are fully
entangled, forming a “valence bond” that can be written as an unnormalized maximally
entangled state,

|ψ〉 =
d

∑
j=1
|j〉|j〉� ψ =

1 0 · · ·
0 1 · · ·
...

...
. . .

. (4)

Here, the state is also represented (matricized) into the matrix form ψ. Combining this
with Equation (3), we obtain

|Ψ〉 =
D

∑
x1,x2,··· ,xN

tr
{

Ax1
1 ψAx2

2 ψ · · · AxN
N ψ

}
|x1〉|x1〉 · · · |xN〉

= (T1 ⊗ T2 ⊗ · · · ⊗ TN)|ψ〉⊗N , (5)

where Ti = ∑D
xi=1 ∑d

j,j′=1
(

Axi
i
)

jj′ |xi〉〈j, j′| represents a linear transformation acting on the
two qudits (labeled by j and j′) on-site i. The valence bond picture is now evident: in this
picture, the many-body state is not the primary entity. Instead, it is built upon something
more fundamental—a network of qudits and “valence bonds”. The linear transformations
Ti are then employed on top of it to form the tensor network.

Note that this fundamental network |ψ〉⊗N is a one-dimensional (periodic) quantum
network consisting of maximally entangled states, making it remarkably suitable to be
generalized to partially entangled states (Equation (1)). This can be achieved by replacing
ψ in Equation (4) by

ψ =

λ1 0 · · ·
0 λ2 · · ·
...

...
. . .

. (6)

The physical meaning of inserting such a partially entangled state is that since LO
cannot increase the entanglement, the entanglement between neighboring sites will be
upper bounded by the amount of entanglement in ψ.

The valence bond picture is not limited to MPS but can be generalized to arbitrary
tensor networks. Indeed, suppose Ai at site i does not denote a set of matrices but a
set of tensors A1

i , A2
i , · · · , AD

i , each having entries
(

Axi
i
)

jj′ j′′ ···j(k) labeled by k subscripts

j, j′, j′′, · · · , j(k). Each subscript denotes a qudit on-site i. The site has k qudits in total,
indicating that the corresponding node i has degree k (i.e., k incident links) in the QN. The
linear transformation then becomes

Ti =
D

∑
xi=1

d

∑
j,j′ ,··· ,j(k)=1

(
Axi

i
)

jj′ ···j(k) |xi〉
〈

j, j′, · · · , j(k)
∣∣∣, (7)

and the many-body state is expressed as

|Ψ〉 = (T1 ⊗ T2 ⊗ · · · ⊗ TN)|QN〉, (8)

where |QN〉 represents the entire QN considered as a huge pure state (Figure 1).

2.3. Multipartite Quantum Networks

Our attention is narrowed to bipartite entanglement. However, a complete QN frame-
work should take multipartite entangled states into account. This is since multipartite



Entropy 2023, 25, 1564 7 of 37

entangled states have a specialized and unique role in certain quantum communication
applications, such as secret sharing [51]. Although multipartite entanglement has been
widely explored, we still lack a unified, clear method to precisely detect, measure, and de-
fine it. For example, even with an entangled state of just three qubits, there exist two
non-equivalent forms of genuine tripartite entanglement. The first is known as the GHZ
class, characterized by five real parameters, α, β, γ, δ, and θ, and can be expressed as [52]

|φGHZ〉 ∝ cos δ|000〉
+ sin δeiθ(cos α|0〉+ sin α|1〉)(cos β|0〉+ sin β|1〉)(cos γ|0〉+ sin γ|1〉). (9)

The second form, called a W class, has a general representation as [52]

|φW〉 =
√

a|001〉+
√

b|010〉+
√

c|100〉+
√

d|000〉, (10)

with the real parameters a, b, c > 0 and d = 1− a − b − c ≥ 0. Both the GHZ and W
classes represent a level of correlation that goes beyond just pairwise interactions, meaning
that a measurement on any single qubit among the three will instantaneously affect the
outcomes of the other two. Despite this, states within one class cannot be converted to
those in the other class using LOCC. As a result, we cannot directly compare the degree
of entanglement of states belonging to different classes. This represents a fundamentally
challenging quantum “three-body problem” that complicates the practical applications of
multipartite entanglement. For example, a W state may outperform in certain applications,
while in others, a GHZ state may be more effective. Note that states belonging to the W
class are characterized by only three real d.o.f., whereas the GHZ class requires five. Hence,
a generic tripartite state typically belongs to the GHZ class.

Traditionally, each link in a network is also “bipartite”, connecting exactly two nodes.
As a result, to study a QN consisting of multipartite entangled states, it is essential to go
beyond “bipartite” network theory and consider multipartite entangled states as higher-
order interactions [53,54]. These can be mathematically represented as “hyperedges” of
hypergraphs [55]. Here, Figure 1 shows an example of a hypergraph-based QN consisting
of hyperedges in the form of

|φGHZ〉 = cos δ|000 · · · 〉+ sin δ|111 · · · 〉,

which represents a special case of the GHZ class (Equation (9)). Of course, this is only one
specific form of multipartite entangled states, characterized by the sole parameter δ. Yet it
illustrates the necessity of representing these as hypergraphs and studying them through
higher-order network theories, such as higher-order percolation theories (see Section 3.3
for a brief review).

3. Percolation of Complex Network

Percolation theory, serving as a foundational model for investigating disordered
systems [36,37,56,57], is mainly concerned with understanding the geometric connectivity
of random media. Constructing a percolation model is straightforward: take, for example,
a square lattice (or a lattice of any shape) in which each link is randomly either present with
a probability p or absent with a probability 1− p. In a real-world application, one could
consider the present links as electrical conductors and the absent ones as insulators [39].
The electrical current would then flow solely through the conductor links. When p is small,
almost no paths exist that connect the lattice’s two distant boundaries (e.g., the left and
right boundaries in the square lattice). However, as p grows, various conduction pathways
begin to emerge. A phase transition [58] is eventually triggered when p crosses a critical
threshold, labeled as pth, effectively changing the composite material from an insulating
to a conducting state. At this point, the probability of a path connecting the two distant
boundaries becomes greater than zero. (This specific probability of connecting distant
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boundaries is termed the “sponge-crossing probability”, about which we will delve into
more details in Section 5.3).

This phenomenon of a phase transition between two phases of different connectivity
is prevalent in real-life scenarios. An illustrative example from biology is the spread
of epidemics [59–66]. In its most basic manifestation, an epidemic commences with an
infected individual who, with a probability denoted as p, can transmit the infection to their
nearest neighbors over time until it propagates extensively. A comparable methodology
can be applied to model forest fires, where the probability of a burning tree igniting its
nearest neighbor tree in the subsequent time step replaces the infection probability [67,68].
Another notable application of this concept can be found in polymerization processes
within chemistry, where the activation of bonds between small branched molecules leads
to the formation of larger molecules [69,70]. This transformation is known as a gelation
transition. An illustrative example of this gelation process can be observed when boiling
eggs. Percolation theory has a wide range of other applications as well, spanning fields
such as quantum systems [71–77], material science [78–80], geophysics [81–85], social
dynamics [86–89], and infrastructures [90–94].

3.1. Percolation of Single-Layer Networks

Percolation theory is closely associated with a wide range of concepts of critical phe-
nomena, including scaling laws, fractals, self-organization criticality, and renormalization,
holding significance across diverse statistical physics disciplines [37]. The traditional char-
acterization of phase transition in percolation hinges on the statistical properties of clusters
near pth. For p < pth, only finite clusters exist. As p > pth, a unique, infinite cluster
emerges. A crucial parameter is P∞, signifying the relative size of the infinite cluster, which
exhibits a power-law near pth [39]:

P∞ ∼ |p− pth|β. (11)

The parameter P∞ serves as a measure of order within the percolation system and can
be identified as the order parameter.

If we exclude the infinite cluster (if it exists), then the rest of the finite clusters follow
a distribution:

ns ∼ s−τe−s/s∗ . (12)

Here, s is the cluster size, and ns is the number of clusters of size s. At criticality,
the characteristic size s∗ diverges:

s∗ ∼ |p− pth|−1/σ. (13)

Consequently, the tail of the distribution ns becomes a power law, ns ∼ s−τ .
The mean cluster size, i.e., how large a finite cluster is on average, also diverges:

〈s〉 ∼∑
s

s2ns ∼ |p− pth|−γ, (14)

with the same exponent γ above and below pth.
Finally, the correlation length ξ, defined as the average distance between two sites on

the same finite cluster, also diverges:

ξ ∼ |p− pth|−ν, (15)

again, with the same exponent ν above and below pth.
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These exponents, namely β, τ, σ, γ, and ν, encapsulate the critical behavior of key
quantities associated with the percolation transition and are collectively referred to as the
critical exponents. Notably, they satisfy the scaling relations:

β =
τ − 2

σ
and γ =

3− τ

σ
. (16)

It is worth emphasizing that these exponents exhibit universality, meaning they remain
invariant irrespective of the specific structural attributes of the lattice (e.g., square or trian-
gular) or the type of percolation (site or bond). Instead, their values are solely determined
by the dimensionality of the lattice. At the critical point, ξ and s∗ also follow a relation,

s∗ ∼ ξd f . (17)

The exponent d f is often called the fractal dimension [39], characterizing the structure
of the infinite cluster at the critical point. Assuming the dimension of the system is d, there
is another relation between critical exponents, called the hyperscaling relation,

d f = d− β

ν
. (18)

Thus, the fractal dimension of the infinite cluster at pth is not a new independent
exponent but depends on β, ν and d.

Finally, for complex network structures, similar critical exponents following
Equations (11)–(15) can also be identified. For example, in scale-free networks [6,15,95–97],
which are characterized by a power-law distribution P(k) ∼ k−λ of its degree k, the values
of critical exponents depend on the power-law exponent λ, as outlined in Table 1. As an es-
sential process inherently associated with the notion of connectivity in networked systems,
percolation has been generalized to models that go beyond undirected networks, with stud-
ies dedicated to directed networks [98], temporal networks [99], and, as we discuss in more
detail in the next sections, networks of networks and hypergraphs.

Table 1. The critical exponents for the classical percolation transition in scale-free networks [100].

λ β γ ν σ τ d f

(2, 3) 1/(3 − λ) −1 (λ− 1)/(3− λ) (3− λ)/(λ− 2) (2λ− 3)/(λ− 2)
(3, 4) 1/(λ− 3) 1 (λ− 1)/(λ− 3) (λ− 3)/(λ− 2) (2λ− 3)/(λ− 2) 2(λ− 2)/(λ− 3)
(4, ∞) 1 1 3 1/2 5/2 4

3.2. Percolation of Networks of Networks

In many real-world systems, an individual network is one component within a much
larger complex network of interdependent networks [101–104]. In interdependent net-
works, the failure of nodes in one network leads to the failure of dependent nodes in other
networks, which may cause further damage to the first network, leading to cascading
failures and possibly catastrophic consequences. In 2010, Buldyrev et al. studied the per-
colation of two fully interdependent networks subject to cascading failures based on a
generating function formalism. They found a surprising first-order discontinuous phase
transition, dramatically different from the second-order continuous phase transition in
single-layer networks [105] as shown in Figure 2. Later, Parshani et al. studied two partially
interdependent networks and found that the percolation transition changes from first to
second order as the coupling strength decreases [106]. Considering a malicious attack,
Huang et al. developed a mathematical framework for understanding the percolation
of two interdependent networks under targeted attack, later extended to targeted attack
on partially interdependent networks [107]. Each node in one network may depend on
multiple nodes in another network. Therefore, Shao et al. proposed a theoretical framework
for understanding the percolation of interdependent networks with various support and
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dependence relationships [108]. The study of interdependence between networks also led
researchers to realize that other types of interactions are important. One example closely
related to interdependence is antagonistic interactions [109]. Here, for a node to be active,
the antagonistic node in another network has to be active, as can happen if each pair of
nodes competes for some limited resource. Considering that more than two networks
may depend on one another, Gao et al. developed the analytical framework to study the
percolation of a network formed by n interdependent networks [110], which was later
extended to the study of targeted attacks on high-degree nodes [111,112]. Baxter et al. stud-
ied the percolation of multiplex networks, which can be considered the percolation of
tree-like network of networks in Ref. [113]. Liu et al. developed a theoretical framework
based on generating functions and percolation theory to understand the percolation of
interdependent directed networks [114]. In the past decade, we have witnessed fruitful
results and discoveries related to the percolation of networks of networks [115–127], as well
as multilayer networks and interconnected networks.

pp p

P
∞

First order 

Second order 

th th

Figure 2. Schematic demonstration of first- and second-order percolation transitions. In the second-
order case, the giant component is continuously approaching zero at the percolation threshold p = pth.
In the first-order case, the giant component approaches zero discontinuously.

In general, the percolation of networks of networks extends that of single-layer net-
works. For example, when the n interdependent Erdős–Rényi (ER) networks form a tree-like
topology and have the same average degree k̄, k̄i = k̄ (i = 1, 2, ..., n), the giant connected
component in each layer, P∞, as a function of k̄, p, and n follows [101] :

P∞ = p[1− exp(−k̄P∞)]n. (19)

Note that for Equation (19), the particular case n = 1 is the known ER second-order
percolation law for a single-layer network [128–130]. When n ≥ 2, the system shows
a first-order phase transition. Using the generating function, we obtain that pth and
P∞|p→p+th

satisfy

pth = − w
k̄[1 + 1/(nw)]n−1 , (20)

and
P∞|p→p+th

= −(w + 1/n)/k̄. (21)

where w is given by w = W−(−1/n exp(−1/n)), and W−(x) is the smallest of the two real
roots of the Lambert equation exp(W−)W− = x. For n = 1, we obtain the known ER results
pth = 1/k̄, and P∞|p→p+th

= 0 at p = pth. Substituting n = 2 in Equations (20) and (21), we
obtain the exact results derived by Buldyrev et al. [105].
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3.3. Percolation of Hypergraphs

Hypergraphs generalize graphs by allowing that interactions, the hyperedges, connect
an arbitrary number of vertices [131]. Hypergraphs, and, up to a certain extent, simplicial
complexes, offer more flexibility to model interacting systems, and they have become pop-
ular models of many real-world networks over recent years [132,133]. For example, more
than two molecules can participate in some reactions [134,135], and group interactions also
frequently occur for collaborations of scientific papers [136,137]. It has been shown that
higher-order interactions may significantly change the physical properties of dynamical
processes from those on ordinary networks with only pairwise connections [53,132,138,139].
However, there are only a few works exploring the robustness or the percolation of hy-
pergraphs [140–145]. Specifically, Coutinho et al. introduced two generalizations of core
percolation to hypergraphs, and offered analytical solutions to certain types of random
hypergraphs accordingly [140]. Sun and Bianconi later proposed a general framework for
accessing hypergraph robustness, and further characterized the critical properties of simple
and higher-order percolation processes [141]. Sun et al. also considered a paradigmatic type
of higher-order interactions, triadic interactions, where a node regulates the interaction
between two other nodes, and provided a general theory, accurately predicting the full
phase diagram on random graphs [142]. More recently, Bianconi and Dorogovtsev further
developed a theory for hyperedge and node percolation on hypergraphs, and showed
that, in contrast to ordinary networks, the node and hyperedge percolation problems for
hypergraphs strongly differ from each other [146].

4. Classical Percolation in Quantum Networks

Why is percolation theory useful in the study of QN? The roots of this interest can be
traced back to a 2007 paper [10]. In the seminal work, the authors first proposed a mapping
between percolation theory and a particular entanglement transmission scheme, which they
discovered and accordingly termed the classical entanglement percolation (CEP) scheme.
Within this context, an entanglement transmission scheme refers to a (possibly infinite)
series of quantum communication protocols that may be applied collectively to a QN for
distributing entanglement between two nodes. This pioneering discovery has opened up
a new approach to studying QN from a statistical physics perspective, with a focus on
understanding the large-scale, collective characteristics of the entanglement transmission
task and how they are influenced by the topology of the QN.

4.1. Classical Entanglement Percolation (CEP)

As previously noted, the LOCC cannot increase the average entanglement. However,
it does not mean that one cannot use LOCC as a form of “gambling” to enhance the entan-
glement with a certain probability p, even though it might reduce the entanglement with
probability 1− p. This principle forms the foundation of the CEP scheme. To be specific,
the CEP scheme involves two steps [10]. First, we “gamble” to enhance the entanglement
of each link, aiming to obtain a singlet (maximally entangled state) with a probability of p.
The optimal probability for this is referred to as the singlet conversion probability, given by
p = 2 sin2 θ. Second, if a path of links connecting the source (s) and target (t) has all been
converted to singlets, then a specific protocol known as entanglement swapping can be
applied. This protocol converts every two singlet links sharing a common node (Relay, R)
into a single singlet linking the two end nodes. For example, if there is a singlet between
Alice and the Relay, and another between the Relay and Bob, the entanglement swapping
protocol can merge the two into one singlet between Alice and Bob. By applying this
protocol recursively along the singlet path connecting s and t, we arrive at a final singlet
between s and t, fulfilling the transmission task.
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Equipped with these concepts, the mapping between CEP and (classical) percolation
theory is straightforward. The probability p = 2 sin2 θ represents the probability for links
to be present or absent. The CEP scheme succeeds if s and t are connected after the random
percolation process is applied. Furthermore, this connection implies a nontrivial critical
threshold for the CEP scheme on infinitely large QN. Specifically, when 2 sin2 θ falls below
the percolation threshold pth, s and t are almost certainly disconnected if they are infinitely
apart. Hence, pth, which solely depends on the network topology, serves as a metric of the
overall capacity of the QN in the context of CEP.

The CEP scheme represents a great simplification of the QN entanglement transmission
task to a pure percolation problem. Nevertheless, the CEP is not necessarily the optimal
scheme. Indeed, even when 2 sin2 θ ≤ pth, there might still be other schemes that can fulfill
the transmission task, as we will explore in the following sections.

4.2. Quantum Entanglement Percolation (QEP)

It is expensive to obtain a singlet from a partially entangled state, given its “gambling”
nature. Even worse, the swapping protocol spends all the singlets along a path and
converts them into just one singlet. This process leads to a waste of singlets and causes
the inefficiency of the CEP scheme. Naturally, this leads to the following question: is it
necessary to convert every link into a singlet? As we will see, the answer is negative, paving
the way for the QEP scheme [10].

The QEP scheme is based on the discovery that given two partially entangled states
between three parties, Alice–Relay–Bob, there exists a LOCC protocol that can yield a higher
probability of obtaining a singlet between Alice and Bob. This probability is higher than
obtaining two singlets (Alice–Relay, Relay–Bob) individually and followed by a swapping
protocol. Indeed, the optimal probability is found to be min{2 sin2 θAR, 2 sin2 θRB} [147],
outperforming the probability

(
2 sin2 θAR

)(
2 sin2 θRB

)
achieved by CEP.

What about three partially entangled states between four parties (Alice–Relay1–Relay2–
Bob)? Unfortunately, the optimal conversion probability does not intuitively simplify to
min{2 sin2 θAR1 , 2 sin2 θR1R2 , 2 sin2 θR2B} but takes on a much more complicated form. This
forbids us to generalize the optimal result to a larger scale. For readers who wish to delve
deeper, further details can be found in Ref. [148].

Even though we cannot generalize the optimal result, we can still extend the improve-
ment by bypassing one relay every other step. This gives rise to the QEP scheme, which
avoids the need to create singlets for every link, bypassing (half of) the Relays. But this
approach is not without its trade-offs, especially on a large scale. Since the Relays are by-
passed, the QN misses out on the potential connectivity to other paths through the Relays.
Thus, it still remains a question of whether QEP can achieve a lower critical threshold
than CEP, fulfilling the entanglement transmission task at infinite scales. The authors of
the 2007 paper [10] demonstrated that this is indeed achievable for specific topologies,
such as a “double”-honeycomb topology, where there are two links between every two
adjacent nodes on a hexagonal network. The QEP scheme is equivalent to adding a prepro-
cessing step, modifying the network into a triangular structure and thereby reducing the
percolation threshold.

Note that despite being referred to as QEP, the mapping of the scheme is still aligned
with classical percolation theory from a statistical physics point of view. The quantum
aspect of this process is confined primarily to the preprocessing step, which is executed
only at the local scale. Additionally, the QEP does not yield the optimal result either [148],
which leaves open the question of whether a more effective entanglement transmission
scheme might exist. It would be intriguing if this new scheme were guided by a fundamen-
tally different statistical physical theory distinct from classical percolation. We will show
that such a theory does exist. Entanglement transmission on quantum networks can be
understood from two different mappings (see Figure 3).
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Figure 3. Entanglement transmission on quantum networks can be understood from two different
mappings. In classical percolation (bottom left), each link is present or absent with probability p or
1− p, respectively. Only the paths in which all links are fully present contribute to the connectivity.
This forms the basis of the classical/quantum entanglement percolation (CEP/QEP) schemes [10],
with the goal of securing a singlet between source s and target t through a “gambling” approach. In
concurrence percolation (bottom right), every path contributes to the connectivity. This mapping
forms the basis of the deterministic entanglement transmission (DET) scheme [149], where the aim is
not to obtain a singlet probabilistically but to establish a partially entangled state deterministically.

5. Concurrence Percolation in Quantum Networks
5.1. No Need to Establish Singlets

The mapping of CEP/QEP to classical percolation is essentially established on the
necessity that two nodes must be connected by at least one path of singlets. However, we have
seen that in the QEP scheme, it is not mandatory for all links along the path to be converted
to singlets. By bypassing some of the links, a more efficient scheme might be realized.

This observation leads us to a natural question: why not stop establishing singlets
altogether? In other words, we would bypass not just some but all links, resulting in
a final state between the source s and target t that remains only partially, rather than
maximally, entangled. This scenario is, of course, approachable, considering that one can
always “downgrade” a singlet to a partially entangled state with no cost [150]. What we
truly seek, however, is a trade-off, where we can achieve a much higher probability of
obtaining such a partially entangled state instead of a singlet. By carefully weighing the
compromise (having only partial entanglement) against the benefit (a significantly higher
conversion probability), we might discover a more advantageous scheme for entanglement
transmission overall. This revised approach challenges the conventional thinking in terms
of classical percolation and could lead to new opportunities in developing new schemes
on QN.

5.2. Deterministic Entanglement Transmission (DET)

Based on the above ideas, a new scheme named the deterministic entanglement
transmission (DET) scheme is introduced [149]. The DET approaches the entanglement
transmission task from a completely distinct perspective: the scheme demands that the
conversion probability throughout the process always equals one. In other words, rather
than “gambling” to increase the links’ entanglement, we operate directly on partially
entangled states in a deterministic fashion. The aim of DET is to maximize the final (partial)
entanglement under the constraint of determinacy, contrasting with the CEP/QEP objective
of always acquiring a singlet with high (but not unit) probability.
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The DET involves two quantum communication protocols: The first is a continuation
of the swapping protocol [147,151]. However, here, the swapping protocol operates directly
on partially entangled states. It can be shown that given entanglements θAR and θRB in
the A–R–B configuration, one can tune the swapping protocol such that it deterministi-
cally yields a final state between A and B, having a new entanglement θAB that satisfies
sin 2θAB = sin 2θAR sin 2θRB [149]. The second protocol is the entanglement concentration pro-
tocol [152,153]. This protocol takes two links between A and B (with entanglement θ1, θ2,
respectively) as input. At the expense of the two links, a new link that has a higher entan-
glement θ is produced between A and B, where cos θ = cos θ1 cos θ2 or

√
1/2, whichever is

the largest.
The DET scheme is founded on the generalization of these two protocols to global

scales. This is possible since the swapping and concentration protocols are fully equivalent
to the series/parallel rules, respectively, as often employed in circuit network analysis [149].
Therefore, the DET scheme becomes applicable if the network topology between the source
s and target t is series–parallel [154]. In other words, the network can be fully reduced to a
link between s and t using only series and parallel reductions. Note that there are already
fast network algorithms designed specifically for detecting series–parallel networks and
determining their feasible reductions, which will be explored further in the next section.

One of the most intriguing characteristics of the DET scheme is that, when applied
to infinitely large series–parallel networks, a threshold similar to the CEP threshold is
observed [40], below which the DET can never produce nonzero entanglement between s
and t. This threshold, however, is lower than the CEP threshold, demonstrating a “quantum
advantage” over the classical scheme. The existence of such a threshold suggests that the
DET may be globally governed by a statistical physics theory. In subsequent sections, we
will explore this statistical theory in details.

5.3. Concurrence Percolation Theory

To establish the statistical theory, recall that in classical percolation theory, given a
regular lattice, one can define a “sponge-crossing” quantity, PSC, as the probability that
there is an open path connecting two far-apart boundaries [155]. When the lattice becomes
infinitely large (the number of nodes N → ∞), it is known that a minimum value of p exists,
below which PSC becomes zero in the thermodynamic limit:

pth = inf{p ⊂ [0, 1]|limN→∞PSC > 0}. (22)

This minimum value coincides with the traditionally defined percolation threshold
pth in Section 3, which is based on the size of the infinite cluster. As a result, Equation (22)
offers an alternative definition of pth. In the special case of two-dimensional square lattices,
Kesten proved that the “sponge-crossing” probability PSC of connecting the left and right
boundaries is strictly zero until p > 1/2. Thus, pth = 1/2 [155].

Moreover, the existence of such a critical threshold is not limited to regular lattices but
can also be observed for complex network topologies. All we need to do is to generalize
PSC from being defined between two apparent boundaries to two arbitrary sets of nodes,
denoted as S and T. It is reasonable to believe that there still exists a nontrivial ConPT
threshold pth for this generalized PSC, as long as the minimum length of all paths connecting
S and T increases with the network size N. We contract the two sets S and T into two “mega”
nodes, which amounts to erasing the internal network topologies of S and T, and then
calculate the “sponge-crossing” probability PSC between them. This provides a definitive
way of calculating PSC for arbitrary network topology and inferring pth from Equation (22).

How do we derive pth? First, we need to know how PSC manifests as a function
of p. The exact expression of PSC can be calculated by basic addition and multiplication
rules of probability measures [37]. In general, PSC bears the form as a ratio of two large
polynomials of p (i.e., meromorphic in p), which quickly becomes complex when the
number of links becomes large. Nevertheless, when the network topology between S and T
is series–parallel, then PSC can be decomposed into the iteration of two connectivity rules,
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namely, the series and parallel rules (Table 2). These rules establish the probability of at
least one path connecting the two ends.

Table 2. Connectivity rules that define the classical/concurrence percolation theories.

Classical Concurrence

Series rule p = p1 p2 · · · c = c1c2 · · ·

Parallel rule 1− p =
(1− p1)(1− p2) · · ·

1+
√

1−c2
2 = max{ 1

2 ,
1+
√

1−c2
1

2
1+
√

1−c2
2

2 · · · }

Higher-order rules Can be approximated by the star-mesh transform, by the
following two-step argument:

1. The star-mesh transform can reduce an N-graph to an
(N − 1)-graph (right panel) and is solvable by applying
the series and parallel rules recursively through a group
of N(N− 1)/2 coupled equations (see Section 6 for details).
2. Applying the transform consecutively on a network can
reduce nodes one by one—and thus reduce any topology
to two nodes, yielding the final (approximate) connectiv-
ity between them (bottom panel, i.→ viii.).

θ1

θ2

θ3

θ4

1R

2

3

4

θ12

θ13

θ14

θ23

θ24

θ34

1

2

3

4

i. ii. iii. iv.

v. vi.

⋯

vii. viii.

When the network topology between S and T is not series–parallel (such as a bridge
circuit [154]), higher-order connectivity rules are needed. Unlike the series/parallel rules,
these higher-order rules do not follow a general form. That being said, there is a way to
approximate (see Section 6 for a detailed discussion about the nature of this approximation)
these higher-order rules using only the series/parallel rules. This technique is known as the
star-mesh transform, originating from the study of circuit analysis. We will include more
details on this technique in the Algorithms section (Section 6).

It becomes clear that the series/parallel rules play a very special role in defining
percolation connectivity. Given that the DET scheme is also founded on series/parallel
rules, a natural and intriguing question arises: can we define a new statistical theory
reversely, starting directly from the exact forms of series/parallel rules? Such a definition
may not be complete since we do not know the exact forms for higher-order rules (which
may not even have a closed mathematical form). Yet, using the star-mesh transform
technique, it may be possible that we can approximate these higher-order rules using the
series/parallel rules that we have known.

This is the motivation of the concurrence percolation theory. Recall that the DET se-
ries/parallel rules are given by sin 2θ = sin 2θ1 sin 2θ2 and cos θ = max{

√
1/2, cos θ1 cos θ2},

respectively. Under a change of variable c ≡ sin 2θ, the rules can be rewritten in the form
presented in Table 2. Note that the new series rule in terms of c bears the same nominal
form as the classical series rule in terms of p. This variable c, indeed, has a physical mean-
ing, known as the concurrence, a specific measure of bipartite entanglement [156]. This
inspires the new theory to be termed “concurrence percolation”. In comparison to classical
percolation, where the variable of interest is the probability p, in concurrence percolation,
choosing c as the variable of interest is appropriate.
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After fixing all connectivity rules (series + parallel + star-mesh), an analogous quantity
CSC, referred to as the sponge-crossing concurrence, can be defined as the weighted sum of
all paths in terms of this new weight c [40]. It is believed that a nontrivial threshold on c
also exists:

cth = inf{c ⊂ [0, 1]|limN→∞CSC > 0}, (23)

such that cth is the minimum value of the concurrence c per link, below which CSC becomes
zero when S and T become infinitely distant.

5.4. Results

DET outperforms CEP. Utilizing the framework of concurrence percolation, we can
derive an essential and powerful result: the DET scheme always outperforms the CEP
scheme on any series–parallel QN. To rigorously demonstrate this comparative superiority,
we rewrite both the classical and concurrence series/parallel rules in terms of the entangle-
ment variable θ (Table 3). These rules correspond to the entanglement transmission rules
for CEP and DET, respectively (as illustrated in Figure 4).

Table 3. Entanglement transmission rules for the CEP and DET schemes, derived from the classical
and concurrence percolation rules (Table 2), respectively.

CEP DET

Series 2 sin2 θ =
(
2 sin2 θ1

)(
2 sin2 θ2

)
· · · sin 2θ = (sin 2θ1)(sin 2θ2) · · ·

Parallel cos 2θ = (cos 2θ1)(cos 2θ2) · · · cos θ = max{
√

1/2, (cos θ1)(cos θ2) · · · }

S
Tθ1=π /6

θ2=π /6

S
Tθ≈0.113π

S
Tθ≈0.135π

S
T

θ1=π /6

θ2=π /6

S
Tθ≈0.210π

S
Tθ≈0.230π

Series rule

Parallel rule

CEP DET

CEP DET

Figure 4. The DET series/parallel rules outperform the CEP series/parallel rules.

Now, for the series rule, we have

c2 = ∏
i
(sin 2θi)

2

= ∏
i

(
2 sin2 θi

)(
2− 2 sin2 θi

)
≥

[
∏

i

(
2 sin2 θi

)][
2−∏

i

(
2 sin2 θi

)]
= p(2− p), (24)
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where the inequality is supported by the subadditivity of f (x) = ln(2− e−x), namely,

f (x1 + x2 + · · · ) ≤ f (x1) + f (x2) + · · · (25)

for x = − ln
(
2 sin2 θ

)
≥ 0. This leads to

1− c2 ≤ 1− p(2− p) = (1− p)2. (26)

This final inequality underscores that the θ obtained from the CEP series rule (under a
change of variable p = 2 sin2 θ) is never greater than the θ obtained from the DET series
rule (under a change of variable c = sin 2θ).

For the parallel rule, similarly, we have

1
2
+

1
2

√
1− c2 = ∏

i
cos2 θi

= ∏
i

(
1
2
+

1− 2 sin2 θi
2

)

≤ 1
2
+

1
2 ∏

i

(
1− 2 sin2 θi

)
= 1− p

2
, (27)

where the inequality is supported by the subadditivity of f (x) = − ln(1/2 + e−x/2) for
x = − ln

(
1− 2 sin2 θ

)
≥ 0. This further leads to

√
1− c2

2
≤ 1− p

2
− 1

2
=

1− p
2

, (28)

which, again, underscores that the θ obtained from the CEP parallel rule is never greater
than the θ obtained from the DET parallel rule. Together, it can be established that the
DET rules consistently yield superior results to those of the CEP rules, both in series and
parallel configurations. This underlines the potential of DET as a valuable tool in the
ongoing development of large-scale QN and adds a new dimension to our understanding
of quantum connectivity.

Concurrence percolation threshold. In infinite-size QNs, both a classical percolation
threshold pth and a concurrence percolation threshold cth exist. This leads us to the second
insightful finding within the realm of concurrence percolation: the prediction of a lower
threshold compared to what was known from earlier classical-percolation-theory-based
schemes, including CEP and its variants (such as QEP). What makes this result particularly
interesting is that the improvement exists across various network topologies. Table 4 shows
these findings, detailing tests conducted on different network topologies, including the
Bethe lattice (Figure 5) as well as other regular lattices such as the square, honeycomb,
and triangular lattices (Figure 6). This consistency across multiple configurations under-
scores the robustness of the concurrence percolation method, demonstrating its potential to
redefine our understanding of entanglement transmission within large-scale QNs.

On series–parallel QN, this predicted concurrence percolation threshold is readily
achievable using the DET scheme. On general network topologies, however, it is unknown
if the higher-order connectivity rules produced by the star-mesh transform is realizable by
LOCC. They are only approximations of the true LOCC-allowing rules. The study of the
higher-order rules of concurrence percolation remains a difficult task that could be handled
by multipartite strategies [157], QN routing [22,158], or QN coding [159].



Entropy 2023, 25, 1564 18 of 37

(a)
(b)

k=3

0.2 0.4 0.6 0.8

0.2
0.4
0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(π/4)-1θ

PSCCSC Saturation Point csat

Figure 5. Classical percolation and concurrence percolation on the Bethe lattice. (a) The Bethe
lattice (k = 3). (b) The sponge-crossing probability PSC (brown) between sets S (the root) and T
(the collection of all leaf nodes) as a function of θ. Driven by classical percolation, a transition
threshold is found at θ = π/6, or pth = 2 sin2 θ = 1/2. As a comparison, the sponge-crossing
concurrence CSC (red), driven by concurrence percolation, shows a similar but lower threshold at
θ = π/8, or cth = sin 2θ = 1/

√
2. Moreover, a saturation point at θ = 0.633(π/4), or csat ≈ 0.838

also exists, beyond which we already have CSC = 1. This saturating feature has no counterpart in
classical percolation. (The pink dashed line represents another nonphysical solution.)

Table 4. The concurrence percolation threshold is the lowest threshold compared to earlier known
classical-percolation-theory-based schemes, including CEP and its variants. Particularly, for the Bethe
lattice, one has Pswap(k) = 2x − x2, where x(k) is the solution of 2x + xk(kx − x − k − 1) − (1−
x)/(k− 1) = 0 by the q-swapping strategy [160], and PGHZ(k) = y, where y(k) is the solution of

1− (1− y)∑
bk/2−1c
i=0 (2i

i )4
−i(2y− y2)i − 1/(k− 1) = 0 where b·c is the floor function [157]. For the

square and triangular lattices, QEP yields the same thresholds as CEP.

[Unit: (π/4)−1θ] Bethe Lattice (Degree k) Square Honeycomb Triangular

CEP [10] (4/π) sin−1[1/
√

2(k− 1)] 0.670 0.777 0.545

QEP [10,148,160] (4/π) sin−1
√

Pswap(k)/21 0.670 0.761 0.545

QEP-GHZ [157] (4/π) sin−1
√

PGHZ(k)/22 0.584 0.745 0.481
Concurrence [40] (2/π) sin−1(1/

√
k− 1) 0.42(8) 0.51(8) 0.32(8)

Saturation. Concurrence percolation also differs from classical percolation with the
existence of a saturation point csat. Whenever c ≥ csat, the sponge-crossing CSC consistently
equals one (Figure 5b). For example, basic calculations show that the exact value of the
saturation point for a Bethe lattice of degree k is given by [40]

csat =
√
(1/2)1/k − (1/4)1/k/

√
(1/2)(k−1)/k − (1/4)(k−1)/k. (29)

In contrast, in classical percolation, PSC equals one if and only if p = 1. This phe-
nomenon originates from the anomaly of the parallel rule (Table 2) being not a smooth
function. The presence of this saturation point unveils a new “quantum advantage” origi-
nating only from concurrence percolation: one can deterministically establish a singlet as long as
the entanglement in each link surpasses the saturation point. This advantage stands in contrast
to schemes based on classical percolation, where a singlet can only be established with
certainty if each link is perfectly entangled.

Critical exponents. Lastly, similar to classical percolation, concurrence percolation
also shows critical phenomena, marked by a set of dependent or independent critical
exponents [3]. However, it is important to note that concurrence percolation is defined
based on connectivity rules (Table 2), not clusters. As a result, one cannot simply deduce a
traditional cluster-based order parameter from the variable c used in these rules. In fact,
an effective cluster could be defined using c, c2 or any other power of c. Altering the
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definition in this way essentially results in a variable change in the connectivity rules but
does not change the underlying physics.
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Figure 6. Classical percolation and concurrence percolation on (a,b) the square lattice, (c,d) the
honeycomb lattice, and (e,f) the triangular lattice, The sponge-crossing probability PSC (brown) and
sponge-crossing concurrence CSC (red) are defined between sets S (the collection of nodes on the left
boundary) and T (the collection of nodes on the right boundary) as a function of θ. The brown and
red vertical lines denote the finite-size thresholds pth and cth, respectively.

In the absence of a cluster definition, the sole critical exponent that can be determined is
the dynamic thermal exponent, νdyn = zν. This exponent is tied solely to length dimensions,
reflecting how the system’s correlation length diverges as c approaches cth. Note that the
length in the context refers to the chemical length, not the conventional Euclidean length.
The two length scales are related by the dynamic critical exponent z [38]. This is why zν,
rather than ν, is used in this case.

Importantly, the dynamic thermal exponent zν can be retrieved from finite-size analy-
sis [3]. Here, the idea is that the correlation length can be replaced by the system’s finite
length scale l when |c− cth| → 0. Therefore, near the critical threshold, all dependence on
ξ can be deduced using l. The finite-size analysis results for both classical and concurrence
percolation for the Bethe lattice are shown in Figure 7. For concurrence percolation, it is
found that CSC follows a power law with an exponential cutoff as a function of the number
of layers l, CSC ∼ l−1/2 exp(−l/l∗). Here, l∗ diverges as a power law as c approaches cth
(Figure 7f). The numerical value zν = 1.082(95) is obtained by fitting near |c− cth| ∼ 10−5

(Figure 7g).
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Figure 7. Critical phenomena of (a–e) classical percolation and (f–j) concurrence percolation theories
in the Bethe lattice.

Alternatively, zν can also be determined by looking at the finite-size critical threshold
cth(l), which is defined as the turning point of CSC,

cth(l) = c|∂2CSC/∂c2=0, (30)

which deviates from cth as a power law with respect to l (Figure 7h). Again, the numerical
value 1/(zν) = 0.99(5) is obtained near l ∼ 104 (Figure 7i).

For general k, different cth and csat are also presented (Figure 7j), revealing two uni-
versal (i.e., independent of k) power laws of CSC near c → cth and c → csat, respectively,
supported by numerical results (dots) on a finite Bethe lattice of l = 500. In particular,
the power-law relation CSC ∼ |c− cth|1/2 is reminiscent of the critical exponent β in classical
percolation, which follows Pinf ∼ |p− pth|β (Equation (11)). Yet, as previously discussed,
CSC cannot be uniquely equated to a “cluster-based” order parameter. Thus, it would be
premature to assert that β = 1/2 without accounting for certain nuances.

Note that the above results also have their counterparts in classical percolation
(Figure 7a–e), except for the saturation point csat. It is found that the critical exponent zν is
the same for both classical and concurrence percolation theories on the Bethe lattice. It thus
remains unknown whether the classical and concurrence percolation theories belong to the
same universality class or not.

In conclusion, the concept of concurrence percolation establishes a new theory that
governs the behavior of entanglement transmission across large-scale QN. This novel
theory brings in several unique characteristics that distinguish it from classical percolation,
thereby providing a refreshing and rich perspective on QN. We believe that the theoretical
framework set by concurrence percolation may also open doors to practical applications,
such as more efficient entanglement transmission schemes or novel protocols for quantum
communication and computation. In essence, concurrence percolation not only enriches
our comprehension of the inherent complexity of QN but also signifies a leap towards a
more refined and versatile understanding of the statistical physics that governs QN.
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6. Algorithms

This section is dedicated to a comprehensive exploration of the fundamental algo-
rithms that have played a pivotal role in our investigation of concurrence percolation
theory. Not only are these algorithms instrumental in the analysis and understanding
of QN but they also serve as essential tools for modeling and simulating the complex
behaviors within the network.

6.1. Identification of Series–Parallel Networks

Series–parallel networks were introduced by Duffin [154] as a mathematical model
of electrical networks, and a general version was introduced later by Lawler [161] and
Monma and Sidney [162] as a model for scheduling problems. The classification of a
network as series–parallel depends on the choice of two specific nodes of interest [154].
Given two source and target nodes S and T, the network topology can be grouped into
different categories (Figure 8). All topologies between S and T given in Figure 8a–e are
considered series–parallel, except Figure 8f, due to an existing “bridge” in addition to
Figure 8e. Importantly, it is worth highlighting that many realistic complex networks can
be approximated as series–parallel. This is because, in infinite-dimensional systems, cycles
can typically be ignored through the Bethe approximation [163].

S
T

(a) Simple series QN.

S
T

(b) Simple parallel QN.

S
T

(c) Parallel-then-series QN.

S
T

(d) Series-then-parallel QN.

S
T

(e) Series–parallel QN.

S
T

(f) General QN.

Figure 8. Different QN topologies between S and T. (a) Series. (b) Parallel. (c) Parallel-then-series.
(d) Series-then-parallel. (e) Series–parallel. (f) Non-series–parallel.

It is known that when a “decomposition tree” (Figure 9) for a series–parallel graph
is given, many problems, including those that are NP-hard for arbitrary graphs [164–167],
can be solved in linear time. While series–parallel networks continue to play an important
role in various applications, they have been extensively studied in their own right as well
as in relation to other optimization problems (cf. [168–171]). We also refer to [172] for more
results in series–parallel graphs.

Series–parallel networks enjoy nice algorithmic properties. There is a fast algorithm
that determines whether any given network is series–parallel, and if it is, also returns the
decomposition tree that is suitable to be used in the following applications [173]. Following
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this work, researchers have further developed parallelized algorithms to determine the
important class of series–parallel networks [174–177].

6.2. Star-Mesh Transform

The star-mesh transform (also known as the Kron reduction [178]) was originally
developed as a circuit analysis technique for calculating the effective resistance in resistor
networks. The star-mesh transform replaces a local star network topology by a mesh
topology (a complete graph). Importantly, the equivalent resistance between each pair of
nodes remains consistent before and after the transformation. Here, we generalize this
idea to offer an approximation method for percolation on networks. This approach bears
similarity to the real-space renormalization group (RG) methods used in percolation theory.
However, the star-mesh transform is more versatile, applicable to various types of networks
beyond regular lattices.

S
T

S
T

S
T

S
T

S
T

S
T

S
T

S
T

i

ii

iii

iv

v

vi

vii

viii

i  viii Series rule () Parallel rule ()

Figure 9. The decomposition of a series–parallel network to the final base graph (from i to viii).
At each step, the links that the series rule and the parallel rule are applied to are highlighted in orange
and cyan, respectively.

A star-mesh transform [179] can be built upon only series and parallel rules but
not higher-order rules to map an N-node star graph to an (N − 1)-node complete graph,
establishing a local equivalence (in terms of connectivity) between the two graphs. Math-
ematically, we denote G(N) to be a star graph with one root vertex and N leaf ver-
tices, where the weights of the N edges are from θ1 to θN . And the N-complete graph
transformed from G(N) is denoted as G ′(N), the weights of its N(N − 1)/2 edges are
(θ12, θ13, · · · , θ1N , · · · , θN−1,N). The equivalence between G(N) and G ′(N) is formatted
N(N − 1)/2 independent equations:

seri(θ1, θ2) = c
(
1, 2;G ′(N)

)
,

seri(θ1, θ3) = c
(
1, 3;G ′(N)

)
,

· · · ,

seri(θ1, θN) = c
(
1, N;G ′(N)

)
,

· · · ,

seri(θN−1, θN) = c
(

N − 1, N;G ′(N)
)
, (31)
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in which seri(θi, θj) is the series sum of θi and θj based on the series rule, and c(i, j;G ′(N))
is the net weight between vertices i and j of the complete graph G ′(N).

To calculate the sponge-crossing percolation between the source S and target T in
a certain network, we approximately obtain the equivalent simplified network by con-
secutively applying the star-mesh transform technique, where one node is degraded for
each application. Specifically, we arbitrarily choose a vertex from G ′(N) (w.l.o.g., the last
one, N) to be the new root of a sub-star-graph of G ′(N) constructed from the N − 1 edges
that connect the root to the other N − 1 vertices. Next, we transform this sub-star-graph
(subG ′)(N − 1) into a (N − 1)-complete graph, denoted by (subG ′)′(N − 1), and combine
it with what is left untransformed, G ′(N) \ (subG ′)(N − 1). The new graph denoted as
Comb

(
Gα,Gβ

)
is derived by setting each edge weight to be θij = para(αij, βij), which is the

parallel sum of αij ∈ Gα and βij ∈ Gβ based on the parallel rule. Note that because of the
lack of a closed-form solution for concurrence percolation, we use Broyden’s root-finding
algorithm to numerically solve the N(N − 1)/2 weights θij that satisfy Equation (31). In a
word, we can calculate c(i, j;G ′(N)) by first solving a (N − 1)-complete graph,

c(i, j;G ′(N)) = c(i, j; Comb
(
(subG ′)′(N − 1),G ′(N) \ (subG ′)(N − 1)

)
). (32)

By applying Equation (32) one after the other on all but boundary nodes, the network
can be eventually reduced to two nodes and one link between them (Table 2), the final
weight θ of which shall be approximately equivalent to the percolation of initial network.
For demonstrative purposes, here we show how the star-mesh transform works for both
the classical percolation (Figure 10) and concurrence percolation (Figure 11) on a small
square lattice.
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Figure 10. Demonstration of calculating the classical percolation between nodes 1 and 6, in the
following steps: (a) Original lattice. (b,c) Series rules. (d) Star-mesh transform on the star graph (with
edges 4↔ 1, 4↔ 3, 4↔ 6), converting it to a complete graph (with edges 1↔ 3, 3↔ 6, 6↔ 1), then
parallel rule for the double edges 1↔ 3 and 3↔ 6. (e) Series rule for edges 1↔ 3 and 3↔ 6, then
parallel rule for edge 1↔ 6.
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Figure 11. Demonstration of calculating the concurrence percolation between nodes 1 and 6 (cf. Figure 10).
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Since c(i, j;G′(N)) is calculable through recursions and Equation (32) involves a (N− 1)-
level star-mesh transform, the entire procedure is a double recursion, the cost growing
faster than the exponential. But by practically carrying out the recursive computation using
symbolic expressions in Mathematica and other numerical techniques, the solutions can be
found within a sufficiently small error range [40].

Note that the star-mesh transform functions as an approximation rather than an
exact representation of higher-order connectivity rules. To see this, consider the example of
classical percolation given in Figure 10. Under the change of variable p ≡ 2 sin2 θ, the actual
higher-order connectivity, i.e., the probability of at least one path connecting nodes 1 and 6,
can be expressed as follows:

p34[1− (1− p35 p56)(1− p46)][1− (1− p12 p24)(1− p13)]

+ (1− p34)[1− (1− p13 p35 p56)(1− p12 p24 p46)]

≈ 0.0799, (33)

where pij ≡ 2 sin2 θij ≈ 0.304 represents the singlet conversion probability for each link
i ↔ j. The final probability (≈0.0799) translates to a final entanglement θ ≈ 0.256π/4,
which is very close to the star-mesh approximation result of θ ≈ 0.25π/4 (Figure 10).
The closeness of these values supports our confidence that the star-mesh transform can
offer a reasonably accurate approximation. Also, note that the process of reducing a
network using star-mesh transforms is not unique in sequence. For example, in the fourth
step of Figure 10, one can transform the star graph (3↔ 1, 3↔ 4, 3↔ 6) instead. Different
sequences of reduction might lead to varying approximate results, but they tend to stay
close to each other and to the exact value [40].

6.3. Fast Numerical Approximation for Concurrence Percolation

The heuristic approximation (star-mesh transform) used for higher-order connectivity
rules can be quite demanding in terms of computational resources. To address this chal-
lenge, in this section, we discuss a more efficient approach to calculate the sponge-crossing
concurrence CSC [180]. This acceleration in computation is achieved through the incor-
poration of two key simplifying approximations: the parallel approximation and the Sm
approximation (Figure 12).

S
T

S
T

S
T

length-5 (shortest) length-6 length-7

Sm approximation

(Determine the set of m-shortest paths)

Parallel approximation

(Treat all paths as non-overlapping)

Figure 12. Approximations for calculating the sponge-crossing concurrence CSC. In the Sm approxi-
mation, one defines Sm as the set which contains up to the m-th shortest paths (i.e., the shortest paths,
the 2nd shortest paths, and so on up to the m-th shortest paths) between s and t for all s ∈ S and
t ∈ T. In the parallel approximation, one treats all paths in Sm as parallel and non-overlapping. Thus,
the network topology reduces to series-then-parallel, and the sponge-crossing concurrence can be
calculated using the series/parallel rules (Table 2).

6.3.1. Parallel Approximation

First, we introduce the parallel approximation: we treat all paths connecting nodes
of interest to be parallel, i.e., treating them as if they have no overlap. For an arbitrary
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network with N nodes and uniform concurrence c per link, the parallel approximation C′SC
of the true sponge-crossing concurrence CSC between two sets of nodes S and T is given by

1 +
√

1− C′2SC

2
= max

∏
l

(
1 +
√

1− c2l

2

)Nl

,
1
2

, (34)

where Nl is the total number of self-avoiding paths of length l that connect the source/target
nodes s and t for all s ∈ S and t ∈ T, respectively. Equation (34) is the mathematical
statement of the parallel approximation, indicating that we are taking each of the Nl paths
to be parallel and non-overlapping (Figure 12).

Now, we will show that on series–parallel networks [154], the concurrence calculated
under the parallel approximation forms an upper bound to the true concurrence. First, we
consider the case where our network is essentially parallel, i.e., it can be expressed as the
parallel combination of k subnetworks, each with concurrence ci. In this case, the parallel
approximation is exact:

C′SC = CSC = para(c1, c2, . . . ck).

The more interesting case is that of an essentially series network, i.e., a network that
can be decomposed as a combination of subnetworks in series. We consider an exemplary
network that splits into k branches, each with concurrence cpi . The concurrence of the
segment before branching is cs. Following the series and parallel rules (Table 2), the sponge-
crossing concurrence from the left of this network segment to the right is

CSC =

cs

(
2
√

f (cp0 , . . . cpk )− f (cp0 , . . . cpk )
2
)

f (cp0 , . . . cpk ) > 1/2,

cs f (cp0 , . . . cpk ) ≤ 1/2,

where f (cp0 , . . . cpk ) = ∏k
i=1 g(cpi ) = ∏k

i=1

1 +
√

1− c2
pi

2

. Under the parallel approxi-

mation, the network is transformed so that the concurrence of the segment is given by

C′SC =

2
√

f (cscp0 , . . . cscpk )− f (cscp0 , . . . cscpk )
2 f (cscp0 , . . . cscpk ) > 1/2,

1 f (cscp0 , . . . cscpk ) ≤ 1/2.

Since cscpi ≤ cpi , it follows that g(cscpi ) ≥ g(cpi ) and thus f (cscp0 , . . . cscpk ) ≥
f (cp0 , . . . cpk ). After some calculations [180], one can show that C′SC ≥ CSC.

Taken together, since every series–parallel network can be decomposed into essentially
series or parallel configurations, we showed that C′SC is an upper bound for CSC on series–
parallel networks. Interestingly, as we will see, this upper bound seemingly becomes tighter
as the network becomes larger. We hence expect that a new concurrence threshold on C′SC
can emerge, which should numerically approach the true cth from below and match cth in
the thermodynamic limit N → ∞.

6.3.2. Sm Approximation

For most regular lattices and complex networks, however, it is a nontrivial task to
determine the number of paths Nl of length l. When we look at arbitrary networks,
the calculation for the sponge-crossing concurrence is essentially a path-counting problem,
which may require approximation as well.

Although the literature of path counting on graphs is rich and well studied, we are
not aware of any closed-form solutions for the enumeration of self-avoiding walks of an
arbitrary length for even the simplest network (like 2D lattices) [181]. While approximate
path enumerations exist for both 2D lattices [182] and random networks [183], we find them
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impractical since the concurrence calculation is very sensitive to Nl for small l. Based on
this, if we define Sm as the set which contains up to the m-th shortest paths (i.e., the shortest
paths, the 2nd shortest paths, and so on up to the m-th shortest paths) between s and t for
all s ∈ S and t ∈ T, then it is possible to approximate the sponge-crossing concurrence
between S and T using only these paths.

6.3.3. Results

In this section, using the Sm and parallel approximations, we present the numerical re-
sults for calculating CSC in different networks of large size N. From that, we can numerically
estimate the finite-size concurrence percolation threshold cth ≡ sin 2θth, determining its
position on the critical curve by matching the corresponding sponge-crossing concurrence
at the half point, namely,

cth ≡ sin 2θth ≈ c|CSC=1/2. (35)

Next, we show how to apply our approach to the Bethe lattice and 2D square lattices.
Bethe lattice. Given a finite Bethe lattice (i.e., a Cayley tree) (Figure 5a) with L layers

and coordination number k [38,39], all paths from the root node to any one of the boundary
nodes have the same length L. Since only one path exists from the root node to any node
on the boundary, the number of paths of length L is

NL = k(k− 1)L−1. (36)

There is no need to employ the Sm approximation since all paths are exactly known.
Only the parallel approximation C′SC of the sponge-crossing concurrence CSC is to be
calculated, which is given by (following Equation (34))

1 +
√

1− C′2SC

2
= max


(

1 +
√

1− c2L

2

)NL

,
1
2

. (37)

To solve for cth, near C′SC = 0, we let

1 +
√

1− c2L
th

2

NL

= 1− ε (38)

given an arbitrarily small positive ε. This gives rise to

c2L
th = 1−

[
2(1− ε)1/NL − 1

]2
' −4N−1

L ln(1− ε) + O(N−2
L ), (39)

and thus

cth '
(

4ε

k

) 1
2L
(

1
k− 1

) L−1
2L
' 1√

k− 1
(40)

in the limit of large L. The result is identical to the exact concurrence percolation threshold
for Bethe lattices (Table 4).

For validation purposes, the numerical results of the parallel approximation C′SC
versus the exact values CSC are shown in Figure 13. We see that as L increases, the threshold
cth approaches 1/

√
k− 1 from below, consistent with our theoretical result. Hence, it is

highly suggested that the parallel approximation can correctly estimate the true concurrence
percolation threshold cth in the limit N → ∞.
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a b

Figure 13. The sponge-crossing concurrence CSC for the Bethe lattice under the parallel approximation.
Results are shown for coordination numbers (a) k = 3 and (b) k = 4. As the number of layers, L, in the
network become larger, the numerical concurrence percolation threshold approaches the analytical
value, θth = (2/π) sin−1(1/

√
k− 1). The solid black lines represent the exact CSC for the Bethe lattice

(cf. Figure 5).

It is known that a saturation point csat < 1 also exists in the Bethe lattice [40], namely,
before c reaches unity, CSC will already reach unity at c = csat. It is obvious that csat ≥ cth,
given the monotonicity of the series and parallel rules (Table 2). To see if we can recover
csat using the parallel approximation too, let

1 +
√

1− c2L
sat

2

NL

=
1
2

, (41)

set by C′SC = 1. This yields

c2L
sat = 1−

[
2(1/2)1/NL − 1

]2
' 4N−1

L ln 2 + O(N−2
L ), (42)

and thus

csat '
(

4 ln 2
k

) 1
2L
(

1
k− 1

) L−1
2L
' 1√

k− 1
. (43)

We see that the saturation point calculated using the parallel approximation is equal
to cth but different from the exact value (Figure 5b).

Two-dimensional square lattice. In a 2D square lattice of N nodes (
√

N ∈ Z), the length
of the mth shortest self-avoiding path, between the source and target nodes of coordinates
s = (xs, ys) and t = (xt, yt) (1 ≤ xs, xt ≤

√
N and 1 ≤ ys, yt ≤

√
N) is simply

lm = |xs − xt|+ |ys − yt|+ 2(m− 1).

Now, let S and T denote the left (xs = 1) and right (xt =
√

N) boundaries. Let s = (1, ys) ∈ S
and t = (

√
N, yt) ∈ T. Under the Sm approximation, the total number of self-avoiding

paths of length l between S and T is given by

Nl ≈
√

N

∑
ys=1

√
N

∑
yt=1

δl1l Nl1(s→ t) + δl2l Nl2(s→ t) + · · ·+ δlm l Nlm(s→ t), (44)

where δij is the Kronecker delta. This approximation of Nl is then substituted into the
parallel approximation (Equation (34)) to calculate CSC between S and T.

For m ≤ 2, it is possible to directly enumerate the 1st and 2nd shortest self-avoiding
paths between every pair of s and t. For m > 2, however, it becomes difficult to write down
a closed-form combinatorial expression for Nlm(s→ t). A path enumeration algorithm is
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thus needed. We treat paths of length lm with m > 2 as deviations from the 1st and 2nd
shortest paths. For a given m, these deviations can only take a finite number of shapes.
Once we have identified these primitive deviations, we must next identify positions in the
lattice where these deviations can be placed. Finally, we count the total number of paths by
counting the number of shortest paths between deviations [180].

For example, given every pair of source and target nodes s and t, all 3rd-shortest
paths (m = 3) have either two single-step deviations or one double-step deviation from
the shortest path (m = 1). For the case where we have two single-step deviations, we first
identify two sets of points D1 and D2, where the first and second deviations can happen,
respectively. Then we calculate Ns,D1 (the number of shortest paths from s to every point
in D1), ND1,D2 (the number of shortest paths from every point in D1 to every point in D2),
and ND2,t (the number of shortest paths from every point in D2 to t). The total number of
3rd-shortest paths is then given by Nl2(s→ t) = Ns,D1 ND1,D2 ND2,t.

The final numerical results of the sponge-crossing concurrence CSC are shown in
Figure 14. We see that the transition in the value of CSC becomes sharper as the network
size N increases. Moreover, for higher-order approximation Sm and/or larger N, the nu-
merical threshold θth levels out at constant values that are very close to those calculated
using the star-mesh transform. For example, for N = 82, the numerical approximation
yields θth ≈ 0.4, closely mirroring the θth ≈ 0.416 result from the star-mesh transform
technique. This evidence underscores the viability of the new approach for approximating
the concurrence percolation threshold accurately.

a

dc

b

Figure 14. The sponge-crossing concurrence CSC for 2D square lattices under the Sm and parallel
approximations. (a) Sponge-crossing concurrence CSC as a function of link’s entanglement θ under the
S3 approximation. The results of S1 and S2 are nearly identical to S3 and not plotted. (b) Numerical
concurrence percolation threshold θth under the Sm approximation. As the approximation order m
increases, θth approaches a constant value. (c) θth for different size N. (d) Same as (c) but for larger
N. The results of S3 are not shown because it becomes too computationally intensive to calculate for
N > 202. As N increases, θth also approaches a constant value.

One major benefit of this path-counting approach is its speed. As shown in Figure 15,
the algorithm is over a hundred times faster than the heuristic star-mesh transform. This
substantial increase in computational speed facilitates the extension of concurrence percola-
tion threshold calculations to more complex network topologies, such as random networks.
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Figure 15. The speed-up obtained by the approximations over the star-mesh transform. The figure
shows the computing time (in seconds) to calculate the sponge-crossing concurrence between two
nodes s and t on 2D square lattices with N nodes, using the S1 and S2 approximation. In contrast
to the star-mesh transform, we can see that the approximations speed up the calculation over the
star-mesh transform approach by two orders of magnitude.

Random networks. For random networks, the sponge-crossing concurrence is simply
defined as the concurrence between S = {s} and T = {t}, each set containing only one
source (target) node s (t), picked such that the shortest path between s and t is equal to the
diameter of the network. By randomly generating and averaging 102 network realizations of
certain sizes and degree distributions, the concurrence percolation threshold θth is obtained.

The outcomes of this numerical approach, applied across different topologies including
the Erdős–Rényi (ER) [129] and the Barabási–Albert (BA) [95] random networks at large
scales (N ∼ 104), are summarized in Table 5. These findings shed light on the inherent
capacities of large-scale complex QNs, opening new avenues for exploration.

Table 5. Numerical concurrence percolation thresholds θth (≡2−1 arcsin cth) of different network
topologies, obtained by the Sm and parallel approximations [180]. The results are compared to those
provided by Meng et al. [40] for the Bethe lattice and 2D square lattice. The results on the Erdős–Rényi
(ER) and Barabási–Albert (BA) networks are also reported.

Network Topology (π/4)−1θth (Fast Approximation) (π/4)−1θth [40]

Bethe Lattice (L = 100, k = 3, S∞) 0.5 0.5
Bethe Lattice (L = 100, k = 4, S∞) 0.39 0.3918
2D square (N = 82, S9) 0.40 0.416
2D square (N = 202, S3) 0.44 n/a
2D square (N = 2002, S2) 0.5 n/a
ER (N = 103, k = 3, S5) 0.6± 0.002 n/a
ER (N = 103, k = 4, S5) 0.53± 0.0019 n/a
ER (N = 104, k = 2, S1) 0.85± 0.0021 n/a
BA (N = 103, z = 5, S1) 0.3± 0.0018 n/a
BA (N = 104, z = 1, S5) 0.86± 0.0057 n/a

7. Discussion and Conclusions

Distributing entanglement throughout a quantum network (QN) is a critical and
complex problem at the heart of quantum communications that has attracted significant
attention and studies. This field has been further enriched from a statistical physics
point of view, by the discovery of two percolation theories (classical versus concurrence)
that, at first glance, appear to be remotely related but are, in fact, fundamentally distinct
(Figure 3). These theories have not only deepened our understanding but also raised many
new questions for further exploration and potentially groundbreaking research. In the
following, we will outline and discuss some of the open questions that have been brought
to light by these developments:
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• Optimality. Does there exist an optimal scheme for entanglement transmission? In
the context of classical percolation, both classical entanglement percolation (CEP) and
quantum entanglement percolation (QEP) fall short of yielding the optimal singlet
conversion probability, especially as network size scales up [10]. The deterministic
entanglement transmission (DET) [149], on the other hand, focuses on improving
not the singlet conversion probability but the entanglement that can be determin-
istically obtained. It is found that the DET optimizes the average concurrence on
either series (Figure 8a) or parallel topologies (Figure 8b), meaning that even when
we relax the requirement of determinacy and consider the average entanglement of
general probabilistic outcomes, the DET results remain the optimal on series or parallel
topologies [149]. However, this result does not generalize to general series–parallel
topologies (Figure 8e), where DET may not always offer the optimal average concur-
rence. This prompts us to ask how effective the DET actually is across various QN
topologies. Answering this question could substantially deepen our comprehension
of the maximum entanglement capacity of QN.

• Universality. As a statistical physics theory, the concurrence percolation also exhibits a
second-order phase transition near the threshold cth, similar to classical percolation
near pth. So, what can be said about the universality of this phase transition? It is found
that the thermal critical exponent ν remains the same on different 2D lattices (square
versus honeycomb versus triangular), suggesting that universality is likely at play near
the critical threshold. Yet, the current definition of percolation based on connectivity
rules (Table 2) does not clearly define an order parameter [40]. This lack of an order
parameter hints at a missing degree of freedom in the connectivity-based model.
This omission makes it challenging to determine other critical exponents besides ν
(or its dynamic counterpart, zν). Additionally, the existing data on ν (or zν) do not
allow us to distinguish between the universality classes of concurrence percolation
and classical percolation [40]. Thus, an open question remains: are concurrence
percolation and classical percolation simply two facets of a single underlying statistical
theory if we overlook short-range details, or are they genuinely distinct theories at a
macroscopic level?

• Experimental implementation. One of the greatest challenges of quantum information
experiments is to achieve high-efficiency multi-body operations. For instance, two-
body quantum gates like CNOT are considerably more challenging and less efficient
to implement compared to single-body gates such as the rotation gates RX, RY, and RZ.
In fact, the number of two-body gates often serves as a benchmark for gauging the
computational complexity of quantum algorithms. Interestingly, a practical QN offers
an easier path to scalability compared to universal quantum computers. This is since
in a QN, only local operations are allowed on qubits across different nodes. This
eliminates the need for complex gates like CNOT between qubits from different nodes.
This design constraint substantially simplifies QN implementation and boosts its
scalability. Recently, the experimental feasibility of the series/parallel rules of the
DET scheme (Table 3) was also demonstrated on the IBM quantum computation
platform Qiskit [184]. The series and parallel rules typically perform with fidelity
rates of 92.4% and 78.2%, respectively [149]. These rates are expected to improve,
given ongoing advancements in two-qubit gate fidelity [185,186]. Compared to the
CEP/QEP schemes, the DET scheme has its advantages and drawbacks. On the upside,
the DET inputs/outputs are only partially entangled, which generally makes them
easier to produce and results in higher fidelity. On the flip side, circuit parameters
are input-dependent, requiring precise initial state estimations through techniques
like heralding [32] or tomography [187] before deployment. This brings us to a crucial
question: to what extent can we experimentally scale the DET scheme for larger QNs?
More importantly, given that the current CEP/QEP/DET schemes focus solely on
pure states, there is an urgent need to extend these results to mixed states that are
affected by noise—a vital step for the practical implementation of QNs.
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• Other network-based tasks enhanced by entanglement. The feasibility of establishing
entanglement over network structures also opens up further new possibilities of
using entanglement to enhance some more general, nontrivial network-based tasks.
For example, in Refs. [188,189], researchers studied the application of entanglement
to enhance quantum games on both regular lattices and complex network structures,
demonstrating that entanglement is a crucial resource for achieving favorable out-
comes in the realm of quantum game theory. Additionally, similar improvements have
been noted, such as in a quantum adaptation of the card game bridge, as highlighted
in Ref. [190]. The discussion on networks of networks in Section 3.2 also provides an
alternative perspective regarding entanglement. Rather than regarding it solely as a
resource, we can view entanglement as a control parameter that regulates the interde-
pendency between multiple network layers, potentially giving rise to novel critical or
multicritical behaviors. Indeed, recent theoretical advancements in quantum phase
transitions [191–193] have suggested that long-range entanglement among quantum
spins at near absolute zero temperatures could trigger a shift from a second-order to a
first-order phase transition. We hypothesize that this long-range entanglement may
operate similarly to the introduction of interdependency among nodes across multiple
layers, akin to classical networks-of-networks models. Yet, it is worth noting that
the underlying physics governing this interdependency stems from entirely distinct
principles within the quantum realm.

We explored the far-reaching implications of entanglement transmission in large-scale
quantum networks, all through the lens of the percolation frameworks. The presence of
two distinct types of percolation—classical versus concurrence—clearly suggests that the
statistical landscape of quantum networks is rather complex. As we look forward, we
are enthusiastic that both theoretical and experimental progress in the field of quantum
networks will enrich our understanding of this captivating area of study.
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