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Abstract: This paper presents so-called thermoelectric generators (TEGs), which are considered
thermal engines that transform heat into electricity using the Seebeck effect for this purpose. By using
linear irreversible thermodynamics (LIT), it is possible to study the thermodynamic properties of
TEGs for three different operating regimes: maximum power output (MPO), maximum ecological
function (MEF) and maximum power efficiency (MPE). Then, by considering thermoelectricty, using
the correspondence between the heat capacity of a solid and the metabolic rate, and taking the
generation of energy by means of the metabolism of an organism as a process out of equilibrium,
it is plausible to use linear irreversible thermodynamics (LIT) to obtain some interesting results in
order to understand how metabolism is generated by a particle’s released energy, which explains the
empirically studied allometric laws.

Keywords: linear irreversible thermodynamics; thermoelectricity; scaling laws

1. Introduction

Although many physical phenomena were observed during the 19th century, many
of them did not have a sufficiently clear explanation based on first principles of physics,
nor were they completely described in a mathematical language. It is in this context that
in 1821, Seebeck [1] published his novel idea: the generation of an electric current using
the thermodynamic properties of the involved materials. This marked a new way to
understand thermoelectric phenomena and their implications. This idea has since paved
the way for other researchers to develop other similar ideas in the nascent field. Without
any doubt, among the most important is that studied by Peltier in 1834 [2], according to
which a temperature gradient develops from the flowing electrical current, as well as the
observations made by Thomson [3], according to which he proposed that in order to heat
or cool an electrical conductor, we only need a difference in temperature at the ends of
the conductor.

It is very interesting to note that it was the same W Thomson (Lord Kelvin) who, in
1854, began the study of irreversible processes out of equilibrium, formally analyzing the
phenomenon of thermoelectricity. Later, RJ Clausius [4,5] and J. C. Maxwell [5] gave greater
solidity to the ideas of irreversibility, culminating in 1872, with Ludwig Boltzmann [5],
who proposed the equation that bears his name and established the first theory for irre-
versible processes.

Now, it is well known that the fundamental relationship in classical thermodynamics
postulates that a change in the entropy of a system is a function of chemical potential, pres-
sure, and—obviously—temperature (called intensive quantities). In 1931, Onsager et al. [6]
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proposed the extension of this relationship to non-equilibrium thermodynamic systems, for
which they considered some new locally defined intensive macroscopic variables. Under
the right conditions, Onsager et al. were able to obtain these new variables by defining
the gradients and flux densities of the defined basic macroscopic quantities. Such gra-
dients, now known as "thermodynamic forces", produce flux densities or "fluxes" that
are in duality with the forces. These quantities are defined by the Onsager reciprocity
relations and form the foundations of what, years later, would be called linear irreversible
thermodynamics (TIL).

On the other hand, after many years of dormancy for classical equilibrium thermody-
namics (CET), in the second half of the 20th century, with the pioneering works of Curzon
and Ahlborn, newborn finite-time thermodynamics (FTT) led to one of the most successful
models to describe heat engines under more realistic conditions [7–11]. In this sense, CET
had only shown what the upper limits were for some variables related to the process itself,
such as the efficiency.

Thus, by considering the paper by Curzon and Ahlborn [12], many authors began
to introduce different objective functions, such as the ecological function [13], the omega
function [14], the efficient power function [15], etc. These researchers were mainly attempt-
ing to obtain efficiency and power values for real thermal engines [16–18].

Moreover, in 1965, Kedem et al. [19] published the first step of a non-equilibrium
theory towards a description of linear converters of energy (which would be called linear
irreversible thermodynamics (LIT)). Since then, many authors have considered this theory
as a basis for the analysis of non-equilibrium systems, particularly for biological processes;
several authors, have studied different optimal regimes, like Prigogine [20], with his
minimum entropy production theorem. Odum and Pinkerton [21], who analyzed the
maximum power output regime for various biological systems, and Stucki et al. [22], who
introduced some optimal criteria to study the optimum oxidative phosphorylation regime,
are among others in this area [23–27] who have studied many biological energy conversion
processes by means of LIT, analyzing optimum performance regimes.

Within this context, if thermoelectric generators (TEGs) are considered thermal engines
that directly convert heat into electricity via the Seebeck effect, it is possible to study the
thermodynamic properties of TEGs using linear irreversible thermodynamics (LIT) for this
purpose for three different operating regimes: maximum power output (MPO), maximum
ecological function (MEF) [13], and maximum efficient power function (MEPF) [15].

It is important to note that in a very simple way, the use of LIT allows the maximum
electric current (Imax) and the maximum power output (Pmax) to be obtained for the three
aforementioned regimes. Although the maximum electric current for the maximum power
output regimes has been obtained and most work has been carried out using this regime,
the maximum electric current for the other two work regimes has not been obtained,
much less the expressions of the maximum output power. There exist more sophisticated
models; for instance, the fluid-thermal-electric multiphysics numerical model, in which
the performance of a thermoelectric generator is obtained by considering the complete
geometry, temperature-dependent material properties, and topological connection among
the thermoelectric modules [28], which can be used to compare the results presented here
with those of practical devices.

The latter is important because when an optimal thermoelectric device is going to be
designed in practice. One could take into account the geometric properties of the materials
in order to gain more power or, depending on the goal being pursued, maximum power;
then, we can use the maximum power regime, i.e., a balance between entropy production
and output power, and the maximum ecological function [13]. Finally, if we need to
consider the effects on the design of the device, as well as the multiplication of power by
the cycle efficiency, then the maximum efficient power criterion [15] has to be used.

Finally, we intend to show a very interesting link between the themoelectricity phenom-
ena and the very well-studied allometric laws [29–31]. Many researchers have described the
fact that there is a relationship between the rate at which an individual expends energy and
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their body mass in adulthood expressed mathematically using a power law. Among the
biological studies, there is an agreement with respect to the exponents of the power law but
not with respect to the constants of proportionality of these allometric laws. Therefore, by
using a correspondence between the heat capacity of a solid at a low temperature and the
metabolic rate, taking the generation of metabolic energy as a non-equilibrium process, it is
plausible to use linear irreversible thermodynamics (LIT) to obtain different proportionality
constants for the mentioned allometric laws; then, we can assume that there exist different
constants of proportionality because they are associated with different work regimes under
which different organisms might work, thinking of them as thermodynamic machines, a
phenomenon that has not been explained by biologists.

2. Thermodynamics of Thermoelectric Phenomena: A Brief Overview
2.1. Fluxes and Thermoelectric Coefficients

We can place the birth of the study of thermodynamics of thermoelectric phenomena
at the beginning of the 19th century, with the pioneering works of Thomas J. Seebeck [1].
Since then, very interesting work has been carried out in the field [32–42]. In particular, we
can summarize findings obtained by describing thermoelectric phenomena using linear
irreversible thermodynamics [25,32,41] as follows.

Let us suppose that thermoelectric materials and classical thermal engines can both
be visualized as composed of a perfect gas. For the thermal engine, we can assume that
we have a molecular gas, and for the thermoelectric material, we can assume a gas made
up of electrons. Now, as in classical thermodynamics, let us consider that one end of a
thermoelectric sample is maintained at a temperature of Th and that the other is maintained
at a temperature of Tc, where Th > Tc. Since heat flows from the hot to the cold end,
the system cannot be considered to be under equilibrium conditions. Now, thinking
of the particles in the gas as charged particles, we have an electrochemical difference
(usually called voltage difference), which is obtained by considering the difference in the
temperatures; seen another way, there is a coupling between the electrochemical potential
and a difference in the temperatures (a gradient of temperatures). Then, when we consider
problems near equilibrium, i.e., small perturbations, one can assume linear coupling
between the forces and fluxes.

By following the Onsager formalism [6], we can establish a relationship between such
forces and fluxes near the steady thermodynamically non-equilibrium regime naming them
phenomenological relations, as expressed by:

Jδ = ∑
δ

LδψXψ (1)

where Lδψ represents the phenomenological coefficients, usually depending on the intensive
variables that describe the coupling between two irreversible processes (δ and ψ), and Xψ

represents the respective thermodynamic forces. It is worthwhile to mention that in 1931,
Onsager [6] demonstrated that for a system of flows and forces based on an appropriate
dissipation function, the matrix of coefficients is symmetrical so that the phenomenological
coefficients have the following symmetry relation: Lδψ = Lψδ, which affords a considerable
reduction in the number of measured coefficients.

Then, by taking the above into account, it is possible for our system to establish
two thermodynamic flows, i.e., Jparticles and Jheat (the analysis of the expressions of these
potentials is outside the scope of the present article, but we refer the reader to the discus-
sions in [32,43]), for which we can write the following phenomenological equations (see
Equation (4) proposed by Goupil et al. [32]):[

Jparticles
Jheat

]
=

[
L11 L12
L21 L22

]
∗
[
− 1

T∇µe
∇( 1

T )

]
(2)

where Jheat is the heat flux, Jparticles is the particle flux, µe is the electrochemical potential,
and T is the temperature of a gas made up of electrons. For the heat flux and the par-
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ticle flux, there exist relations with their respective thermodynamic potential gradients;
for the particle flux, the associated gradient is XN = −1

T ∇µe, and for the heat flux, the
corresponding gradient is Xheat = ∇( 1

T ).
It is worth mentioning that since the electric field is derived from the electrochemical

potential, we can derive the following relation:

E =
−∇µe

e
= −∇V (3)

where e is the particle’s charge (for our systems, e is the charge of the electron) and V is the
electrical potential.

One very interesting result is obtained when, under certain thermodynamic condi-
tions, thermoelectric coefficients L11, L12, L21, and L22 are derived from the fluxes. Then,
by using Equation (2) under isothermal conditions, it is possible to obtain the electrical
conductivity (σT), as well as the thermal conductivity (kE) and the Seebeck coefficient (α)
as [32];

σT =
e2

T
L11 (4)

kE =
L22

T2 (5)

α =
1

eT
L12

L11
(6)

It is worth mentioning that there exists a closed relation between the Peltier effect and the
Seebeck effect by means of the α coefficient, since Π = αT, where Π is the Peltier coefficient.

2.2. Some Insights on Linear Irreversible Thermodynamics

In an attempt to study the important problem of energy transfer in biological systems,
Caplan et al. [24] investigated some linear energy converters working in steady states;
they introduced the thermodynamic definitions of power output and efficiency, as well as
the known notion of entropy production rate, using linear irreversible thermodynamics
(LIT) for this purpose. With Caplan’s definitions in mind, Stucki et al. [22] analyzed some
optimum regimes different from that of minimum entropy production previously studied
by Prigogine et al. [20]. Since then, it has become clear that in many systems (biological,
physical, chemical, etc.), the study of some optimum working regimes is important in order
to understand the diverse ways in which energy can be transferred.

From this perspective and taking into consideration the results obtained by Caplan and
others [24–26] for TIL, we can summarize some findings on the thermodynamic properties
of different work regimens.

Maximum Power Output

When we study some systems, considering linear energy converters and linear ir-
reversible thermodynamic techniques, it is possible to obtain the power output and the
efficiency of the system in non-reversible states that are in contact with one thermal source
as [24,25];

P = −TJ1X1 (7)

and
η = − J1X1

J2X2
(8)

where T is the temperature of the thermal bath, and J1, J2 and X1, X2 are the fluxes and the
forces (called phenomenological relations), respectively, with the following linear relation:
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J1 = L11X1 + L12X2 (9)

J2 = L21X1 + L22X2 (10)

which are exactly the same relations shown in Equation (2) for the thermoelectric phenomena.
It is well established that by using Equations (7)–(11), it is possible to obtain the power

output, efficiency, and entropy generation as [25,27,41],

P = TL22X2
2q2x(1− x) (11)

η =
q2x(1− x)
(1− q2x)

(12)

and
σ = L22X2

2 [(1− q2) + q2(1− x)2] (13)

respectively, where q =
L2

12
L11L22

is the degree of coupling (it is worth mentioning that the
value of q is related to what, in thermoelectricity, we call the figure of merit (Z)) , and
x = − L11

L12

X1
X2

is the driven force.
Once we can obtain the power output, efficiency, and entropy production (σ) one

important question that arises is whether the systems work in different performance
regimes in order to optimize either power output, entropy production, or a mixture of these
quantities. The above was carried out in an effort understand why certain systems generate
efficiencies that are not obtained when using classical thermodynamics.

Among the most cited results in the literature, we found four that seem to be in
agreement with the observations made in real systems, which are listed as follows:

1. Maximum power output (MPO):
For this regime, when we maximize the power function, i.e., ∂P

∂x = 0, the maximum is
obtained when x = 0.5. Thus, if we substitute this value into Equations (11)–(13), we
obtain the power output, efficiency, and entropy production, respectively, which have
the the following expressions:

PMPO = TL22X2
2(

1
4

q2), (14)

ηMPO =
1
2

q2

(2− q2)
, (15)

and
σMPO = L22X2

2(1−
3
4

q2) (16)

2. Maximum entropy production (MEP):
For this regime, when we maximize the entropy production, i.e., ∂σ

∂x = 0, the maximum
is obtained when x = 1. Thus, if we substitute this value into Equations (11)–(13), we
obtain the power output, efficiency, and entropy production, respectively, which have
the following expressions:

PMEP = 0 (17)

ηMEP = 0 (18)

and
σMEP = L22X2

2(1− q2) (19)
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3. Maximum ecological function (MEF):
For this regime, when we maximize the ecological function (E = P− Tσ), i.e., ∂E

∂x = 0,
the maximum is obtained when x = 0.75. Thus, if we substitute this value into
Equations (11)–(13), we obtain the power output, efficiency, and entropy production,
respectively, which have the following expressions:

PMEF = TL22X2
2(

3
16

q2), (20)

ηMEF =
3
4

q2

(4− 3q2)
, (21)

and
σMEF = L22X2

2(1−
15
16

q2) (22)

4. Maximum efficient power (MEP):
For this regime, when we maximize the efficient power function (PE = ηP), i.e., ∂E

∂x = 0,
the maximum is obtained when x = 0.6 (this result is only yielded for the case in which

q = 1 for a different q value, and the value of x is given by x =
4+q2−

√
16−16q2+q4

6q2 ).
Thus, if we substitute this value into Equations (11)–(13), we obtain the power output,
efficiency, and entropy production, respectively, which have the following expressions:

PMEP =
2
9

TL22X2
2 (23)

ηMEP =
2
3

(24)

and
σMEP =

1
9

L22X2
2 (25)

2.3. Linear Irreversible Thermodynamics and the Thermoelectric Generator

We have analyzed the concepts of TIL and electricity. Now, we are able to de-
scribe some thermodynamic properties of thermoelectric phenomena using linear irre-
versible thermodynamics, focusing on the way in which some thermoelectric devices (e.g.,
a thermoelectric generator) transforms energy by considering three different working
regimes, namely (a) maximum power (MPO), (b) maximum ecological function (MEF), and
(c) maximum power efficiency (MPE).

2.3.1. Maximum Power Output Regime

According to Equation (7), the power output is given by:

P = −TJparticlesXparticles (26)

Then, using Equation (2), it is possible to transform Equation (26) as follows:

P = −T[L11(−
1
T
∇µe) + L12∇(

1
T
)][− 1

T
∇µe] (27)

Now, substituting Equations (3), (4), and (6) into Equation (27) yields:

P = [−σTE + σTα∇T]E (28)

We must remember that the electric field (E) is related to the electrical potential (V)
and that in real electrical devices (for example, in a thermogenerator [32]), we can relate
this electrical potential to an electrical current (I) by means of Ohm’s law as followings:
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I =
V0

Rin
(29)

where Rin is the internal resistance of the electrical device.
Thus, by substituting Equation (29) into Equation (28), it is possible to obtain:

P = −σT Rin[I2Rin − Iα∇T] (30)

It is important to note that the internal Ohmic resistance (Rin) is related to the electrical
conductance (σT) by the following relation: Rin = L

σT Ac
[32], where L is the length of the

material and Ac is the cross-sectional area of a certain thermoelectric material. Taking into
account the above, Equation (30) transforms as:

P =
L

Ac
[−I2Rin + Iα∇T] (31)

We note that this last equation is a function of the current (I), so if we can obtain
the maximal current for the device, then it is possible to obtain the maximal electric
power output.

Then, in order to obtain the maximal electrical current, we need to remember that
according to Equation (13), the driven force (x) is given by:

x = − L11

L12

X1

X2
(32)

So, substituting Equations (2), (4), (5), (7), and (29) into Equation (32) yields:

x = − IRin
α∇T

(33)

We have shown that under the MPO regime, the power output reaches its maximum
when x = 1

2 ; therefore, we can substitute the above value into Equation (33), obtaining:

1
2
= − IRin

α∇T
(34)

When we substitute x = 0.5 into Equation (33), we obtaining the maximum power
output of the device. This happens when we have a maximum electrical current (Imax); thus,

Imax =
α∇T
2Rin

(35)

If we take into consideration that the open voltage of a thermoelectric generator is
given by V0 = α∇T, substituting V0 into Equation (35) yields:

Imax =
V0

2Rin
, (36)

which is the classical maximum electrical current obtained by Goupil et al. [32] and others
for a thermoelectric generator but using a different approach.

Finally, using Equation (31), it is easy to obtain the maximum power output in terms
of the maximal electrical current (Imax), only substituting Equation (36) into Equation (31),
obtaining the following expression:

Pmax
MPO =

α2∇T2

4
σT (37)

Again, this is a classical result for a thermoelectric generator (see Equation (49)
in [32]). It is important to note that the same result could have been obtained directly
using Equation (14) and substituting Equations (2) and (6) and considering that electrical
conductivity must be greater than the thermal conductivity and that the coupling factor
should be q = 1.
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2.3.2. Maximum Ecological Function Regime

Following the same ideas as in Section 2.3.1, we can obtain the maximal electric current
and the maximal power output but for the ecological function regime. In the context of the
finite-time thermodynamics the regime, the ecological working regime [13] consists of the
maximization of a function (E) that represents a relationship between high-power output
and low-entropy production per cycle. This function is given by E = P− Tσ, where P is
the power output and σ the total entropy production (system plus surroundings) and T is
the temperature of the cold reservoir.

Then, in order to obtain the maximal electrical current, we need to remember that the
driven force (x) is given by x = − IRin

α∇T . We also showed that under the MEF regime, the
power output reaches its maximum when x = 3

4 ; therefore, we can substitute the above
value into Equation (33), obtaining:

Imax =
3V0

4Rin
(38)

which is the maximum electrical current for the thermoelectric generator in the ecological
function regime. Moreover, according to Equation (31), it is easy to obtain the maximum
power output for the ecological function regime in terms of the maximal electrical current
(Imax), only substituting Equation (38) into Equation (31), obtaining the following expression:

Pmax
MEF =

3α2∇T2

16
σT (39)

As we mentioned before, the same result could have been obtained directly using
Equation (20) and substituting Equations (2) and (6), as well as considering that the electrical
conductivity must be grater than the thermal conductivity and that the coupling factor
should be q = 1.

2.3.3. Maximum Efficient Power Regime

Following the same ideas as in Sections 2.3.1 and 2.3.2, we can obtain the maximal
electric current and the maximal power output but for the efficient power regime. The
maximum efficient power regime given by Yilmaz et al. [15] considers the effects on the
design of heat engines, as well as the power and the cycle’s efficiency. This criterion has
been successfully applied to the Carnot, Brayton, and diesel engines, among other systems.
Therefore, the approach called maximum efficient power in the context of thermal engines
is defined as Pe = ηP, where P is the power output and η is the efficiency of the cycle.
Maximization of this function provides a compromise between power and efficiency, where
the designed parameters under maximum efficient power conditions lead to more efficient
engines than those under the maximum power conditions [15].

Then, in order to obtain the maximal electrical current, we showed that under the
MEP regime, the maximum power output reaches its maximum when x = 3

4 . Then, we can
substitute the above value into Equation (33), obtaining:

Imax =
2V0

3Rin
(40)

Which is the maximum electrical current for a thermoelectric generator under the effi-
cient power regime. Moreover, according to Equation (40), it is easy to obtain the maximum
power output for the efficient power regime in terms of the maximal electrical current (Imax),
only substituting Equation (40) into Equation (31), obtaining the following expression:

Pmax
MEF =

2α2∇T2

9
σT (41)

As we mentioned before, the same result could have been obtained directly using
Equation (23) and substituting Equations (2) and (6), as well as considering that the electrical
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conductivity must be grater than the thermal conductivity. Figure 1 depicts the maximum
power outputs for the three different regimes under study.

Figure 1. Power output for the three regimes, namely maximum power output (MPO), maximum
ecological function (MEF), and maximum efficient power (MEP).

Finally, Figure 2 depicts the maximum electrical current for the three different regimes
considered in this paper.

Figure 2. Maximum electrical current for the three regimes, namely maximum power output (MPO),
maximum ecological function (MEF), and maximum efficient power (MEP).

3. Allometric Laws

Now, we tackle a problem that is, in principle, totally different from what we have
been talking about. The aforementioned problem involves finding the origin of empirical
laws in animal physiology that relate the energy consumption rate or metabolic rate to the
size of organisms, known as allometric scaling laws [29–31].

3.1. Introduction to the Allometric Laws

Since the mid-20th century, several authors have delineated these empirical laws
based on empirical studies. Of particular relevance are the studies conducted by Kleiber
et al., Brody et al., and Hemmingsen et al. [29–31]. All these researchers described the
fact that there is a relationship between the rate at which an individual expends energy
under thermoneutral conditions and their body mass in adulthood. This relation is usually
expressed in terms of two parameters: a scaling exponent and the normalizing coefficient.
For large mammals, the scaling exponent has been placed around 0.75, and for small
mammals and birds, the exponent has been placed around 0.66 [44,45]. A normalizing
coefficient has been demonstrated that has a large range of values depending on biological
features, from plants to animals, including unicellular organisms.

P = AWβ (42)
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where P is the basal metabolic rate, A is the normalizing coefficient, W is the body mass,
and β is the scaling exponent.

The foregoing is the product of phenomenological observations; however, at the
cellular level, the organization and synthesis of molecules that allow for the continuous
supply of energy to the interior of the cells are required. It is extremely important that
there is a mechanism that allows these molecules to be transported into cells without
compromising cell integrity, making their transduction selective and orchestrated from
the cell membrane itself. The biolipid layer that forms the cell membrane, as well as
the inner membrane in the mitochondria, uses similar mechanisms (even in plants, the
organization and functioning are similar); that is, without the phosphorylation of ADP
through the structure of the biomembranes, it would not be possible to carry out the
release of energy through the oxidation of ADP, which is coupled with proton translocation
through the membrane.

In other words, the number of positive charges (protons) that cross the cell membrane
is called the metabolic flux. These charges are released due to the coupling between electron
transport and ADP phosphorylation. We denote this flux as J. At the same time that protons
are transported into the cell, an electrochemical gradient is produced, called the proton
motive force (∆p).

Thus, if we denote C as the conductance of the membrane and J as the current of
protons (produced by the electromotive force due to the transport of electrons), then by
simply using Ohm’s law, we obtain J = C∆p.

Regarding this last expression, the process of energy transfer determines a metabolic
flux that, according to Demetrius et al. [46], defines the metabolic energy per particle
generated per cycle, as expressed by E = Jτ, where τ denotes the cycle time, i.e., the mean
turnover time for the redox reactions. This characterization of the metabolic energy of
the molecule can be used in order to determine the total metabolic energy generated by
downhill electron transfer during one cycle of the redox reaction in the following manner.
By taking into account Equation (42), a multicellular organism of size W can be considered
an aggregate of closely packed identical cells. This means that an organ or a tissue can be
considered as the sum of all cellular metabolic rates, obtaining a total empirical relation
representing the total metabolic rate as [47]:

P = γC∆pWβ (43)

where γ denotes the efficiency with which energy is transported between the different cells
and tissues within the organism.

Finally, it is worth mentioning that there exist two analytic expressions for the scal-
ing exponent (β) as a function of metabolic efficiency (µ), namely β = (2µ − 1)/µ and
β = (4µ− 1)/4µ, which, for each case, specify the class of organisms to which these dif-
ferent expressions of β refer, i.e, perennial plants (β = 1) or mammals and large birds
(β = 2/3).

3.2. Metabolic Energy as a Non-Equilibrium Process

As we previously mentioned, metabolic energy is the result of the excitation of
molecules, which drives a downhill flow of electrons due to the coherent excitation of
the molecular groups. Based on this simple assumption, Demetrius et al. [46] proposed
so-called “quantum metabolism”, which assumes that Planck’s quantization of radiation
oscillators can also be applied to the vibration of large molecular groups embedded in the
membrane, where energy transduction occurs on the microscopic level (i.e., the coupling of
two molecular motors: the redox reaction and ADP phosphorylation, in which the struc-
tures where the cycle happens consist of lipid–protein complexes, which are embedded in
the phospholipid bilayer). Then, this is all held together by many cooperative non-covalent
interactions, where the embedded proteins have dipolar properties and can be expected to
exhibit oscillations. Moreover, we can assume that the metabolic energy of the system is
determined by 3N harmonic molecular oscillators.
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Thus, it is plausible to consider Debye’s quantum theory of solids, which postulates
that the material oscillators are not actually independent of the oscillations of the others
but are coupled with them because of the forces between the molecules, which describes
the mechanism of energy transduction in terms of the collective modes of vibration of
molecular groups using a correspondence between the heat capacity of a solid at a low
temperature and the metabolic rate and taking the generation of metabolic energy as a
non-equilibrium process; therefore, it is plausible to use linear irreversible thermodynamics
(LIT) to obtain some interesting results in order to understand how metabolism is generated
by the energy released by the particles as they are transferred from the donor to acceptor
states within the energy-transducing biomembrane.

3.3. The Heat Capacity and Its Correspondence Withe Total Metabolic Rate

Based on the discussion in the previous section, let us begin by calculating the heat
capacity using the results obtained in Section 2.

The heat capacity in solids is defined as:

Cv =
dQ
dT

(44)

where Q is the amount of heat that must be added to a object with a mass of M in order to
raise its temperature by T.

Then, by considering that

Jheat =
Q̇
A

=
1
A

dQ
dt

, (45)

substituting Equation (45) into Equation (44) yields:

Cv =
Jheat

A dT
dt

(46)

where Jheat is the heat flux.
In our case, taking into account Equation (2) under isothermal conditions and consid-

ering the kinetic coefficients and the transport parameters defined by Goupil et al. [32], we
can rewrite Equation (46) as:

Cv =
e2TSNσT∇µe

A dT
dt

(47)

where e is the particle’s charge, T denotes the absolute temperature, SN is the entropy
transported per carrier (or per particle) as defined by Callen [48], σT is the isothermal
electrical conductivity, and ∆µe is the electrochemical potential.

Now, as performed by Demtrius et al. [46], we consider that in the steady state, the
energy (u) associated with ADP phosphorylation is given by u = TSN , where SN , in
our case, denotes the thermodynamic entropy of the cell and (T) denotes the absolute
temperature; then, Equation (47) becomes:

Cv =
e2uσT∇µe

A dT
dt

(48)

Then, assuming that the density of the cell is uniform and that the entropy is propor-
tional to the total volume of the cell, i.e., u = aWc, where Wc denotes the cell size and a a is
the proportionality constant, the last expression into Equation (48) yields:

Cv =
e2aWcσT∇µe

A dT
dt

(49)
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Based on Equation (49), let us assume that A dT
dt ∝ τc, i.e, the temperature (more

precisely, the energy) under a steady state depends on the mean turnover time of the
oxidation–reduction reaction, which is the metabolic cycle (τc). Thus, Equation (49) becomes:

Cv =
e2aWcσT∇µe

γτc
(50)

where γ is a proportionality constant.
Demtrius et al. [46] derived an expression for the metabolic time (τc) in the two

regimes for long and short cycle times; they associated these times with different types
of organisms, namely (a) systems with a large cell size, typically green plants whose cells
contain chloroplasts as energy-transducing organelles and (b) systems with a relatively
small cell size. Therefore, these times are:

τc = ξW
(1−µ)

µ
c (51)

and
τc = ξW

(1)
4µ

c (52)

where Wc denotes the cell size, µ is the metabolic efficiency (closely related to the degree
of coupling between the electron transport process and ADP phosphorylation), and ξ is a
constant. Then, if we substitute these expressions into Equation (49), we obtain:

Cv =
e2a
ξ

W2− 1
µ σT∇µe (53)

and

Cv =
e2a
ξ

W4− 1
µ σT∇µe (54)

According to Equations (53) and (54), the correspondence between the total metabolic
rate (P) (see Equation (43)) and the heat capacity (Cv) is clear.

3.4. Different Thermodynamic Work Regimes in the Context of the Allometric Laws

Now, when applying Ohm’s law to the proton circuit, since for the isothermal process,
an electric field derived from the electrochemical potential is generated in such a manner
that is in accordance with Equations (3) and (29), the electrochemical potential becomes:

∇µe = −αg IRin (55)

As mentioned in Section 2, we have three working regimes: (a) maximum power
(MPO), (b) maximum ecological function (MEF), and (c) maximum power efficiency (MPE).
Depending on which one we choose, a maximum current can be achieved. Thus, we obtain
the heat capacities depending on the regime on which we are working as follows.

3.4.1. Maximum Power Regime

For this working regime, substituting Equation (36) into Equation (55) yields:

∇µe =
αg

2
V0 (56)

Then, by entering Equation (56) into Equations (53) and (54), the heat capacity becomes:

Cv =

(
1
2

)
e2aαg

ξ
W2− 1

µ σTV0 (57)
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and

Cv =

(
1
2

)
e2aαg

ξ
W4− 1

µ σTV0 (58)

3.4.2. Ecological Function Regime

For this working regime, substituting Equation (38) into Equation (55) yields:

∇µe =
3αg

4
V0 (59)

Then, entering Equation (56) into Equations (53) and (54), the heat capacity becomes:

Cv =

(
3
4

)
e2aαg

ξ
W2− 1

µ σTV0 (60)

and

Cv =

(
3
4

)
e2aαg

ξ
W4− 1

µ σTV0 (61)

3.4.3. Maximum Efficient Power Regime

For this working regime, substituting Equation (40) into Equation (55) yields:

∇µe =
2αg

3
V0 (62)

Then, entering Equation (56) into Equations (53) and (54), the heat capacity becomes:

Cv =

(
2
3

)
e2aαg

ξ
W2− 1

µ σTV0 (63)

and

Cv =

(
2
3

)
e2aαg

ξ
W4− 1

µ σTV0 (64)

For the special case in which the scaling exponent is β = 2/3 (mammals and large
birds), Figure 3 depicts the heat capacity (Cv) as a function of the organism size (W) for the
three different working regimes.

Figure 3. Heat Capacity (Cv) as a function of the organism size (W) for the three regimes, namely
maximum power output (MPO), maximum ecological function (MEF), and maximum efficient
power (MEP).
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4. Discussion and Concluding Remarks

In this paper, the methodology of so-called LIT is applied to the well-known phe-
nomenon of thermoelectricity. LIT is traditionally used locally to study general systems
in non-equilibrium states that are considered both internal and external contributors to
entropy increments in order to analyze the efficiency of two coupled processes with general-
ized fluxes (J1 and J2) and their corresponding forces (X1 and X2). We extend the former to
analyze thermodynamic properties: the power output, efficiency, and entropy production,
through which energy is exchanged in a thermoelectric device but from the point of view
of non-equilibrium thermodynamics. By using linear irreversible thermodynamics, it is
possible to analyze three different regimes of operation: maximum power output (MPO),
maximum ecological function (MEF), and maximum efficient power function (MEPF).

By considering thermoelectric devices as systems that can work under different perfor-
mance regimes in order to optimize either power output, entropy production, or a mixture
of these quantities, it is possible to obtain the maximum power output and the maximum
electric current of a thermoelectric device known as a thermoelectric generator (TEG) in
the so-called maximum power regime (see, for instance, Equations (36) and (37)), which
corresponds to the values obtained previously for a thermoelectric generator but using a
different approach [32].

Afterward, we obtained the maximum power output and the maximum electric current
but under different working regimes (see Equations (38) and (39) for the ecological function
regime and Equations (40) and (41) for the maximum efficient power regime). According to
Figure 1, it is clear that PMPO > MEP > MEF when ∆T → 1, but PMPO ≈ MEP ≈ MEF
when ∆T → 0. As is well known for all heat engines such as thermoelectric generators,
maximum power generation efficiency is thermodynamically limited by the Carnot ef-
ficiency ( ∆T

Th
); for the different devices that use the Seebeck effect for the generation of

electricity, there are different output powers (see, for instance, Equations (37), (39), and (41))
depending on the ∆T that these devices can handle and the working regime. Therefore, the
lesson is very clear: in order to achieve better maximum power in a thermoelectric device,
it is necessary to have a ∆T close to 1, which necessarily impacts the efficiency of the device
once the upper bound is the Carnot efficiency. Moreover, across a large ∆T, the electrical
current required for the highest-efficiency operation changes as the material’s properties
change with temperature or segment [49]; the latter imposes an additional requirement
related to thermoelectric materials, which must depend on the thermoelectric parameters,
as per the Seebeck coefficient, the conductivity of the materials, and its figure of merit (Z).

For instance, the highest Z that has been achieved for inorganic materials is 2.2,
whereas for organic materials, the highest Z is 0.75 [50] . The value of Z is mainly due
to low thermal conductivity and high electrical conductivity, which assist in the transfer
of electrons during the thermoelectric process [51]. In some cases, it is not the figure of
merit but the Seebeck coefficient (measured by dividing the difference in voltage at room
temperature and the required temperature by the difference between these temperatures
S = −∆V

∆T ) that is being improved in order to obtain better efficiency [52]. It is clear from
Figure 1 that in order to achieve better maximum power (which is related to Z) in a
thermoelectric device, it is necessary to have a ∆T close to 1.

It is important to comment that new findings seem to show that the efficiency in the
conversion of heat into electricity is proportional to ∆T2 instead of ∆T. The main reason
for this is that in real technological devices, the heat source frequently fluctuates, so it is
necessary to introduce a kind of transient heat source instead of the traditional steady-state
heat flux, with the latter producing a change in the figure of merit that is larger in the
transient state than in the steady state [53].

On the other hand, according the empirical studies conducted by Kleiber in 1961 [46],
analyzing the exchange of energy in living beings, two elements are characterize the
behavioral and physiological properties of an organism: its body size and its metabolic
rate. Therefore, by considering the fact that the metabolism of an organism is generated
by the energy released by electrons and protons as the particles are transferred from
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donor to acceptor states within the energy-transducing membrane [46], it is possible to
establish a relation between the thermodynamic variables and the metabolic parameters,
in particular, between the heat capacity and the metabolic rate. By carrying this out, it is
possible to obtain the heat capacity for different work regimes using linear irreversible
thermodynamics. Since there is a correspondence between the metabolic rate and heat
capacity, different relationships for the heat capacities or metabolic rates can be established,
depending on the work regime in question.

The algebraic structure of the obtained expressions (Equations (57), (58), (60), (61),
(63) and (64)) are similar to the expressions obtained by Demetrius et al. [46] for allometric
laws, depending on the phylogenetic status (plants or mammals), particularly if there is an
agreement between the β exponent in the allometric laws (Equation (43)); however, there is
no agreement between the constants of proportionality in the same equation.

In Table 1, particularly, in Figure 3, we can observe that in the expressions representing
the metabolic rate, the constant factors change depending on the working regimen; the
above might be related to the empirical observations made by Hemmingsen [30] on unicel-
lular organisms, poikilotherms, and homeotherms, in which, when relating the metabolic
rate to the size of the bodies of organisms, this produced a similar scaling exponent but
with very different proportionality constants in the studied cases, i.e., the proportionality
constant changes depending on the phylogenetic organism because of the working regime
in which these "heat engines" are working. Moreover, the efficiency with which the energy
is transduced depends, again, on the working regime used, generating different propor-
tionality constants for distinct organisms, in concordance with the observation made by
Tilman et al. (2004) [46,54], i.e., that many different ecological roles can be performed by
organisms of a similar size and temperature.

Table 1. Heat Capacity (Cv) as a function of the organism size (W) for the three different working regimes.

Working Regime Plants Mammals

MPO Cv =
(

1
2

)
e2aαg

ξ W2− 1
µ σTV0 Cv =

(
1
2

)
e2aαg

ξ W4− 1
µ σTV0

MEF Cv =
(

3
4

)
e2aαg

ξ W2− 1
µ σTV0 Cv =

(
3
4

)
e2aαg

ξ W4− 1
µ σTV0

MEPF Cv =
(

2
3

)
e2aαg

ξ W2− 1
µ σTV0 Cv =

(
2
3

)
e2aαg

ξ W4− 1
µ σTV0
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