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Abstract: Humans are able to quickly adapt to new situations, learn effectively with limited data,
and create unique combinations of basic concepts. In contrast, generalizing out-of-distribution
(OOD) data and achieving combinatorial generalizations are fundamental challenges for machine
learning models. Moreover, obtaining high-quality labeled examples can be very time-consuming
and expensive, particularly when specialized skills are required for labeling. To address these
issues, we propose BtVAE, a method that utilizes conditional VAE models to achieve combinatorial
generalization in certain scenarios and consequently to generate out-of-distribution (OOD) data in
a semi-supervised manner. Unlike previous approaches that use new factors of variation during
testing, our method uses only existing attributes from the training data but in ways that were not
seen during training (e.g., small objects of a specific shape during training and large objects of the
same shape during testing).

Keywords: generative models; VAE; back translation

1. Introduction

Combinatorial generalization, the ability to understand and produce novel combina-
tions of familiar elements, is a key aspect of human intelligence. Humans can make “infinite
use of finite means” [1,2], using a small set of elements (such as words) to create limitless
combinations (such as new sentences) [3]. For example, one can imagine a pink elephant
even if they have never seen one before. While color and object are independent, for a hu-
man brain imagining a pink elephant is a trivial task. However, it is not as straightforward
for machine learning (ML) models to generate a pink elephant if there are no pink elephants
in the training data as they struggle with generating out-of-distribution (OOD) data or mix-
ing existing attributes (color and object) [4–7]. The authors of [3] argue that combinatorial
generalization should be one of the top priorities in modern artificial intelligence.

Given the fact that acquiring high-quality labeled examples can be time-consuming
and expensive, various semi-supervised learning (SSL) algorithms have been proposed for
deep learning [8–12], generative modeling [13–15], and disentanglement learning [13–16].
These learning algorithms attempt to efficiently utilize the large number of unlabeled data
alongside a relatively small number of labeled data. However, the performance of the SSL
algorithms can degrade when the unlabeled data contain OOD examples [17] since SSL
methods are designed with the assumption that both unlabeled and test data come from
the same distribution as the labeled data.

OOD generation is a relatively new field of research. Data augmentation, known
for its effectiveness in enhancing data diversity, plays a pivotal role in improving OOD
generalization capabilities [18]. Studies such as [7,19–22] have utilized generative models
like GANs and VAEs to produce OOD samples in order to improve the efficacy of OOD
detection. While their focus is not on the model’s capability to generate OOD data, they
augment the training set with generated samples to improve the learning process of
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OOD classifiers, with the ultimate goal of detecting OOD inputs. The OOD samples
generated in these studies typically either mimic the characteristics of in-distribution
data or are restricted to the periphery of the in-distribution data space. In contrast, our
approach diverges significantly from these methods as our objective is not OOD detection.
Moreover, our method aims to generate OOD data that do not mimic the characteristics of
in-distribution data but have desired OOD properties. Rather than generating samples from
the boundary of in-distribution data, we concentrate on the generation of OOD samples
with desired attribute value combinations that do not exist in the in-distribution data.

Moreover, recent advancements in domain adaptation leverage the capabilities of
generative models [23–26], focusing on adapting pre-trained generators to create images
for new target domains, OOD. The objective here is to effectively transfer and adapt the
variable factors learned from in-distribution data to OOD contexts. However, a notable
limitation of these adapted models is their tendency to lose the capability to generate
samples from the original in-distribution data post-adaptation. In contrast to domain
adaptation approaches, our aim is to generate OOD data while preserving the model’s
original functionality with in-distribution data. This approach ensures a more versatile
model capable of handling both in-distribution and OOD data effectively.

Variational Autoencoders (VAEs) have demonstrated remarkable versatility, with
applications across a diverse range of domains. These include drug design [27,28], im-
age retrieval [29–31], and dialog generation [32,33]. While VAEs are effective in specific
scenarios, they often struggle to combine attributes in ways that reflect human cognitive
processes. This limitation becomes more pronounced in situations where training data lack
diversity or when the model encounters novel combinations of attribute values. This gap
highlights the necessity for more sophisticated generative models capable of addressing
these challenges. For instance, Ref. [34], a VAE, combined with image processing tech-
niques, was applied in game design to successfully generate new game maps. However,
our approach diverges as we aim to generate new samples that encompass desired OOD
attribute value combinations, thereby expanding what VAEs can achieve in terms of data
generation and diversity.

Recently, several papers used OOD datasets similar to those used in this paper to
explore whether models that have high disentanglement performance are also able to per-
form certain forms of combinatorial generalization [35–40]. Refs. [37,41] showed promising
results using disentanglement models for OOD tasks, but the models were tested on simple
OOD data, where only a small number of combinations were excluded [38]. In contrast,
recent studies, such as [38–40], tested different models under more challenging conditions
and found no evidence that the disentanglement representation supports combinatorial
generalization, in both latent space and reconstruction space, under challenging generaliza-
tion conditions (where a larger number of combinations are excluded from the training set).
In this paper, we test the OOD generation performance of our model by excluding specific
combinations of attribute values from the training data, similarly to the approach employed
in [38–40]. However, our objective diverges from aiming for a disentangled latent space;
instead, we focus on the conditional generation of unseen property combinations.

In response to these challenges, we propose BtVAE (Back-translation Variational Au-
toencoder), a semi-supervised generative model that leverages the strengths of conditional
VAEs while incorporating a back-translation procedure to improve their ability to handle
OOD data. We aim to address the challenge of reconstructing out-of-distribution data as
well as generating samples that exhibit unseen combinations of attributes values. Our eval-
uation of BtVAE’s performance on multiple datasets highlights its ability to reconstruct and
generate OOD samples with impressive accuracy. Moreover, we show BtVAE’s capability to
effectively manipulate OOD data by changing the attributes according to the desired values.
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The main contributions of our work include:

1. We propose BtVAE, a semi-supervised approach for generating and reconstructing
OOD data based on previously unseen combinations of attribute values. Our method
leverages conditional VAEs to achieve combinatorial generalization.

2. We evaluate the performance of BtVAE on various datasets and demonstrate its
effectiveness in reconstructing and generating OOD samples with high fidelity, even
when the available labeled data are limited.

3. We show that BtVAE can effectively manipulate the OOD data by changing the
attributes according to the desired values, demonstrating its potential for various
real-world applications where new combinations of attribute values might emerge.

The remainder of the paper is organized as follows: In Section 2, we provide a
background on VAEs and semi-supervised learning. Section 3 describes the proposed
BtVAE method in detail. In Section 4, we present the experimental results and discuss
the performance of BtVAE in various datasets. Finally, Section 5 concludes the paper and
outlines possible directions for future research.

2. Background
2.1. Semi-Supervised Learning

Semi-supervised learning (SSL) combines a small number of labeled data with a
large number of unlabeled data during training. The underlying assumption is that the
structure of the data can be learned from the unlabeled samples, while the labeled data
provide guidance for accurate prediction [42]. SSL algorithms are particularly useful
when labeled data are scarce or expensive to acquire, which is often the case in real-world
applications. Various SSL algorithms have been proposed for deep learning, such as
consistency regularization [10,11], mixup-based methods [8,9], pseudo-labeling [8,13,43]
and teacher-student models [12]. These algorithms generally rely on the assumption that
test data and unlabeled data originate from the same distribution as labeled data. Each of
these methods is characterized by a unique loss function, reflecting its core principle and
approach to leverage both labeled and unlabeled data.

Consistency Regularization:
Consistency regularization relies on the idea that the model should output similar pre-

dictions for an unlabeled data point and its perturbed version. This can be mathematically
represented as:

Lconsistency = Ex∼U ,x̃∼T (x)

[
| f (x)− f (x̃)|22

]
where U is the set of unlabeled data, T represents a set of data augmentations or transfor-
mations, and f is the model’s prediction function.

Mixup-Based Methods:
Mixup trains a model on convex combinations of pairs of examples and their labels.

The mixup loss function is:

Lmixup = E(xi ,yi),(xj ,yj)

[
CrossEntropy( f (λxi + (1− λ)xj), λyi + (1− λ)yj)

]
where (xi, yi) and (xj, yj) are pairs of data points and their labels, and λ is a mixing
coefficient typically sampled from a Beta distribution.

Pseudo-Labeling:
Pseudo-labeling generates labels for unlabeled data using the model’s predictions

and then trains the model on these pseudo-labeled examples. The loss function can be
expressed as:

Lpseudo-label = Ex∼U [CrossEntropy( f (x), ŷ)]

where ŷ is the pseudo-label generated by the model for an unlabeled data point x.
Teacher-Student Models (Mean Teacher):
The mean teacher model, a student network, is trained on labeled data, while its

predictions are regularized to be consistent with those of a slowly-updated teacher network.
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The teacher network’s weights are an exponential moving average (EMA) of the student’s
weights. The loss, ensuring that the student’s predictions are close to the teacher’s, is
given by:

Lmean-teacher = Ex∼U
[
| fstudent(x; θstudent)− fteacher(x; θteacher)|22

]
where f student and fteacher are the predictions of the student and teacher models, respectively.

Each approach offers unique strengths and faces specific challenges, shaping their
suitability for different types of data and learning tasks. For instance, consistency reg-
ularization is robust against input perturbations but may struggle with unrealistic data
variations. Mixup methods enhance generalization yet risk creating ambiguous examples.
Pseudo-labeling, while straightforward, can suffer from confirmation bias. The mean
teacher model ensures stability in learning but requires judicious tuning to maintain the
student-teacher alignment.

In this paper, in order to handle the unlabeled data we are inspired by the pseudo-
labeling technique. Pseudo-labeling builds upon the general self-training framework [44],
where a model goes through multiple rounds of training by leveraging its own past
predictions. The key idea behind pseudo-labeling is to use the model’s predictions on
the unlabeled data to generate ‘pseudo-labels’/‘pseudo-attributes’ and then use these
pseudo-labels to further train the model [43].

Let DL = {(xi, yi)|i := 1 . . . NL}, DU = {(xi)|i := 1 . . . NU} be labeled and unlabeled
datasets respectively; we use x and y to denote the vector of instances and their vector of
labels. We train a model fη with parameters η on the labeled dataset and use fη to predict
the labels for the unlabeled dataset generating pseudo-labels ŷi for each unlabeled example.
The training procedure is as follows:

1. Train the model fη(x) on the labeled dataset DL using a supervised loss function,
typically cross-entropy (or mean squared error for regression tasks).

Ls(η) = −
NL

∑
i=1

log pη(yi | xi).

2. Use the trained model fη(x; θ) to generate pseudo-labels for the unlabeled dataset
DU :

ŷj = arg max
y

pη(y | xj), for j = 1, . . . , NU .

3. Create the augmented dataset Da = DL ∪ {(xj, ŷj)}NU
j=1 by combining the labeled data

and the pseudo-labeled data.

Our methodology, though inspired by pseudo-labeling, deviates from its standard
implementation. Instead of relying on a pre-trained classifier on labeled data, our approach
involves alternating the training of our classifier between labeled and unlabeled data within
the same training cycle. This technique allows the model to continuously adapt and learn
from both data types simultaneously rather than in distinct phases. A more comprehensive
explanation of this methodology is detailed in Section 2.

2.2. Variational Autoencoders

Variational Autoencoders (VAEs) [45,46] are a class of deep latent variable models
(LVMs). In deep LVMs, the primary objective is to optimize the data likelihood pθ(x), where
x represents the observed data and θ denotes the model parameters. Formally, the goal is
to maximize the marginal likelihood of the observed data, which involves integrating over
the latent variables z:

pθ(x) =
∫

pθ(x|z)p(z)dz.
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However, this integration is typically intractable due to the high dimensionality and
complexity of the data and model. Instead, variational inference allows this problem to be
reframed as an optimization problem by introducing an approximation of the true posterior.

qϕ(z|x) = arg min
q

DKL(qϕ(z|x)∥pθ(z|x),

that allows a tractable bound on pθ(x) to be formed. In particular, VAEs amortize the
inference process, that is, approximate qϕ(z|x) using a inference network allowing scaling
to large datasets [45,46]. From the definition of KL divergence, we obtain:

DKL(qϕ(z|x)∥pθ(z|x)) = Eqϕ(z|x)

[
log

qϕ(z|x)
pθ(z|x)

]
= Eqϕ(z|x)

[
log qϕ(z|x)

]
−Eqϕ(z|x)[pθ(z, x)] + log pθ(x)) (1)

Rearranging Equation (1), we obtain,

log pθ(x) = DKL(qϕ(z|x)∥pθ(z|x))−Eqϕ(z|x)
[
log qϕ(z|x)

]
+Eqϕ(z|x)[pθ(z, x)]

≥ −Eqϕ(z|x)
[
log qϕ(z|x)

]
+Eqϕ(z|x)[pθ(x, z)]

= −Eqϕ(z|x)
[
log qϕ(z|x)

]
+Eqϕ(z|x)[pθ(z)] +Eqϕ(z|x)[pθ(x|z)]

= Eqϕ(z|x)[log pθ(x|z)]− DKL(qϕ(z|x)∥pθ(z)) (2)

= L(θ, ϕ; x),

where L is known as the Evidence Lower BOund (ELBO) [45]. In Equation (2), the first
term is the reconstruction error (negative), and the second term is the Kullback–Leibler
(KL) divergence between the approximate posterior qϕ(z|x) and the prior distribution pθ(z)
over the latent variables. Commonly, the prior distribution p(z) is selected as a standard
Gaussian distribution, p(z) = N (z|0, I). In the ELBO objective, the reconstruction error
measures the model’s ability to reconstruct input data, while the KL divergence regularizes
the latent space by encouraging the encoding mechanism to align the latent variables with
the prior distribution. This dual aspect of the ELBO, balancing between accurate data
reconstruction and adherence to a prior distribution, is central to the effective functioning
of Variational Autoencoders.

To optimize the ELBO objective, with respect to the parameters of the model, gradients
must be backpropagated through the stochastic sampling process z ∼ qϕ(z|x). This is
permitted by the reparametrizing z using a differentiable function gϕ(ϵ, x) of a noise
variableϵ : z = gϕ(ϵ, x) with ϵ ∼ p(ϵ). Since the prior distribution p(z) is typically chosen
to be a standard Gaussian distribution, p(z) = N (z|0, I), and the inference network a
Gaussian distribution with diagonal covariance, N (z|µ, σ2I), the reparameterization of z
simplifies to z = µ + σ ⊙ ϵ with ϵ ∼ N (z|0, I).

2.3. Conditional VAEs

One of the limitations of VAEs is the lack of control over the data generation process.
Conditional Variational Autoencoders (CVAEs), as introduced in [13,47], extend the VAE
framework to address this limitation. CVAEs incorporate additional information, y, such
as specific attributes or labels, into the generative process, enabling more directed and
controlled data generation.

In this context, we focus on CVAEs with conditioning applied solely to the decoder.
The conditional decoder takes both the latent variable z and the conditioning variable y
as input to reconstruct the data, denoted by pθ(x|z, y). The modified objective function
becomes:

L(θ, ϕ; x, y) = Eqϕ(z|x)[log pθ(x|z, y)]− DKL(qϕ(z|x)∥p(z)). (3)
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By limiting the conditioning only on the decoder, the latent variable z is encouraged to
capture the variations in the data that are not explained by the conditioning variable y. This
allows the model to learn a representation of the data in the latent space that is disentangled
from the conditioning variable. By encoding the data and modifying the conditioning
variable y before decoding, it is possible to manipulate the data in a controlled way.

In a semi-supervised setting, the conditioning variable y can represent class labels
or attribute values associated with the input data. The labeled data can be used to train
the CVAE with both the input data x and the corresponding conditioning variables y. For
unlabeled data, where the class labels or attribute values are not available, we can condition
on ’pseudo-labels’ or ‘pseudo-attributes’. These are generated by a prediction network,
serving as substitutes for actual labels or attributes, thus allowing the conditional model to
still operate effectively even in the absence of explicitly labeled data.

In summary, VAEs and their conditional variants offer a powerful framework for
learning latent representations of data. By combining VAEs with semi-supervised learning
techniques, we can effectively utilize both labeled and unlabeled data, which have the
potential to enhance model performance, especially in scenarios where labeled data are
limited. However, it is important to note that the extent of performance improvement can
vary depending on the specific conditions and the nature of the data.

3. BtVAE

We assume that we observe data generated from some joint data distribution
p(x, y) = p(x|y)p(y) where x is the random variable that corresponds to the input data; its
instantiations, x, take values in some set X . The random variable y = (y1, y2, . . . , yK) is the
conditioning variable, and its instantiations, y, take values in the set Y = Y1 × · · · × YK

where Y k can be a finite value set or the continuous space RD, with D denoting the dimen-
sionality of the continuous space.

We have access to a labelled and an unlabelled training set, DL and DU , respectively,
with typically NL << NU . Due to the finite size of these sets, and in particular that of
the labelled dataset, the empirical distributions that we can obtain from them might not
accurately reflect the true data distribution. Such a situation can be further aggravated
due to confounding factors during data collection, which can also bias the empirical
training distribution. Of particular interest for us is the setting in which the empirical
marginal distribution of the conditioning random variable, p̂(y), is different from the true
marginal p(y).

To clarify, the empirical marginal distribution p̂(y) might not adequately represent
certain subspaces of Y . For discrete conditioning random variables, the empirical marginal
distribution p̂(y) can have zero support for some of the values of Y , i.e., not all possible
value combinations under the true prior appear in the DL training set. For continuous
conditioning random variables, p̂(y) might not accurately represent the true density across
the entire continuous domain Y . This discrepancy can manifest as under-represented
regions or “gaps” within the continuous space.

We have a rather weak requirement that the p̂(yk) empirical marginal distributions
have non-zero support for all values or intervals of Y k, i.e., various values or intervals of a
given conditioning attribute yk have been seen in the training set. Without this, learning to
generate instances with the missing values becomes an insurmountable challenge. Let us
denote by YD the y vector values (or continuous intervals) that appear in the training set
and by YOOD = Y − YD the complement, representing non-observed, out of the empirical
training distribution, values (or intervals) within Y . To give some concrete examples, if we
want to model faces the training set might not contain images of women wearing glasses,
but it should contain faces of women and faces with glasses, and we would like to generate
faces of women wearing glasses. If we want to model molecules, the training dataset might
not contain a range of LogP combined with a particular range molecular weight values; it
should nevertheless contain molecules with molecular weight in the desired range as well
as molecules in the particular range of LogP values.
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We want to learn conditional generative models, p(x|y), that are defined and well
behaved for all possible y values under the true prior p(y). This means that we also want
to have low reconstruction error and meaningful generations for all y, including those
in YOOD. Additionally, for any pair (x, ŷ) of an input observation x (with its inherent
attributes y) and a novel set of attribute value combinations ŷ, we want to create a modified
data point x̂ that aligns with the specified attribute values ŷ. This modified x̂ should
resemble the original input x in its overall characteristics, except for the changes specified
by the attribute values ŷ we condition on. In fact, such models trained under the empirical
training distribution, p̂(y), will be undefined in values from YOOD.

The continuity property of VAEs [48] makes it so that when we decode neighboring
latent space points we obtain similar content, allowing us to generate samples that are
similar but not identical to the empirical training data distribution. This, taken together
with the capability of CVAEs to control the generation process using conditional infor-
mation, suggests that it is not only possible to generate new samples with desired OOD
property value combinations but also to manipulate the properties of OOD data. However,
while VAEs demonstrate good reconstrunction quality on OOD data [49], their conditional
generation performance on OOD data, and more specifically when the conditioning vector
values have not been seen during training, is rather problematic [38–40,50]. To address this
limitation and generate plausible samples with unseen attribute value combinations, we
propose BtVAE, a generative model that brings together CVAE, semi-supervised learning,
and back-translation, for OOD conditional generation.

Providing a broad overview, during its training process, BtVAE modifies the input
observation by conditioning it on randomly chosen attribute values. This produces a
modified input that can have attribute combinations not present in the original training
data. Next, the modified input is used to reconstruct the original observation, conditioning
on either pseudo-attribute values predicted by the model or the actual attributes when
available. By conditioning on randomly chosen attribute values during training, BtVAE
learns to handle a wide range of input–attribute combinations, including those that may
not be present in the training data. This allows the model to generalize better to OOD data
as it becomes more proficient at handling unseen attribute combinations.

More specifically, we leverage the existing labelled and unlabelled training samples to
generate in-distribution as well as OOD samples by conditioning the generation step on
attribute value combinations that are sampled from some prior distribution that we believe
is a better proxy for the non-observed true prior p(y); in the absence of an informed prior,
we opt for the uniform distribution pU(y) over Y . We make sure that the generated samples
exhibit the conditioning properties by enforcing appropriate constraints with the help of a
learned attribute predictor f : x→ y, which maps x instances to their y attribute values. We
follow up on this generation step by a back translation step that cancels out the conditioning
by using the original attribute values for the labelled data, or pseudo attribute/label
information for the unlabelled data produced by the property predictor. This step allows
for an indirect evaluation of the quality of the OOD generations; a direct evaluation is
not really possible since due to the OOD sampling we do not know what the generated
instance should look like, and thus there is no readily available reconstruction error.

Under such a training schema, the learning is exposed to OOD samples, making
the conditional generative model defined for all Y values. Moreover, using the learned
property predictor to enforce constraints on the conditioning attribute values that were
used to generate a particular sample, we make sure that the generative model will indeed
generate samples that exhibit the conditioning values.

Overall, our conditional generation model p(x|y) will allow: (i) conditioning on value
combinations not present in the training set (YOOD), (ii) the accurate reconstruction of input
data with value combinations in YOOD, and (iii) attribute manipulation of in-distribution
and OOD data with value combinations from YOOD.
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3.1. Model

The main architectural component of BtVAE is a probabilistic encoder and a conditional
probabilistic decoder, a CVAE, which is applied twice in a row, Figure 1. We consider
the conditional latent-variable model pθ(x, z|y) = pθ(x|y, z)p(z), where x denotes an
observation, y represents the associated attribute vector, and z represents the associated
latent variable. The marginal p(z) = N (z|0, I) is a prior over the latent variable, and
pθ(x|y, z) is an exponential family distribution whose natural parameter is a function of z
parametrized by θ, e.g., through a neural network. The encoder receives input data points
x (labelled or unlabelled) and maps them to their latent representation z. The decoder
subsequently takes this latent representation and samples attribute values from the prior,
ỹ ∼ pU(y), to generate a modified version of the input, x̃. In the case of labelled data with
some small probability p, we use the original attribute values as conditioning values in
order to facilitate the learning of the property predictor since the pairs (x̃, ỹ) are also used
together with the original labelled data for their training. As a result of the way we sample
ỹ, the generated instance x̃ may possess attribute value combinations that are not present
in the training data.

At the generation step, the decoder receives the latent representation z of the original
input x and the randomly sampled ỹ and produces a modified x̃.

In a standard VAE, the quality of the reconstruction is typically evaluated by assessing
the reconstruction error. However, in our setting this direct evaluation is not possible since
we do not have access to the ground truth for the modified instance x̃, and we do not
know how such an instance should look like. This learning task can be characterized as
unsupervised given that our training set does not contains examples of an input and its
associated modified instance x̃ is tailored to the specific attribute values. Thus, we can only
indirectly evaluate the quality of x̃. We will do so by ensuring that the generated instance x̃
preserves the content of the original input x and differs only on the conditioning attributes.
To ensure the preservation of content, we translate x̃ back to x; such a translation allows us
to establish a reconstruction loss. This back-translation procedure situates the model to a
pseudo-supervised setting where the modified instances x̃ act as supervised training data
for the primary objective.

Back-translation operates as follows: we pass x̃ through the encoder to obtain its latent
representation, z̃, and then pass z̃ together with an attribute-value vector y to the decoder
to reconstruct the original input x. For the x inputs that are labelled instances, we set y as
their true attribute values; for unlabelled instances, we set y to the pseudo-attribute values
predicted from the attribute network. The result of back translation is that when we pass
into the decoder (z̃, y), we know what the output should look like, enabling us to train
the model to map (x̃, y) into x. The back-translation process is trained by minimizing the
back-translation loss, Equation (4), which is a combination of three terms.

Lbt = Ex∼p(x),y∼pU(y)[Eqϕ(z̃|x̃) log pθ(x|z̃, y)︸ ︷︷ ︸
A

−DKL((qϕ(z|x)∥p(z))︸ ︷︷ ︸
B

−DKL(qϕ(z̃|x̃)∥p(z))︸ ︷︷ ︸
C

] (4)

The A term in the loss is the negative reconstruction cost between the output of
the second component of BtVAE and the input of the first one. It can be seen as a cycle
consistency loss: E∥x−Dec(Enc(x̃), y)∥ that ensures that the information content of the
input x (other than the conditioning variable) will be preserved. Term B penalizes the
derivations of the approximate posterior from the latent prior when conditioning on a
given input x from the prior, and term C penalizes the derivations of the approximate
posterior when conditioning on the modified input x̃.
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Figure 1. Main architecture of the BtVAE model. The model consists of two components, VAEs with
conditional decoders. The first one (blue) modifies the input instance conditioning on randomly
sampled attribute values and the second one (green) translates the modified input back to the original
input conditioning on the pseudo-attribute values of the original input or the real attribute values if
they are available.

A trivial way for the model to optimize the back translation loss and to successfully
map (x̃, y) back to the original x would be to disregard the conditioning attribute compo-
nent ỹ in the first application of the conditioning VAE. In this case, x̃ would merely be a
reconstruction of the input data x. To circumvent this issue, we pass the modified input x̃
through the attribute network fη and require that it has the target attribute values, ỹ, that
were used to produce it i.e., f (x̃) → ỹ. To learn the attribute network, we optimize the
attribute constraint objective to facilitate the learning of the attribute Equation (5),

Lattr = Eỹ∼pU(y),x̃∼pθ(x̃|z,ỹ)[l( fη(x̃), ỹ)], (5)

where the attributes are binary labels, fη is a classifier, and l is binary cross entropy, while
when the attributes are continuous fη is a regressor and l is a classical mean squared error
(MSE).

To facilitate the learning of the attribute network, we augment its inputs with la-
beled data. When the attribute values y are available, the attribute constraint objective
(Equation (5)) has an extra term that helps the model to learn to predict correctly the corre-
sponding attribute values using the supervised input data. In this case, the final attribute
objective is given by Equation (6). This is central since it enables learning the conditional
decoder network in a semi-supervised manner.

Lattr = E(x,y)∼p(x,y)[l( fη(x), y)] + Eỹ∼pU(y),x̃∼pθ(x̃|z,ỹ)[l( fη(x̃), ỹ)] (6)

In this way, the attribute network plays a double role. Beyond ensuring that the
modified input x̃ has the desired target attribute values, the attribute network also serves
as a pseudo-labeling mechanism, positioning BtVAE as a self-labeling model. This self-
labeling property allows BtVAE to generate reasonable pseudo-attribute values for the
unlabeled data, which are then used to guide the model during training. To be more
precise, in the translation phase, when actual attribute values are absent, BtVAE relies on
pseudo-attribute values predicted by the attribute predictor network fη(x) to condition the
decoder during the reconstruction of the original observation. As a result, BtVAE can learn
to generate better representations of the input data even when the true attribute values are
not available. This capability enables the model to handle both labeled and unlabeled data,
making it a self-labeling model.

The final objective of the model is obtained by combining the back-translation objective
with the attribute constraint regularizer, resulting in:

L = Lbt + Lattr (7)

We train the model jointly in an end-to-end manner. The pseudo code of our algorithm
is shown in Algorithm 1.
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Algorithm 1: BtVAE: Training Procedure

1 Require: input data {xi}n
i=1, attribute vector {yi}m

i=1, encoder network qϕ, decoder
network pθ , attribute predictor network fη , α probability of labelled data, p :
proportion of labeled data.

2 Initialize the parameters of the encoder, decoder, and attribute predictor
3 while training() do
4 B(x,y)

L ← getLabeledRandomMiniBatch( DL, p)
5 Bx

U ← getUnlabeledRandomMiniBatch(DU , 1− p)
6 By ← getRandomAttributeValuesMiniBatch(Y)
7 Stage 1: Modify input x to x̃

8 z ∼ qϕ(zi|xi) ∀{xi, yi}m
i=1 ∈ B

(x,y)
L & ∀{xi}n

i=m+1 ∈ Bx
U

9 x̃i ∼ pθ(xi|zi, ỹi) ∀{ỹi}m+n
i=1 ∈ By

10 ˆ̃y← fη(x̃i)

11 if xi ∈ B
(x,y)
L then return yi ← fη(xi), Lattr ← Equation (6) ;

12 else return Lattr ← Equation (5) ;
13 Stage 2: Back Translate x̃ to x z̃ ∼ qϕ(zi|x̃i)
14 if xi ∈ Bx

U then return yi ← fη(xi) ;

15 else return yi ∈ B
(x,y)
L ;

16 x̂i ∼ pθ(xi|z̃i, yi)
17 Lbt ← Equation (4)
18 L← Lbt + Lattr
19 Update: η, ϕ, θ

20 end

At the beginning of the training, the only reliable information provided to the decoder
is the randomly sampled attribute value ỹ. Since we explicitly impose the constraint
fη(x̃) = ỹ, x̃ ∼ p(x|ỹ), this encourages the decoder to use ỹ throughout the entire training.
As training progresses, the model employs data augmentation with new inputs x̃ matched
to desired attributes y. This leads to generating unique attribute combinations, potentially
unseen in the training data, thereby creating out-of-distribution scenarios. By encoding
and decoding these new inputs with pseudo-attributes or original labels, the model can
manipulate attributes while retaining a clear output vision through back translation. This
technique not only evaluates model performance via reconstruction error but also preserves
the original input content, x. Thus, the BtVAE model learns to generate novel samples with
desired attributes, enhancing its generalization capabilities and handling out-of-distribution
scenarios effectively, even with limited labeled data.

3.2. Conditioning on Attribute Values Chosen from PU(y)

By expressing the conditional generative model in terms of the underlying joint
distribution p(x, y), we can see that the conditional generative model is the ratio of the
joint distribution and the marginal distribution of the attributes.∫

p(x|z, y)p(z)dz = p(x|y) = p(x, y)
p(y)

(8)

As already discussed above as a result of the finite size of the training set, the empirical
marginal distribution p̂(y) and the empirical joint p̂(x, y) may deviate from the respective
true distributions. Nevertheless, the conditional generative model is shared across the
in-distribution and the OOD data. Depending on the prior from which we choose to sample
the y values, we obtain different joint distributions. This highlights the importance of
conditioning on randomly selected attribute values. By doing so, we are able to sample
new synthetic data during the training by using attribute value combinations that do not
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exist in the in-distribution data. This strategy enables us to learn a conditional generative
model that is defined and applicable beyond the empirical marginal distribution.

4. Experimental Setup

We evaluate our model on two conditional generation tasks. In the first task, we
learn to generate samples from datasets featuring independent controllable factors. In
the second task, we learn to generate MNIST digits conditioning on various continuous
characteristics. Our goals are three-fold: we would like to examine the ability of our model
to (1) generate data conditioning on attribute value combinations absent in the training set
(YOOD), (2) reconstruct data even with attribute value combinations from YOOD accurately,
and (3) manipulate attributes of in-distribution and OOD data with value combinations
from YOOD.

For our experimental setup, we employ custom controlled datasets, following the
procedure of [38–40]. This allows us to assess the model’s systematic generalization capa-
bilities to unseen attribute value combinations. We utilize the dSprites [51], Shapes3D [52],
and MNIST [53] datasets. Both dSprites and Shapes3D consist of images generated from a
set of discrete factors of variation following a deterministic generative model. Each dataset
is designed to realize all possible combinations of factors of variation in a corresponding
images. These factors are easily interpretable and vary independently, making dSprites and
Shapes3D ideal for studying combinatorial generalization. Furthermore, we employ the
MNIST dataset, where, with hand-designed functions, we define two statistical descriptors.
This allows us to examine how our model performs in scenarios involving OOD continuous
attribute value combinations.

4.1. Custom Datasets

The efficacy of our method is evaluated on three datasets. We use two datasets
featuring independent controllable factors, dSprites [51] and Shapes3D [52], and one dataset
with continuous characteristics, MNIST [53]. dSprites comprises 2D shapes generated using
six distinct latent factors: color, shape, scale, rotation, and the x and y positions of a sprite.
The attributes of interest on this dataset are the x and y positions of a sprite. Shapes3D
includes 3D colored images of objects in a room, created from six separate factors: floor color,
wall color, object color, object size, object type, and camera azimuth. The attributes that we
want to control on the Shapes3D dataset are the floor and wall color. Given that both the
dSprites and Shapes3D datasets are generated using distinct latent factors, we consciously
chose to manipulate only two attributes. This decision offers latitude for latent variables
to manage residual information, enabling us to learn a meaningful latent representation.
Table 1 presents the conditioning attributes at each dataset we experiment on.

Table 1. Conditioning attributes at each dataset.

dSprites Shapes3D MNIST

Position X, Position Y Floor color, Floor color Stock width, Tilt

The MNIST dataset consists of handwritten digits (0–9), each varying in stroke thick-
ness and tilt. We decided to exclude the ‘digit ID’ attribute from the conditioning set due
to its strong informativeness. Instead, using hand-designed functions, we defined simple
statistical descriptors representing stroke width and digit tilt, enabling their use in our
experimental framework.

To examine combinatorial generalization, we follow [38–40] and create separate splits
for training sets Dtrain and test sets Dtest. We exclude certain combinations of generative
factors for dSprites and Shapes3D data, as well as a subset of the MNIST dataset from the
training data.

To create the training/test split, all examples with combinations of a subset of attribute
values are excluded from the training set and added to the test set. Thus, an example of a
dataset may consist of a training set of all combinations where [g1 > 0.5, g2 > 0.5] have been
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excluded from the training set and have been added to the test set. It should be noted that
models trained on such datasets would encounter instances where [g1 > 0.5] and instances
where [g2 > 0.5] but would never be trained on an example where both conditions were
simultaneously true. Following this approach, we constructed the training/test sets for
each dataset in the following manner (see also Tables 2–4):

• dSprites: Images with xPos > 0.5 and yPos > 0.5 are excluded from the training set.
Consequently, a shape never appears in the image’s top-right corner but is present in
the bottom-left and top-left corners.

• Shapes3D: Images meeting the criteria [ f loorColor < 0.3] and [wallColor > 0.5] are
removed from the training data. As a result, floor colors in the initial third of the HSV
spectrum (red, orange, etc.) and wall colors in the latter half of the HSV spectrum
(blue, purple, etc.) are not present in the training set. This means that combinations
of floor colors such as red and orange are observed only with wall colors like red
and orange.

• MNIST: Images of digits 7 and 2 with −0.9 < StrokeWidth < 1.5 and −1 < Tilt < 0.5
are excluded from the training set. Neither digit 7 nor 2 appears with StrokeWidth equal
to 1 and Tilt equal to 0, but digit 8 might exhibit this combination of property values.

Table 2. dSprites data splits.

Shape Scale Orientation Position X Position Y

Training Any Any Any y ≤ 0.5 y ≤ 0.5
Test Any Any Any y > 0.5 y > 0.5

Table 3. Shapes3D data splits.

Object
Color Scale Object Orientation Floor

Color Wall Color

Training Any Any Any Any y ≥ 0.3 y ≤ 0.5
Test Any Any Any Any y < 0.3 y < 0.5

Table 4. MNIST data splits.

Digits Stock Width Tilt

Training
2, 7 y < −0.9∪ y > 1.5 y < −1∪ y > 0.5

1, 3, 4, 5, 6, 8, 9 Any Any

Test
2, 7 −0.9 < y < 1.5 −1 < y < 0.5

1, 3, 4, 5, 6, 8, 9 Any Any

The training set contains only in-domain data, while the test set, if fully OOD, means
that Dtest = {(xi, yi)|i := 1 . . . Ntest}, y ∈ YOOD. Moreover, during the training phase, only
10% of the label information is accessible, while at test time we only use unlabeled data.

4.2. Baselines

BtVAE is based on the framework of the conditional VAE. To assess its effectiveness
in addressing OOD reconstruction, attribute manipulation, and conditional generation,
we compare it against a conditional VAE as a baseline. Furthermore, we compare our
model with the CsVAE [54], PCVAE, [55] and MSP [56]. CsVAE, like BtVAAE, is based on a
conditional VAE model but uses two latent variables to separate the information correlated
with the attributes y into a pre-defined subspace. This separation is achieved by minimizing
the mutual information between z and y, and it results in better control over the generative
process. PCVAE also utilizes a conditional VAE model and employs two latent variables,
similarly to [13,54], including a property prediction network to predict the continuous
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attributes from the latent variable. This property prediction network maps property values
to corresponding latent variables. Such a design helps the model to learn a more accurate
representation of the attributes, thereby improving the controllability of sample generation.
The MSP model, on the other hand, uses orthogonal matrix projection onto subspaces
to factor out the information about the attributes of interest y from the latent variable z.
The advantage of this orthogonal matrix projection is that it leads to a more structured
and organized latent space, where the different dimensions are distinctly separated and
aligned with specific attributes or features. This enables the model to manipulate the latent
space, allowing for attribute manipulation of the input data. The CsVAE, PCVAE, and MSP
models allow for more precise control over the latent representation, which could have
potential implications in OOD scenarios.

All of the mentioned models are supervised, where the attributes are used to enforce
invertible mutual dependence between them and the latent variables. To manage unlabeled
data, we integrated an attribute predictor network. Our evaluation aims to investigate the
ability of these models to reconstruct OOD data, manipulate attributes of unseen data, and
generate samples conditioned on previously non-seen attribute value combinations.

4.3. Evaluation

We adopt the R2 score based on the mean squared error (MSE), the coefficient of
determination, as our primary evaluation metric [40,57]. This score measures how well the
model can predict attribute values in the presence of OOD data. We define the R2 score per
attribute yi as follows:

R2
i = 1− MSEi

σ2
i

with MSEj = E(x,y)∼Dtest
[(yj − f j(x))2] (9)

Here, σ2
i denotes the variance of each attribute across the entire dataset. Under this

score, R2 = 1 indicates a perfect fit and a value close to zero, R2 = 0, can be interpreted as
random guessing since the MSE would be approximately equal to the variance per attribute.
Since the R2 score can be negative while R2 = 0 indicates random guessing, we clip all
negative R2 scores to zero [40,57]. The function f j refers to a multi-layer perceptron (MLP)
network trained on the entire dataset. The purpose of this network is to predict the attribute
values based on the input data.

Additionally, we utilize the mean squared error (MSE), specifically for the condi-
tioning attributes, as a supplementary evaluation metric. This approach aids in gaining
a comprehensive understanding of our model’s performance. The MSE is formulated
as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (10)

Here, yi represents the conditioning attribute values and ŷi denotes the predicted values by
the model, with the summation extending over all n data points in the test set (OOD). By
quantifying the average squared deviation between the predicted and conditioning values,
the MSE offers a clear indication of the average error magnitude, which is crucial for assessing
the precision of the model’s predictions in the context of attribute-based conditioning.

Utilizing both the R2 score and MSE allows us to evaluate our model’s performance
in terms of both fitting and predicting attributes. In the context of attribute manipulation
and conditional generation experiments, the R2 score and MSE are computed between
the predicted attribute values and the desired attribute values used for conditioning. This
dual metric approach enables us to thoroughly assess the model’s capability in generating
outputs with desired characteristics and to evaluate the precision of these predictions. In
the case of reconstructions, the R2 score and MSE are computed between the predicted
attribute values and the respective ground truths, evaluating the model’s ability to preserve
OOD attribute value combinations while reconstructing OOD data.
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In our model, the objective is to generate data with desired OOD attribute value
combinations while preserving the remaining characteristics unaltered. For this purpose,
besides the R2 score, we utilize the Mean Absolute Error (MAE) criterion,

MAE =
1
n

n

∑
i=1
|yi − ŷi| (11)

to quantitatively assess the model’s capability in maintaining the characteristics of the
inputs we wish to remain unchanged. We train a regression MLP on the entire dataset to
predict the attribute values of a given input. During testing, we compute the Attribute-wise
MAE between the predicted attribute values of the generated outputs and the correspond-
ing ground truth of the inputs. Specifically, for the dSprites dataset, we compute the MAE
for the shape of the object; for the Shapes3D dataset, we compute it for the object and the
object color; and for the MNIST dataset, we compute it for the digit ID.

4.4. Model Architectures

Based on the description of the implementation of the proposed objective, there are
three components, namely, the encoder to model qϕ(z|x), decoder to model pθ(x|z, y), and
attribute predictor network to model fη(y|x). Our architectures consist of convolutional
layers with ReLU activations followed by fully connected layers with ReLU activations,
similar to the design in [55]. We used the ADAM optimizer with a learning rate of 0.0005
and a mini-batch size of 256. For a fair comparison, all the baselines use the same network
architecture.

4.5. Experiments and Results

The primary objective is to elucidate the performance of the proposed model on the
defined OOD test sets split, as delineated in Section 4.1. OOD data are characterized by
attribute value combinations absent during training, represented as Dtest = {(xi, yi)|i :=
1 . . . Ntest}, y ∈ YOOD. All of the models are trained utilizing a mere 10% of the labeled data.

The evaluation framework comprises three aspects: (1) reconstructing OOD data from
the designated test dataset split Dtest in both a supervised and an unsupervised manner;
(2) manipulating attributes of the data in both an in-distribution and OOD manner; and
(3) generating samples conditioned on y properties from YOOD, representing unencoun-
tered property combinations during training.

To benchmark the models’ efficacy in utilizing the conditioning values, we compute
the R2-score, indicative of the coefficient of determination, on the respective entire test set
(see Section 4.3). Furthermore, for the tasks of reconstruction and attribute manipulation,
it is essential to ascertain whether the model retains the characteristics of the input data
intended to remain unchanged. This verification is effectuated by computing the MAE
score. As elaborated in Section 4.3 for the entire test dataset, we compute the MAE score
for the shape of the object, for the dSprites dataset; for the object and the object color for
the Shapes3D dataset; and for the digit ID, for the MNIST dataset.

4.5.1. OOD Reconstruction

In the OOD reconstruction task, we aim to investigate the ability of our model to
reconstruct OOD data, meaning data with attribute value combinations in YOOD. We
examine our model’s ability in two scenarios. First, we consider a supervised setting where
the corresponding attributes are available; in this instance, we condition the decoder on the
actual attribute values, (x, y) ∈ DL. Then, we examine the performance of our model in
the unsupervised setting wherein the attributes are unavailable. In this scenario, we use
pseudo-attributes for the values of the conditioning attributes, which are predicted using
the attribute predictor network, y = fη(x). We compute the R2 score of the models using
the conditioning attributes.

Figures 2–4 illustrate the OOD reconstructions of the dSprites, Shapes3D, and MNIST
datasets, respectively. The first row presents the OOD data targeted for reconstruction, the
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second row demonstrates reconstruction of the OOD data conditioning on corresponding
attribute values (supervised reconstructions), and the third row shows unsupervised recon-
struction conditioning on pseudo-attribute values, predicted from the attribute network, fη .
In Table 5, we report the R2 score for the three datasets for both the supervised and unsu-
pervised reconstructions. The R2-score for each model is almost the same in supervised and
unsupervised settings, indicating that the attribute predictor network, fη , can successfully
predict the pseudo-attribute values. This can also be confirmed visually by looking at
the second and third lines in Figures 2–4. Reconstructing the input data conditioning on
the real attribute values, y, (the second line) instead of the predicted pseudo-attribute
values, y = fη(x), (the third line) does not improve the reconstructions of the OOD input
data (the first line). In some cases, such as the MSP model with the Shapes3D dataset,
the R2-score of the of the unsupervised case is greater than that in the supervised case.
However,the difference between them is very small, which indicates once again that the
attribute predictor network can successfully predict the pseudo-attribute values.

(a) BtVAE (b) MSP (c) CsVAE (d) cVAE (e) PCVAE
Figure 2. dSprited OOD reconstructions.

(a) BtVAE (b) MSP (c) CsVAE (d) cVAE (e) PCVAE
Figure 3. Shapes3D OOD reconstructions.

(a) BtVAE (b) MSP (c) cVAE (d) PCVAE
Figure 4. MNIST OOD reconstructions.

In Figures 2–4, we can also see that BtVAE successfully reconstructs OOD data for
other datasets, in contrast to other models that struggle to reconstruct the correct shape
in the case of the dSprites dataset and the correct digit in the MNIST dataset. This is also
confirmed in Table 6, where we report the MAE score for the shape of the object, for the
dSprites dataset; the MAE score for the object and the object color, for the Shapes3D dataset;
and the MAE score for the digit ID, for the MNIST dataset.

For the Shapes3D dataset, the OOD reconstruction is successful for all the models
expect MSP (Figure 3). The hight R2-score (Table 5) and the low MSE (Table 7) indicate
the models’ ability to effectively utilize conditioning attributes, floor color, and wall color
during the reconstruction process, even though the attribute combinations are absent from
the training data, while preserving the object shape and color of the input data. Moreover,
the low MAE (Table 6) indicates that the models also preserve the rest characteristic of
the data.
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Table 5. R2-score evaluating the reconstruction capability of the various models on dSprites,
Shapes3D, and MNIST datasets in both supervised and unsupervised settings.

dSprites Shapes3D MNIST
Sup. Unsup. Sup. Unsup. Sup. Unsup.

BtVAE 0.945 0.932 0.999 0.999 0.963 0.956
MSP 0.287 0.216 0.437 0.442 0.858 0.851

CsVAE 0.375 0.361 0.999 0.999 - -
PCVAE 0.825 0.812 0.999 0.999 0.941 0.941
cVAE 0.8 0.665 0.999 0.999 0.946 0.933

Table 6. MAE score for the shape of the object, for the dSprites dataset; the object and the object color,
for the Shapes3D dataset; and the digit ID, for the MNIST dataset of the reconstructed data in the
unsupervised setting.

dSprites Shapes3D MNIST
Shape Object. Obj. Color Digit ID

BtVAE 0.080 0.026 0.025 0.0928
MSP 0.340 0.180 0.790 2.230

CsVAE 0.112 0.023 0.028 -
PCVAE 0.193 0.062 0.095 0.846
cVAE 0.123 0.0258 0.0298 1.054

Table 7. MSE score evaluating the reconstruction capability of the various models on dSprites,
Shapes3D, and MNIST datasets in the unsupervised settings.

dSprites Shapes3D MNIST

BtVAE 0.015 0.00005 0.041
MSP 0.061 0.045 0.135

CsVAE 0.053 0.00008 -
PCVAE 0.028 0.00006 0.051
cVAE 0.032 0.00008 0.063

4.5.2. Attribute Manipulation

In the attribute manipulation task, we aim to manipulate the input data in a control-
lable way with the desired property values. Given an initial OOD input from the Dtest with
certain y property values, the objective is to modify these property values to new desired
values. These modifications are conducted in two distinct manners: in the in-distribution
manner, where the new value combinations have already been seen in the training set, and
in the OOD manner, where the value combinations were not present in the training set. Us-
ing the latent representation of an input image, we generate eight different modified images.
Among these, four are intended to possess in-distribution attribute value combinations,
while we want the remaining four to have OOD attribute value combinations. For all the
generated images, we manipulate all the conditioning attributes concurrently, maintaining
consistent attribute value combinations across all images and across all different methods.
For the dSprite dataset, we manipulate the Position X and Position Y attributes; for the
Shapes3D dataset, the floor color and wall color; and for the MNIST dataset, the stroke
width and the tilt.

In Figures 5–7, we present the results of the various methods across the different
datasets. Within each figure, subfigure (a) displays the original instance whose attribute
we intend to modify; subfigures (b) through (e/f) correspond to the different methods.
The first four columns in each of these subfigures illustrate the in-distribution attribute
manipulation results, while the latter four columns provide the OOD manipulation results.
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(a) OOD (b) BtVAE (c) MSP

(d) cVAE (e) PCVAE
Figure 5. MNIST: attribute manipulation of the OOD inputs (a), in in-distribution manner (b–e):
(first–fourth column) and in out-of-distribution (b–e): (5th–eighth column) manner.

(a) OOD (b) BtVAE (c) MSP

(d) CsVAE (e) CVAE

(f) PCVAE
Figure 6. dSprites OOD attribute manipulation: using the latent representation of the images in
Figure 6, we manipulate their attribute values by conditioning on in-distribution values (first–fourth
columns) and on OOD values (5th–eighth columns).

Tables 8–10 report the R2-score and the MSE for the conditioning attributes to evaluate
the ability of different methods to manipulate them effectively. Moreover, the MAE score
for the characteristics that are intended to remain unchanged is also reported (the shape of
the object for the dSprites dataset, the object and the object color for the Shapes3D dataset,
and the digit ID for the MNIST dataset). Both scores were computed across the entire
dataset while conditioning on OOD attribute value combinations.

Table 8. MNIST attribute manipulation: R2-score for the conditioning attributes, stock width, and
title; and MAE score for the Digit ID.

R2 MSE MAE

BtVAE 0.943 0.043 0.19
MSP 0.753 0.134 2.23

PCVAE 0.832 0.069 0.94
cVAE 0.921 0.061 1.05
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Table 9. dSprites attribute manipulation: R2-score for the conditioning attributes, X-Position, and
Y-Position; and MAE score for the shape.

R2 MSE MAE

BtVAE 0.945 0.004 0.016
MSP 0.703 0.052 0.342

CsVAE 0.148 0.643 0.090
PCVAE 0.506 0.067 0.115
cVAE 0.405 0.083 0.124

Table 10. Shapes3D attribute manipulation: R2-score for the conditioning attributes, floor, and wall
color; and MAE score for the object shape and object color.

R2 MSE MAE
Obj. Obj. Color

BtVAE 0.94 0.00006 0.024 0.032
MSP 0.453 0.044 0.194 0.0785

CsVAE 0 0.103 0.023 0.028
PCVAE 0.13 0.092 0.025 0.029
cVAE 0.267 0.059 0.026 0.013

BtVAE effectively manipulates the attributes, even for combinations not encountered
during training, achieving higher R2 scores and lower MSE compared to the other methods
while maintaining low MAE for the characteristics we choose not to manipulate across
all datasets (Tables 8–10). For instance, in the dSprite dataset, Figure 6, BtVAE stands as
the sole method that retains the shape of the initial inputs while successfully altering the
Position X and Position Y attributes, as seen in Figure 6b. This capability of BtVAE to
preserve the shape of the initial input while addressing the desired properties is a result of
the back-translation procedure, which guarantees content preservation. On the contrary,
MSP and PCVAE, although able to manipulate the Position X and Position Y, are unable
to preserve the shape of the input images, as illustrated in Figure 6c and 6f, respectively.
Moreover, CsVAE and CVAE, seen in Figure 6d and 6f, respectively, ignore the conditioning
attributes and fail to maintain the shape of the input images.

(a) OOD (b) BtVAE (c) MSP

(d) CsVAE (e) CVAE

(f) PCVAE
Figure 7. Shapes3D ODD attribute manipulation: using the latent representation of the inputs in
(a) we manipulate them by conditioning on eight different the floor and wall color combinations. In
first–fourth columns of (b–f), we condition on in-distribution combinations and in out-of-distribution
and in fifth–eighth columns on OOD combinations.
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In the MNIST dataset, we aim to manipulate the stock width and Tilde attributes simul-
taneously while preserving the Digit ID. Precisely, we encode an input image;
Figure 5a tilt combinations should generate images with the desired value combinations
while preserving the Digit ID of the inout image.

Figure 5 illustrates that all models, except BtVAE, encounter difficulties in the OOD
setting, often generating a digit resembling the desired one while maintaining the given
attribute value combination. As we can see in Figure 5c–e, MSP, CVAE, and PCVAE fail
to preserve the digit of the input image. For instance, digit 2 is substituted with digit 8.
In contrast, BtVAE, as shown in Figure 5b, maintains the Digit ID of the input images.
This observation is further corroborated by the MAE score for the Digit ID across different
methods, as seen in Table 8. BtVAE exhibits the lowest MAE, indicating a preservation
of the Digit ID. Concurrently, BtVAE attains the highest R2-score and the lowest MSE,
signifying its effectiveness in accommodating the desired values.

Though BtVAE is built upon the CVAE, it outperforms CVAE due to two key factors.
Firstly, the random sampling procedure employed during training empowers BtVAE
with the ability to generate novel samples with desired properties, encompassing OOD
combinations. Secondly, the back-translation procedure contributes to the preservation
of the original input’s content, making it feasible to manipulate the data by allowing the
editing of desired properties while maintaining their content.

4.5.3. Conditional OOD Generation

To evaluate the conditional OOD generation performance of the different methods,
we first sample 2k latent variables z from the prior distribution p(z), pairing each one with
OOD value combinations y randomly sampled from the test set, followed by decoding
the concatenated pair (z, y). To quantify the quality of the conditional generations, we
measure the attribute values of these generated samples and compute the R2-score to
ascertain the correlation between these values and the attribute value combinations used
for conditioning the generation. This score essentially provides insight into how well the
generated samples align with the desired OOD attribute value combinations specified
during the conditional generation process.

In Tables 11 and 12, we report the R2-score ANd MSE evaluating the OOD conditional
generation capability of the different methods on dSprites, Shapes3D, and MNIST datasets,
respectively. As we can see, BtVAE has a considerably higher R2-score and lower MSE on
all the datasets compared to the other methods.

Table 11. R2-score evaluating the OOD conditional generation capability of the different methods on
dSprites, Shapes3D, and MNIST datasets.

dSprites Shapes3D MNIST

BtVAE 0.998 0.99 0.941
MSP 0.06 0 0

CsVAE 0 0.19 0
PCVAE 0.488 0.388 0.838
cVAE 0.325 0 0.218

Table 12. MSE score evaluating the OOD conditional generation capability of the different methods
on dSprites, Shapes3D, and MNIST datasets.

dSprites Shapes3D MNIST

BtVAE 0.0001 0.0021 0.051
MSP 0.107 0.149 1.23

CsVAE 0.151 0.064 2.75
PCVAE 0.081 0.045 0.077
cVAE 0.057 0.128 0.154
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In Figures 8–10, we display 12 conditional samples generated by each method using the
dSprites, Shapes3D, and MNIST datasets, respectively. To facilitate a clearer understanding
of whether the conditioning values are being utilized, we generate 12 samples for each, all
conditioned on identical combinations of attribute values. For instance, with the Shapes3D
dataset, Figure 9, we sample 12 different z from the prior distribution p(z), and each one
is concatenated with the same attribute values—specifically, ’red floor’ and ’yellow wall’.
This concatenation forms the input to the decoder of our model, aiming to generate samples
that consistently display the ’red floor’ and ’yellow wall’ but differ in other attributes like
object shapes and colors.

(a) BtVAE (b) MSP (c) CsVAE (d) cVAE (e) PCVAE
Figure 8. dSprites samples conditioned on OOD attribute values. All of the samples are generated
by conditioning on the same xPosition and yPosition values.

(a) BtVAE (b) MSP (c) CsVAE (d) cVAE (e) PCVAE
Figure 9. Shapes3D samples conditioned on OOD attribute values. All the samples are generated
conditioning on the same floor and wall color.

As illustrated in Figures 8a, 9a, and 10a, BtVAE efficiently leverages the target at-
tributes while concurrently generating a varied array of shapes, colored objects, and digits
for the dSprites, Shapes3D, and MNIST datasets, respectively. This underscores the suc-
cessful learning of the latent representations and that the model is disentangling the latent
representations from the conditioning attributes. Regarding the MNIST dataset, it is worth
mentioning that, besides BtVAE, both PCVAE and CVAE also achieve the task of condi-
tional generation based on OOD attribute values as seen in Figure 10, albeit with lower
R2-scores as recorded in Table 11 than BtVAE. This observation suggests that these models,
particularly PCVAE, also possess the ability to effectively harness target properties while
generating a diverse range of digits conditioned on previously unseen combinations of
attributes.

For the dSprites dataset, BtVAE generates a variety of shapes with varying scales
and orientations as depicted in Figure 8a while ensuring that all the samples adhere to
the desired Position X and Position Y values with the highest R2-score (R2 = 0.998) and
lowest MSE (MSE = 0.0001). This not only signifies that the proposed method employs
the conditioning properties accurately but also demonstrates the successful learning of
a meaningful latent representation. In contrast, PCVAE, showcased in Figure 8e, albeit
utilizing the OOD attribute value combinations, fails to learn a meaningful latent represen-
tation, which results in the generation of poorly shaped samples. On the other hand, MSP,
CsVAE, and CVAE, as highlighted in Figure 8b–d, encounter difficulties both in learning a
good latent space and in accounting for the desired properties. Similar observations can be
made for the Shapes3D dataset, as we can see in Figure 9. Here, BtVAE, Figure 9a, stands
out as the only method that heeds the conditioning OOD attribute value combinations,
generating samples across a variety of shapes and colors. In contrast, for this dataset,
PCVAE—depicted in Figure 9e—manages to generate samples that consider only one of the
conditioning attributes, struggling to produce samples when conditioned on OOD value
combinations, evidenced by an R2-score of 0.38 as opposed to BtVAE’s 0.99.
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(a) BtVAE (b) MSP (c) cVAE (d) PCVAE
Figure 10. MNIST samples conditioned on OOD attribute values. All the samples are generated
conditioning on the same StrokeWidth and Tile values.

5. Conclusions

In this paper, we have introduced BtVAE, a self-labeling model based on Conditional
Variational Autoencoders, designed to handle out-of-distribution (OOD) data effectively.
By leveraging back-translation and conditioning on randomly chosen attribute values
during training, BtVAE learns to handle a diverse range of input–attribute pairs that may
not be present in the training data, thus enhancing its capability to handle OOD data.
Moreover, due to the back translation procedure BtVAE preserves the content of the input
data while manipulating their attribute values. We demonstrated its effectiveness on
different datasets and compared its performance with other state-of-the-art models, such as
CsVAE, PCVAE, and MSP. Our evaluation showed that BtVAE is capable of reconstructing
OOD data, manipulating attributes of unseen data, and generating samples conditioned on
non-seen attribute value combinations regardless of the dataset utilized. Contrarily, the
other models exhibited limitations, either failing to adequately handle OOD attribute values
or struggling to preserve the original content during attribute manipulation. Furthermore,
BtVAE’s capability to leverage target properties while generating a diverse range of outputs
is prominently showcased, along with it capability to preserve the content of an initial input,
underlining its potential for real-world applications that require both attribute-specific
manipulations and the generation of conditioned, diverse samples.

For future work, we aim to extend the BtVAE model to handle more complex datasets,
such as molecular datasets, and investigate its applicability in other domains, like drug
design. Additionally, we plan to explore the integration of other self-labeling techniques
and unsupervised learning methods to further improve the model’s performance on OOD
data. Lastly, we intend to investigate the potential applications of our model in various
fields, including anomaly detection, data augmentation, and domain adaptation, where
handling OOD data is of paramount importance.
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