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Abstract: We study the mechanism of scarring of eigenstates in rectangular billiards with slightly
corrugated surfaces and show that it is very different from that known in Sinai and Bunimovich
billiards. We demonstrate that there are two sets of scar states. One set is related to the bouncing
ball trajectories in the configuration space of the corresponding classical billiard. A second set of
scar-like states emerges in the momentum space, which originated from the plane-wave states of
the unperturbed flat billiard. In the case of billiards with one rough surface, the numerical data
demonstrate the repulsion of eigenstates from this surface. When two horizontal rough surfaces
are considered, the repulsion effect is either enhanced or canceled depending on whether the rough
profiles are symmetric or antisymmetric. The effect of repulsion is quite strong and influences
the structure of all eigenstates, indicating that the symmetric properties of the rough profiles are
important for the problem of scattering of electromagnetic (or electron) waves through quasi-one-
dimensional waveguides. Our approach is based on the reduction of the model of one particle in the
billiard with corrugated surfaces to a model of two artificial particles in the billiard with flat surfaces,
however, with an effective interaction between these particles. As a result, the analysis is conducted
in terms of a two-particle basis, and the roughness of the billiard boundaries is absorbed by a quite
complicated potential.

Keywords: scars; localization effects; quantum billiards; rough billiards

1. Introduction

Recently, there has been a sharp increase in articles discussing the occurrence of
ergodicity in physical systems, both classical and quantum [1–8]. This interest is due to
the practical problem of statistical description of the behavior of a closed many-particle
system whose equations of motion are strictly deterministic, that is, do not contain any
random parameters. For a long time, this problem was considered fundamental for the
justification of statistical mechanics, and it was assumed that its solution is associated with
the so-called ergodicity of the motion of the system under consideration. The classical
trajectory of ergodic systems densely and uniformly covers the entire phase space of the
system, as a result of which the time average value of any observable is equal to the phase
space average as time tends to infinity.

As a result of numerous attempts to prove this property in general terms for real
physical systems, it was realized that the proof is possible only for special systems. The
most well-known of such systems are the so-called scattering billiards, in particular, Sinai
and Bunimovich billiards, in which the trajectory of a particle due to multiple elastic
reflections from the walls is unstable for any initial condition except for special values
whose measure is equal to zero. Thus, the behavior of the system is determined by a single
trajectory, which makes it possible to speak of an ergodic type of motion.

It should be noted that the instability of motion in such billiards is exponentially strong,
at which the distance between two close trajectories grows, on average, exponentially fast
with time. When trajectories are reflected from the walls of the billiard, the so-called
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mixing occurs, as a result of which the motion becomes chaotic and indistinguishable from
random. Indeed, as already discussed by the Soviet physicist N. S. Krylov in his book [9],
the mixing is the main mechanism for the emergence of the most characteristic property
of the statistical behavior, namely, the relaxation of a system to statistical equilibrium.
Conversely, examples can be given when a given system is ergodic but its movement is
regular, meaning that the relaxation of the system occurs at infinite times, which does not
correspond to physical reality.

For quantum systems, the situation is much more complicated, since there is no rigor-
ous and generally accepted definition of quantum ergodicity. The only reliable situation
when one can speak of quantum ergodicity is for the systems that are fully ergodic in the
classical limit. Needless to say, there are just a few such systems. As an example of the “true”
quantum ergodicity, one can consider completely random matrices of large size for which
the theory is well developed. For such matrices, the components of the eigenfunctions are
Gaussian distributed, which is a property that is a consequence of the uniform distribution
of the eigenfunction vector over the surface of the N-dimensional sphere with N � 1. It
can be seen that in this case, the eigenfunctions are not only ergodic but also maximally
chaotic (random), see e.g., [10].

However, for realistic physical systems, many-body matrix elements in a physically
chosen basis, as a rule, are not completely random and fill only a band of finite width
(determined by a finite radius of interaction in the energy space). Therefore, one can
speak of ergodic eigenfunctions occupying only some energy shell of finite size. Clearly,
determining the shape and size of this shell is extremely difficult [11]. In any case, at the
moment, there is no unified theory of quantum ergodicity of isolated systems which takes
into account the influence of the finiteness of the energy shell.

Returning to systems with a small number of particles (small number of degrees of
freedom), for example chaotic billiards for which classical ergodicity is rigorously proven,
after several years of their study, it was found that many of the eigenfunctions are non-
ergodic even for very high energies [12,13]. In principle, such non-ergodic states do not
contradict Shnirel’man’s theorem [14], according to which their number must decrease
with increasing energy. Numerical experiments with ergodic billiards have shown that
in many cases, these “scarring” states in the configuration space can be associated with
unstable periodic orbits, the number of which increases with energy. However, since these
trajectories are isolated, when averaged over infinite time, they do not contribute to the
mean values of the observables.

To date, there have been many papers that investigate the properties of many-particle
scarring states in various physical systems (see, for example, [15–21] and references therein).
The main interest is related to the mechanism for the emergence of such states immersed in
a set of ergodic states. In the case of quantum systems that do not have a corresponding
classical analogue, this issue becomes extremely complicated. It was found that the main
characteristic of such scars in the quantum description is a small number of components
of the corresponding eigenstates treated on some physically justified basis in comparison
with the large number of states that can be considered as ergodic. Thus, scars can be
defined as the localized states, associated with unstable periodic orbits when applicable,
and embedded into the set of the ergodic states. As a result of numerous studies of quantum
many-body systems, it became clear that the typical mechanism for scars is the presence of
local symmetries of the system, which can correspond to the presence of local integrals of
motion [20,21].

Our interest in this article is to study the mechanism for the emergence of scar states
in rectangular billiards with rough horizontal surfaces. In these billiards, it is relatively
easy to trace their emergence since such systems can be considered close to integrable,
despite the fact that they are seem to be rigorously ergodic even for any weak boundary
roughness. Such billiards of finite size were under close investigation in view of surface
scattering in quasi-one-dimensional waveguides. The conventional theory of scattering
in the waveguides with a weak roughness was developed long ago; however, recently,
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researchers found a new mechanism of surface scattering which is due to the so-called
square-gradient roughness [22–25]. This mechanism was neglected in previous studies;
however, it should be taken into account when the correlation length computed along the
scattering profiles is very small. In particular, it was analytically shown that the scattering
properties strongly depend on the correlations between upper and lower horizontal profiles.
Specifically, the scattering is very different whether the two random profiles are symmetric
or antisymmetric. Our study also shows a quite strong dependence of the degree of
localization of the scar states on the type of correlations between the scattering profiles.

In Section 2, we describe the model under study, giving exact expressions for the
matrix elements of an effective Hamiltonian in close correspondence with the model. In
Section 3, we explain how we measure the degree of localization of the eigenstates in the
energy basis corresponding to non-interacting artificial particles and therefore to the billiard
with flat horizontal surfaces. In this representation, one easily identifies one set of scar states
related to classical trajectories which are parallel to the rough boundaries of the billiard.
We also show what these eigenstates look like in the configuration representation for one
rough surface. In addition, we demonstrate that there is another set of scar states related
to bouncing ball classical trajectories which are perpendicular to the rough boundaries of
the billiard. These states consist of many “unperturbed eigenstates”, which is in contrast
with those from the first set. In Section 5, we analytically show how the number of strongly
localized states from the first set, which corresponds to classical plane waves with the
longest perpendicular wavelength, decreases with energy. In Section 6, we study billiards
with two horizontal rough profiles and show how the structure of localized eigenstates
depends on whether the profiles are symmetric or antisymmetric. The main attention
here is paid to the effect of the repulsion of eigenstates from the corrugated surfaces. In
Section 7, we draw our conclusions.

2. Model of Rough Billiards

We consider billiards that are periodic in the longitudinal coordinate x, with Dirichlet
boundary conditions on the upper f1 and lower f2 surfaces,

f1 = Ly + W1ξ1(x) ,

f2 = W2ξ2(x) . (1)

Here, Ly is the average width of the billiard and ξ1,2(x + Lx) = ξ1,2(x) with 〈ξ1,2(x)〉 = 0.
The angular brackets stand for the average over one period Lx or, in the case of a random
profile, over different realizations of ξ1,2(x).

This model has been thoroughly studied in refs. [26–35] for the specific case
ξ1(x) = cos(2πx/Lx) and ξ2(x) = 0, the so-called “cosine” or “ripple” billiard [36]. The
main interest was in the properties of the energy spectrum [26,28] and in the quantum–
classical correspondence for the shape of eigenstates (SE) and local density of states
(LDOS) [29–32]. It was shown that for highly excited states, the global properties of
the SES and LDOS in the quantum regime are similar to those described by the equations
of motion for a classical particle moving inside the billiard. On the other hand, quite strong
quantum effects have been revealed for individual eigenstates in a deep semiclassical
region [31,32].

In this paper, we address the case of billiards with rough surfaces,

ξ1,2(x) =
NT

∑
k=1

Ak cos
(

2πkx
Lx

)
, (2)

focusing on the structure of eigenstates, see also [22–25,37–39]. The surfaces are modeled
by a large sum of harmonics Ak drawn from a flat random distribution defined in the
interval [−A,A] (with A such that |ξ1,2(x)| ≤ 1). With the increase of NT , the degree
of complexity of ξ1,2(x) also increases, and for NT � 1, the surfaces can be treated as
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random: see an example in Figure 1. In what follows, we focus on rough billiards with
NT = 100. For simplicity, we choose ξ1(x) = ξ2(x). In the first part of our paper, we review
the case of billiards with one flat boundary; that is W2 = 0, see, e.g., Figure 1. Below, in
Section 6, we consider the billiards with two antisymmetric, W1 = W2, and symmetric
surfaces, W1 = −W2.

0 L
x

0

L
y

y

x

f
1
(x)

Figure 1. Example geometry for the rough billiard. f1(x) = Ly + W1ξ1(x) and f2(x) = 0; see
Equation (1). Here, ξ1(x) is given by Equation (2) with NT = 30 and W1 = Ly/10. The harmonics
Ak used for ξ1(x) are drawn from a flat random distribution defined in the interval [−A,A] (with A
such that |ξ1(x)| ≤ 1).

Originally, the model is described by the Hamiltonian

Ĥ =
1

2m
(P̂2

x + P̂2
y ) = −

h̄2

2m
(∂2

x + ∂2
y), (3)

for a free particle inside the billiard with rough boundaries (such that the corresponding
wave function Ψ(x, y) obeys Dirichlet boundary conditions, Ψ(x, y) = 0 at y = f1(x) and
y = f2(x)). However, in order to solve it numerically, it is useful to make a canonical
transformation to new variables in which the new Hamiltonian incorporates surface-
scattering effects into an effective interaction potential between artificial particles identified
with the two new degrees of freedom. This can be achieved by the transformation to new
canonical coordinates,

u = x ,

v =
f2(x)− y

f2(x)− f1(x)
. (4)

As a result, the boundary conditions for the new wave function are trivial: Ψ(u, v) = 0 at
v = 0 and v = 1.

The Schrödinger equation in new coordinates can be obtained from the covariant
expression for a particle moving (in the absence of potentials) in a Riemannian curved
space [40],

− h̄2

2m
∆covΨ(u, v) =

h̄2

2m
g−1/2∂αgαβg1/2∂βΨ(u, v) , (5)

where the quantum Hamiltonian in covariant form [41] is

Ĥ =
1

2m
g−1/4P̂αgαβg1/2P̂βg−1/4 , (6)

and the covariant momenta are

P̂α = −ih̄
[

∂α +
1
4

∂αln(g)
]
= −ih̄g−1/4∂αg1/4 . (7)

Here, α, β = u, v, the operator ∆cov is the Laplace–Beltrami operator, g is the metric, and
gαβ is the metric tensor. The wave functions Ψ(u, v) are normalized as∫ Lx

0
du
∫ Ly

0
dv
√

gΨ†Ψ = 1 . (8)
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Even though (5) is still the kinetic energy, the resulting differential equation takes a
much more complicated form than the ordinal Laplacian. This is the price to pay when
transferring the effect of the boundaries onto the operator. Then, by substituting in (6) the
explicit expressions for the metric tensor

gαβ =


1 −

f ′1v + f ′2(1− v)
f1 − f2

−
f ′1v + f ′2(1− v)

f1 − f2

1 + [ f ′1v + f ′2(1− v)]2

( f1 − f2)2

 ,

where f ′1,2 ≡ ∂ f1,2(u)/∂u, and the metric

g = Det(gαβ) = ( f1 − f2)
2 , (9)

we obtain

Ĥ =
1

2m
g−1/4

{
P̂u( f1 − f2)P̂u + P̂v

1 + [ f ′1v + f ′2(1− v)]2

( f1 − f2)2 P̂v

−
[
P̂u( f ′1v + f ′2(1− v))P̂v + P̂v( f ′1v + f ′2(1− v))P̂u

]}
g−1/4 . (10)

Note that the rough boundaries f1,2 and their derivatives f ′1,2 are fully incorporated into
the Hamiltonian operator.

We remark that this representation allows us to treat the original model of one free
particle in the rough billiard as a model of two interacting “particles” identified with the
two degrees of freedom u and v, where the Hamiltonian (10) is separated as

Ĥ = Ĥ0 + V̂(u, v, P̂u, P̂v) , (11)

with
Ĥ0 =

1
2m

(P̂2
u + P̂2

v ). (12)

Here, P̂u = −ih̄[∂u + (1/4)∂u ln(g)], P̂v = −ih̄∂v, and V̂ stands for an effective interaction
potential between the “particles” u and v. In the following, we treat Ĥ0 as the Hamiltonian
of two non-interacting particles. The eigenstates of Ĥ0 define the unperturbed basis in which
the eigenstates of the total Hamiltonian Ĥ(u, v, P̂u, P̂v) are expanded. Such a representation
turns out to be convenient for the study of the chaotic properties of the model, since one
can use the tools and concepts developed in the theory of interacting particles (see, for
example, [42,43]).

Now, we expand the αth eigenstate of energy Eα as

Ψα(u, v) = ∑
m

∑
n

Cα
mnφmn(u, v) , (13)

where φmn(u, v) = 〈u, v | m, n〉 are the eigenstates of the unperturbed Hamiltonian Ĥ0(u, v),
and the indexes n and m are the quantum numbers corresponding to the u and v coordinates,
respectively. The function φmn(u, v) has to satisfy the boundary conditions of the problem
in order to form a Galerkin basis [44]. The eigenstates of Ĥ0 are

φmn(u, v) =
1

π1/2g1/4 sin
(

mπv
Ly

)
exp

[
i
(

k +
2πn
Lx

)
u
]

, (14)

with eigenvalues

E0
mn(k) =

h̄2

2m

[(
k +

πn
Lx

)2
+

(
πm
Ly

)2
]

. (15)
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Here, formally, −∞ < n < ∞ and 1 ≤ m < ∞, but in practice, for the numerical computa-
tions, the unperturbed basis is truncated such that −Nmax < n < Nmax and 1 ≤ m < Mmax.
The factor π−1/2g−1/4 in (14) arises from the orthonormality condition (8).

Then, we can solve the eigenvalue problem by diagonalizing the Hamiltonian (10) on
the basis φmn(u, v):

∑
m′

∑
n′

Hmn,m′n′φm′n′(u, v) = Eφmn(u, v) , (16)

where the matrix elements are

Hmn,m′n′ ≡ 〈mn|Ĥ|m′n′〉

= − h̄2

2m

∫ Lx

0
du
∫ Ly

0
dv g1/2

[
φ†

mn

]
∆cov[φm′n′ ] = −

h̄2

2m

∫ Lx

0
du
∫ Ly

0
dv ∂α

[
φ†

mn

]
g1/2gαβ∂β[φm′n′ ] .

Since the Hamiltonian (10) is periodic in u, its eigenstates are Bloch states. This allows
us to write the solution of the Schrödinger equation in the form Ψ(u, v) = exp(iku)Ψk(u, v),
with Ψk(u + Lx, v) = Ψk(u, v). Here, the Bloch wave vector k(E) is in the first Brillouin
zone, (−π/Lx ≤ k ≤ π/Lx). The statistical properties of eigenstates do not depend on a
specific value of the Bloch index k inside the band, except at k = 0 and k = ±π/Lx, so we
avoid these values of k in our numerical calculations.

Finally after some algebra, we obtain

Hmn,m′n′ =
h̄2

2m

{(
k +

πn
Lx

)2
δnn′δmm′ +

m2π2

Lx

[
J1 + J2 +

(
1
3
+

1
4m2π2

)
J3

]
δmm′

+ i
4mm′

(m2 −m′2)Lx

(
k +

π(n + n′)
Lx

)[
J4 − (−1)m+m′ J5

]
+

4mm′(m2 + m′2)
(m2 −m′2)2Lx

[
(−1)m+m′ J6 − J7

]}
(17)

where

J1 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n− n′)x

]
f ′1 f ′2

( f1 − f2)2 ,

J2 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n− n′)x

]
1

( f1 − f2)2 ,

J3 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n− n′)x

]
( f ′1 − f ′2)

2

( f1 − f2)2 ,

J4 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n− n′)x

]
f ′2

f1 − f2
,

J5 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n− n′)x

]
f ′1

f1 − f2
,

J6 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n− n′)x

]
( f ′1 − f ′2) f ′1
( f1 − f2)2 ,

J7 =
∫ Lx

0
dx exp

[
−i

2π

Lx
(n− n′)x

]
( f ′1 − f ′2) f ′2
( f1 − f2)2 .

Notice that depending on the billiard geometry, some of the integrals above may vanish.
For example, in the case W2 = 0 (i.e., for the billiard of Figure 1), we have J1 = J4 = J7 = 0.

3. Structure of the Hamiltonian Matrix

In order to study the structure of eigenstates of the total Hamiltonian Ĥ(u, v) one
needs, first, to choose a way of ordering the unperturbed basis in which we represent
the Hamiltonian matrix Hl,l′(k) = 〈l | Ĥ | l′〉k. Specifically, we have to assign an index l,
labeling the basis state | l〉k ≡| m, n〉k to each pair of indecies (m, n) (note that although
the energy spectra are independent of the assignment (m, n) → l, the structure of the
eigenstates is not). In addition, note that the size of the Hamiltonian matrix is determined
by the maximum values of n and m: −Nmax ≤ n ≤ Nmax and 1 ≤ m ≤ Mmax.
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A natural assignment is the following one [30]. Let us fix the lowest value of n (−Nmax)
and sweep all values of m (1 ≤ m ≤ Mmax). This gives l = 1, 2, . . . , Mmax. Then, do the
same for n = −Nmax + 1, which gives Mmax + 1 ≤ l ≤ 2Mmax, and so on, until finally,
we have 1 ≤ l ≤ Lmax, where Lmax = (2Nmax + 1)Mmax defines the Hamiltonian matrix
size, Lmax × Lmax. This rule results in a block structure of the Hamiltonian matrix with a
block size equal to Mmax. Figure 2 (left) shows the lower part of a 4030× 4030 matrix with
(Nmax, Mmax) = (32, 62). Here, we can see a number of blocks of size 62× 62 corresponding
to n, n′ = −32, . . . ,−17. In this representation, the matrix is clearly a block matrix.

The above way of ordering the unperturbed basis corresponds to the “channel repre-
sentation” (or momentum representation), since the index m labels a specific transverse
channel for the propagation of the wave through the billiard; see Equation (14). However,
for our purposes, it is essential to use the “energy representation”, according to which the
unperturbed basis is ordered in increasing energy, E0

lnew+1(k) ≥ E0
lnew

(k). This defines a new
rule l → lnew = lnew(n, m). In Figure 2 (right), we show the lower part of the Hamiltonian
matrix of Figure 2 (left) but now in the “energy representation”. Notice that in contrast
to the block structure of the Hamiltonian matrix in the “channel representation”, in the
“energy representation”, the Hamiltonian matrix shows a band-like structure.

Figure 2. (left) Lower part of the Hamiltonian matrix in the “channel representation” | Hl,l′ |.
(right) Lower part of the Hamiltonian matrix in the “energy representation” | Hlnew ,l′new

|. Lx = 2π,
Ly = 2π, W1 = 0.06Ly, k = 0.1, NT = 100, and (Nmax, Mmax) = (32, 62) were used. With this choice
of Nmax and Mmax, we obtain Lmax = 4030. Both matrices are shown in grayscale where darker
means higher amplitude of the matrix element.

In order to analyze the structure of the eigenstates of Ĥ(u, v) in detail, we diagonalize
Hamiltonian matrices in the “energy representation” and construct the “state matrices”
|Cα

lnew
|2. In Figure 3, we show the lower part of the state matrix corresponding to the

Hamiltonian matrix of Figure 2 (right). Here, Cα
lnew

are the amplitudes of the eigenstates in
the (energy-ordered) basis representation given by the index lnew. Namely, the index lnew
refers to unperturbed basis states that correspond to the unperturbed Hamiltonian Ĥ0. The
index α refers to a specific exact eigenstate. All eigenstates are ordered in increasing energy,
with α = 1 the ground state. Therefore, to understand how strongly localized/extended
the exact eigenstates in the unperturbed basis are, one should fix the value of α and explore
the dependence of |Cα

lnew
|2 on lnew.

A crucial point in our study is that the eigenstates of the Hamiltonian in the “energy
representation” have a very convenient form for the analysis. The advantage of the “energy
representation” over the “channel representation” (i.e., when the Hamiltonian matrix has a
block structure) is clearly seen in Figure 4 where an arbitrarily chosen eigenstate is given in
the two representations. One can see that in the “channel representation”, the eigenstate
has a kind of regular and extended structure, while in the “energy representation”, the
eigenstate is compressed. In the latter case, one may use a statistical approach to describe
the global properties of such eigenstates; see refs. [43,45]. Specifically, these eigenstates can
be characterized by introducing an envelope around which the components are expected
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to fluctuate in a pseudo-random way. We stress that by using this energy ordering, it
is possible to relate the global form of eigenstates in the energy representation with its
classical counterpart; see, e.g., refs. [29–32].

Figure 3. Lower part of the state matrix |Cα
lnew
|2 from the Hamiltonian matrix of Figure 2 (right); that

is, Lx = 2π, Ly = 2π, W1 = 0.06Ly, k = 0.1, NT = 100, and (Nmax, Mmax) = (32, 62) were used. The
matrix is shown in grayscale where darker means higher amplitude of the matrix element.

0 1200 2400 3600

l

-0.1

0

0.1

C
α

0 1200 2400 3600

l
new

-0.1

0

0.1

C
α

(a) (b)

l n
e
w

l

Figure 4. Example of an eigenstate obtained from the Hamiltonian in (a) the “channel representation”
and (b) the “energy representation”. Lx = 2π, Ly = 2π, W1 = 0.06Ly, k = 0.1, and NT = 100 were
used. (a) The eigenstate α = 392 as a function of l and (b) the same eigenstate as a function of lnew.

4. Eigenstates in Energy Representation

In Figure 5, we present two typical pairs of consecutive eigenstates (α = 390 and 391
and α = 407 and 408). The difference between the eigenstates on the left panels (α = 390
and 407) and the other two is clearly qualitative. More specifically, while the states α = 390
and 407 are extended (in energy) eigenstates, constituted by practically all basis states within
the shown energy range, the eigenstates α = 391 and 408 are mostly unperturbed: they
are extremely localized in energy. Indeed, by neglecting all small amplitude components
surrounding the main component (see left panels of Figure 5), we can determine the basis
state lnew, defined by the pair (m, n), that most closely resembles the exact eigenstates. We
find that this always corresponds to the lowest values of the transversal mode m. This fact
can be understood by the following physical argument. Consider an eigenstate of the flat
billiard φm,n(X, Y, k = 0) ∝ sin(mπY/Ly) exp(iKxX) with energy E0 = (h̄2/2me)(K2

x +K2
y),

where Ky = mπ/Ly = 2π/Λy. Turning on the perturbation (flat to rough billiard) will
affect the high energy unperturbed states differently depending mainly on the value of
Λy. For example, for m = 1, the ratio Λy/W1 is 2Ly/W1 ≈ 33 (with W1 = 0.06Ly, the
value of W1 we use throughout this work), which is so large that the state cannot “see” the
roughness and thus will remain essentially unperturbed. In contrast, for unperturbed states
with the same (or about the same) energy but with large values of m (say, m = 62 = Mmax
and correspondingly small Kx), their Λy is sufficiently small compared to the amplitude
of the roughness (Λy/W1 ≈ 0.5), so that the rough boundary produces a strong mixing
of unperturbed levels. The resulting exact eigenstate will consist of many components
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extended over the energy. Note that we may treat strongly localized states in the channel
representation as a kind of scar state.
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Figure 5. Typical pairs of consecutive eigenstates (α = 390, 391, 407 and 408) in the energy represen-
tation for Lx = 2π, Ly = 2π, W1 = 0.06Ly, k = 0.1, and NT = 100.

The fact that the extremely localized (in energy) eigenstates can be identified with
the plane waves φm,n(x, y) with small m, proper of the flat billiard, makes us expect that
they will also be similar to plane waves when presented in configuration representation
|Ψα(x, y)|2. Then, in Figure 6 (right), the two localized (in energy) eigenstates of Figure 5
(right) are shown in configuration representation. It is quite unexpected that these eigen-
states are very different from the unperturbed ones, even though they are similar in energy
representation. Figure 6 (right) shows that the rough boundary “pushes” the probability
|Ψα(x, y)|2 away from it. Thus, the eigenstate α = 391, whose main component in energy
representation is identified with m = 1, differs importantly from the unperturbed mode
with m = 1 whose maximum is at the billiard center y = Ly/2 (as in the case of the
lowest eigenmode of a box of width Ly with hard walls). Similar repulsion occurs for
the eigenstate α = 408 identified with m = 2. We stress that this repulsion effect occurs
only for rough billiards and is stronger the more rough the billiard boundary is, see, e.g.,
ref. [39]. A detailed analysis of this repulsion effect will be performed in Section 6. Finally,
for comparison purposes, in Figure 6 (left), we also present the two extended (in energy)
eigenstates of Figure 5 (left).

In order to characterize quantitatively the eigenstates, we compute various localization
measures. The first one is the so-called entropy localization length lH ,

lH = exp [−(H−HGOE )] ≈ 2.08 exp (−H). (18)

Here,H stands for the Shannon entropy of an eigenstate in a given basis,

H =
N

∑
lnew=1

wα
lnew

ln wα
lnew

, (19)

andHGOE is the entropy of a completely chaotic state which is characterized by Gaussian
fluctuations (for N → ∞) of all components Cα

lnew
with the same variance 〈wα

lnew
〉 = 1/N,

where wα
lnew

= |Cα
lnew
|2. The latter property occurs for completely random matrices belong-



Entropy 2023, 25, 189 10 of 22

ing to a Gaussian Orthogonal Ensemble (GOE). Defined in this way, the quantity lH gives
the measure of the effective number of components in an eigenstate. For example, the eigen-
states of Figure 5 have lH(α = 390) = 1189.7, lH(α = 391) = 5.75, lH(α = 407) = 1517.5,
and lH(α = 408) = 13.16; that is, extended eigenstates have large values of lH , while
localized eigenstates are characterized by small values of lH .

Figure 6. The eigenstates of Figure 5 in the configuration representation |Ψα(x, y)|2. The scale of the
color code on the right of the panels should be multiplied by 10−3.

The second quantity, lipr, which gives another measure of the effective number of
components in an eigenstate, is expressed via the inverse participation ratio P ,

lipr =

[
PGOE
P

]
≈ 3
P (20)

with
P =

N

∑
l=1

(wα
lnew

)2. (21)

where PGOE ≈ 3 is chosen in order to obtain lipr = N in the GOE limit case. Corre-
spondingly, the eigenstates of Figure 5 have lipr(α = 390) = 1061.2, lipr(α = 391) = 6.32,
lipr(α = 407) = 1464.4, and lipr(α = 408) = 14.99, where a high correlation with lH can
be seen. The above two definitions of localization lengths are the most frequently used
when describing the global structure of eigenstates. One should note that these quantities
provide an estimate of the effective number of large components, independently on the
location of these components, in the unperturbed basis.

To obtain a complete panorama, in Figure 7a,b we plot these two measures, lH and
lipr, for the eigenstates |α〉 of the rough billiard. The strong fluctuations of the localization
measures are evident in these figures. We can see that neighboring high-energy eigenstates
may have drastically different localization measures, which is in agreement with the
discussion above about the existence of localized and extended eigenstates. Moreover,
these figures give us information about the relative number of each type (localized and
extended eigenstates) to be found in a given energy range.
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Figure 7. Localization measures for the eigenstates α of the rough billiard. (a) Entropy localization
length lH, (b) inverse participation ratio lipr, (c) mean square root lσ, and (d) centroid nc. Here,
Lx = 2π, Ly = 2π, W1 = 0.06Ly, k = 0.1, and NT = 100 were used.

Additional information about the structure of eigenstates can be obtained from the
“width” or mean square root lσ of an eigenstate, which is computed as

lσ =

[
N

∑
lnew=1

wα
lnew

[lnew − nc(α)]
2

]1/2

, (22)

where nc = ∑lnew lnew wα
lnew

determines the centroid of an eigenstate in the unperturbed
basis.

Comparison of the width lσ with lH and lipr gives the possibility of detecting the
so-called sparsity of eigenstates. Indeed, small values of the ratio lH/lσ (or lipr/lσ) indicate
that there are “holes” in the structure of the eigenstates; therefore, such eigenstates are sparse;
see Figure 7c. A detailed analysis shows the existence of sparsed eigenstates. As for the
centroid, nc > α observed in Figure 7d indicates that the interaction strength V̂ is relatively
strong compared to the unperturbed part Ĥ0.

The data of Figure 7a,b show the existence of a wide range of values of both localization
measures even at high energies; moreover, there are eigenstates with small localization
lengths (visible as clusters of points in the lower part of the plots) along the entire energy
range. This situation is also present for the same quantities computed for the local density
of states (LDOS): that is, for the basis eigenstates | lnew〉 expanded in the exact basis
| α〉; see Figure 8. Note that to compute the localizations lengths, as well as the centroid,
for the LDOS, one must interchange α ↔ lnew in expressions (19), (21) and (22). It is
relevant to stress that the localization lengths for the LDOS show well-defined patterns, see
Figure 8, which are not present for the exact eigenstates, see Figure 7. Inspection of
Figure 8a–d clearly demonstrates that there is a kind of regularity in the structure of the
LDOS: the same type of states appear repeatedly, almost periodically as a function of the
basis number lnew. These figures show the repetition of extremely localized states and of
states with different values of the localization measures. The physical origin of all these
types of states (localized, intermediate and extended) was explained above, and their
appearance can be decoded by examining the structure of the “channel representation” of
the Hamiltonian matrix; see Figure 2 (left). A detailed inspection of that matrix shows that
the coupling between unperturbed states depends strongly on the values of the index m,
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labeling the transversal modes of the flat billiard. An unperturbed state specified by a large
value of m (an m close to Mmax = 62) couples strongly to several other unperturbed states.
In contrast, the state with m = 1 has practically no coupling to other states. In particular,
the extremely localized states, corresponding to the first position on the left line of each
brach of Figure 8c occur because of the negligible coupling of the diagonal elements of the
Hl,l′ matrix with m = 1, the states on the second position of each branch occur for m = 3,
and so on with m odd. Similarly, the states on the right side of the branches result from
elements of the Hl,l′ matrix with even values of m.
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Figure 8. Localization measures for the LDOS, lnew, of the rough billiard. (a) lH, (b) lipr, (c) lσ, and
(d) nc. Lx = 2π, Ly = 2π, W1 = 0.06Ly, k = 0.1, and NT = 100 were used.

This structure is expected to prevail at all energy ranges, since in any sufficiently large
range of energies, there are unperturbed states with all values of m ∈ [1, Mmax]. Even
deep in the semiclassical regime, extremely localized and sparse states will appear but less
and less frequently since the energy differences between states of the same type increases
with energy.

5. Scar-Like States in Energy Space

In this section, we discuss the origin of the scar-like states emerging in the energy
representation; they seem to be generic for plane billiards with rough surfaces. The starting
point is the observation that for a weak roughness, these states can be associated with
those unperturbed states that have a small value of the index m, especially for m = 1.
Since the localized eigenstates identified above with m = 1 exist at all energies, the
important question is about the fraction of these states relative to the total number of
states N(E) ≡ ∑i{i|Ei ≤ E} as a function of energy. This question is important in view of
Shnirel’man’s theorem [14] stating that the eigenfunctions of a classically ergodic system are
equidistributed over the energy shell in the classical limit. In other words, we expect that

lim
E→∞

Nm=1(E)
N(E)

= 0, (23)

where Nm=1(E) is the number of m = 1 eigenstates up to some energy E:

Nm=1(E) ≡∑
i
{i|Ei ≤ E; Ψi

∼= φ1n(u, v)}. (24)
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Neither Shnirel’man’s theorem nor Equation (23) says anything about how the limit is
approached. Moreover, Shnirel’man’s theorem does not consider the possible existence of
parabolic fixed points. These occur in our billiard; they are the bouncing ball orbits or the
continuous set of all horizontal trajectories (Py = 0) which do not hit the two boundaries.
Quantum mechanically, there are no Py = 0 states, but the eigenstates of the flat channel
with a minimum value of Py are the m = 1 states. Thus, we have referred to the m = 1
eigenstates as “bouncing ball states” in [38].

For W1/Ly � 1, one can use the unperturbed spectra given by Equation (15) to obtain
a good estimate for Nm=1(E) and N(E). For large Nmax and Mmax, Equation (15) represents,
ignoring the k2 term, half of the ellipse

n2

2me

h̄2

(
Lx

2π

)2
E

+
m2

2me

h̄2

(
Ly

π

)2
E

= 1, (25)

in the n−m plane (recall that m ∈ [1, Mmax] and n ∈ [−Nmax, Nmax]); above E ≡ E(0)
n,m(k) ∼=

E(0)
n,m(0). In Figure 9, we show the n−m plane for the case of Nmax = 32 and Mmax = 62; there,

the dots represent basis states and the red ellipse is Equation (25) with E = 400(h̄2/2me) and
Lx = Ly = 2π. Then, for large E, the number N(E) equals the area of the half ellipse, and the
number Nm=1(E) of localized eigenstates equals twice the size or its minor axis:

N(E) =
(

2me

h̄2

)
σ

4π
E, (26)

Nm=1 =

(
2me

h̄2

)1/2 σ

π

√
E

Ly
; (27)

therefore,

Nm=1(E)
N(E)

=

(
h̄2

2me

)1/2
4Lx

σ
√

E
, (28)

where σ = LxLy is the area of one period of the billiard.

-30 -15 0 15 30
n

0

15

30

45

60

m

Figure 9. The n− m plane for the case of Nmax = 32 and Mmax = 62. Dots represent basis states
| l〉 ≡| m, n〉 or | lnew〉 ≡| m, n〉. The red ellipse is Equation (25) with E = 400(h̄2/2me) and
Lx = Ly = 2π.

We see that Equation (26) is precisely the first term in the Weyl series for the integrated
density of states (see for example [46], Section 7). Equation (28) indicates that (i) for fixed
E and σ, the portion of m = 1 states, relative to the total number of states, is larger the
narrower the billiard is and (ii) the convergence of Nm=1(E)/N(E) to zero is rather slow; it
decreases as a power-law of E.
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It is important to stress that in the case of a rough billiard having a highly modulated
boundary composed of many harmonics, the expression for N(E) is not simply given
by (26), since now, the perimeter γ of the boundary, as well as its curvature, contribute
significantly to N(E) as [47]

N(E) =
(

2me

h̄2

)
σ

4π
E− γ

4π

(
2me

h̄2

)1/2√
E−

(
2me

h̄2

)1/2√E
π

∞

∑
r=1

(−1)r

(r− 1/2)Er C2r+1. (29)

The coefficients C2r+1, r ≥ 1, in the sum of the Weyl series (29), depend on the curvature
(and its derivative) of the modulated boundary (see Table 3 of [47]). As is shown in [47],
the higher the index r of the Weyl coefficient C2r+1, the more complex the expansions for
Cr are, involving higher and higher powers of the curvature and its derivatives. Clearly,
the larger the number of harmonics NT , the more important the perimeter and curvature
terms become.

In addition, it is also instructive to look at the location of the eigenstates on the
n − m plane. Thus, in Figure 10, we present the eigenstates of Figure 5 also in energy
representation but now on the n−m plane. From this figure, we can observe that: (i) the
components of the energy-extended eigenstates of Figure 5 (left) are not equidistributed
on the n−m plane; instead, their main components are concentrated around the region
with n ∼ 0 and large m. That the components are concentrated around n ∼ 0 supports the
fact that these eigenstates are not extended over the x-axis when plotted in configuration
representation; see Figure 6 (left). (ii) The components of the energy-localized eigenstates
of Figure 5 (right) are also localized on the n − m plane; they are indeed characterized
by a single value of n and several but small values of m (a detailed decoding of this m
dependence will be performed in the next section).

Figure 10. The eigenstates α = 390, 391, 407 and 408 in energy representation (see Figure 5) on the
n−m plane.

6. Scars and Billiard Symmetries; Repulsion Effect

In this section, we study in detail the repulsion, in configuration representation, that
suffer the energy-localized eigenstates of rough billiards from the rough boundaries. This
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effect, already shown in Figure 6right panels, was first reported in [38,39] but also observed
in [24,48,49]. Moreover, in addition to the one-flat-boundary billiard of Figure 11a, we now
consider two additional billiard geometries: the antisymmetric billiard, Figure 11b, and the
symmetric billiard, Figure 11c; see also [24,25].

We start by presenting in Figure 12 few typical extremely energy-localized eigenstates
for the billiards of Figure 11 in three different energy regions. The main component of
all those eigenstates can be identified with an unperturbed state with m = 1 (see also
Figure 13) where we present again the eigenstates of Figure 12 but now in configuration
representation). Close inspection of Figure 12 shows that for the one-flat-boundary billiard
and the symmetric billiard, panels (a) and (c) of Figure 12, respectively, the localized
eigenstates have several components of appreciable magnitude. This is in contrast with
the eigenstates of the antisymmetric billiard, see panel (b) of Figure 12, which has only one
effective component with magnitude very close to unity.

The decoding of the main components of the energy-localized eigenstates of the one–
flat–boundary billiard, corresponding to panels (a) of Figure 12, shows that the second most
important component of each of the localized states corresponds to m = 2, the next one to
m = 3 and so on, all with the same value of n. That is, there is no mixing between different
values of n. Moreover, the amplitudes of these eigenstate components decay exponentially
as a function of m; see Figure 14 (left).

On the other hand, by decoding the main components of the energy-localized eigen-
states of the symmetric billiard, corresponding to panels (c) of Figure 12, we see that the
second most important component of each of the localized states corresponds to m = 3,
the next one to m = 5 and so on, all with the same value of n but with alternating signs.
Again, there is no mixing between different values of n. In addition, the amplitudes of
these eigenstate components show an exponential decay as a function of m, which is in this
case modulated by a sinus function; see Figure 14 (right).

-3 0 3
x

0

3

6

y

-3 0 3
x

-3 0 3
x

(a) (b) (c)

Figure 11. The rough billiards analyzed below: (a) a billiard with one flat boundary, W2 = 0; (b) an
antisymmetric billiard, W1 = W2; and (c) a symmetric billiard W1 = −W2. NT = 100, W1/Ly = 0.06,
Lx/Ly = 1, Lx = 2π, and ξ1(x) = ξ2(x).

Following the above observations, one can substitute in Equation (13) the following
expressions:

Cα
mn[a] ∼= Sa exp[−βa(m− 1)]δnnα , (30)

Cα
mn[b] ∼= δm,1δnnα , (31)

Cα
mn[c] ∼= Sc sin(mπ/2) exp[−βc(m− 1)]δnnα , (32)

for the energy-localized eigenstates of [a] the one–flat–boundary billiard, [b] the antisym-
metric billiard, and [c] the symmetric billiard, respectively. Here, nα corresponds to the
value of n characterizing all the main components of a given energy-localized eigenstate.
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Figure 12. Localized eigenstates in the energy representation Cα
lnew

for (a) a one-flat-boundary billiard,
(b) an antisymmetric billiard, and (c) a symmetric billiard; see Figure 11. Specifically, (a1) α = 391,
(a2) α = 705, (a3) α = 968, (b1) α = 170, (b2) α = 283, (b3) α = 401, (c1) α = 389, (c2) α = 704, and
(c3) α = 962. The main components of these localized eigenstates in energy representation correspond
to unperturbed states characterized by m = 1 and (a1) n = −18, (a2) n = −24, (a3) n = −28,
(b1) n = −18, (b2) n = −23, (b3) n = −27, (c1) n = −18, (c2) n = −24, and (c3) n = −28. NT = 100,
W1/Ly = 0.06, Lx/Ly = 1, Lx = 2π, k = 0.1, and ξ1(x) = ξ2(x) were used.

Figure 13. Localized eigenstates of Figure 12 in the configuration representation |Ψα(x, y)|2. Eigen-
states for (a1–a3) a one-flat-boundary billiard, (b1–b3) an antisymmetric billiard, and (c1–c3) a
symmetric billiard; same labeling as in Figure 12.
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The parameters Sa = 0.8, βa = 0.53, Sc = 0.9, and βc = 0.426 are obtained by fitting
the data to the dependence given by the expressions for Cα

mn above; see the fittings in
Figure 14. It is important to remark that for a fixed NT , all energy-localized states are
characterized by the same values of Sa,b and βa,b. Substituting the dependence of Cα

mn into
Equation (13) gives

Ψα
loc(u, v)[a] ∼= CaSa

exp[i(k + nα)u]
π1/2g1/4

∞

∑
m=1

sin
(

mπv
Ly

)
exp[−β(m− 1)] ,

Ψα
loc(u, v)[b] ∼= Cc

exp[i(k + nα)u]
π1/2g1/4 sin

(
πv
Ly

)
,

Ψα
loc(u, v)[c] ∼= CcSc

exp[i(k + nα)u]
π1/2g1/4

∞

∑
m=1

sin
(mπ

2

)
sin
(

mπv
Ly

)
exp[−β(m− 1)] ,

where Ca,b,c arise to satisfy the orthonormality condition in curvilinear coordinates,

∫ Ly

0

∫ Lx

0
dudv

√
gΨα ∗

loc Ψα
loc = 1 . (33)

Then, it follows that

| Ψα
loc(y) |

2 [a] ∼=
1
π

(
∞

∑
m=1

exp[−2βa(m− 1)]

)−1[ ∞

∑
m=1

sin
(

mπy
Ly

)
exp[−βa(m− 1)]

]2

,

| Ψα
loc(y) |

2 [b] ∼=
1
π

sin
(

πy
Ly

)
,

| Ψα
loc(y) |

2 [c] ∼=

1
π

(
∞

∑
m=1

sin2
(mπ

2

)
exp[−2βc(m− 1)]

)−1[ ∞

∑
m=1

sin
(mπ

2

)
sin
(

mπy
Ly

)
exp[−βc(m− 1)]

]2

.

These latter expressions give the average shape of the localized eigenstates in the
configuration representation, projected onto the y− | Ψα |2 plane. In addition, note that
Ψα

loc(y) does not depend on the parameters Sa,c, so the relevant parameters are βa,b. To
obtain | Ψα

loc(y) |
2 above, we have made the approximation v ≈ y and g ≈ 1 since

W1/Ly = 0.06� 1.
Finally, after some algebra, we obtain

| Ψα
loc(y) |

2 [a] ∼=
[exp(2βa)− 1] sin2(πy/Ly)

4π
[
cos(πy/Ly)− cosh(βa)

]2 , (34)

| Ψα
loc(y) |

2 [b] ∼=
1
π

sin
(

πy
Ly

)
, (35)

| Ψα
loc(y) |

2 [c] ∼=
sinh(2βc) sinh2(βc) sin2(πy/Ly)

2π
[
cosh2(βc)− sin2(πy/Ly)

]2 . (36)

Note that when βa,b → ∞, i.e., when the energy-localized eigenstates have only one single
component, | Ψα

loc(y) |
2 [a] =| Ψα

loc(y) |
2 [c] = (1/π) sin

(
πy/Ly

)
, as required.

In Figure 15, we plot Equations (34)–(36) together with the numerical data from the
eigenstates of Figure 13. From this figure, it is clear that (i) in the one-flat-boundary billiard,
the energy-localized eigenstates are repelled from the rough boundary toward the flat
boundary; see the curves labeled with (a), as already observed in Figure 6; (ii) in the sym-
metric billiard, the energy-localized eigenstates are repelled from both rough boundaries
toward the billiard center; see the curves labeled with (c); while (iii) in the antisymmetric
billiard, the repulsion effect is completely absent, so the eigenstates correspond to those
of the flat billiard; see the curves labeled with (b). A detailed study [24] revealed that the
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absence of repulsion in the antisymmetric billiard is due to the fact that in this billiard,
there is no square-gradient scattering between different modes or channels, in contrast to
the one-flat-boundary billiard and the symmetric billiard. Thus, one can conclude that the
main contribution to the repulsion is due to the intermode square-gradient scattering terms
of the Hamiltonian matrix (i.e., the integrals J3, J6, and J7 in Equation (17), which vanish
for the antisymmetric billiard). This conclusion supports the observation made above
according to which the effect of repulsion can be explained as due to a strong localization
in the channel space. This localization occurs due to a relatively strong interaction between
different conducting channels (or billiard modes).
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Figure 14. Main components Cα
mn as the functions of m from the localized eigenstates in the energy

representation of Figure 13a (right) and Figure 13c (left). Different symbols correspond to different
eigenstates. The thick dashed curves are the best fits to Equation (30) (right) and Equation (32) (left)
with Sa = 0.8 and βa = 0.53 and Sc = 0.9 and βc = 0.426, respectively.
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Figure 15. Projection of the eigenstate profiles of Figure 13 (color curves) onto the y coordinate to-
gether with the analytical expressions for | Ψα

loc(y) |
2 (thick dashed lines) given by Equations (34)–(36)

with βa = 0.53 and βc = 0.426. Profiles of eigenstates for (a) a one-flat-boundary billiard, (b) an
antisymmetric billiard, and (c) a symmetric billiard.

Note that since the parameters Sa,b and βa,b are the same for all m = 1 eigenstates for
a fixed NT , one can find Sa,b and βa,b for some low-energy eigenstate (so that the matrix
to be diagonalized is small) and with this one can infer the global shape of all m = 1
eigenstates. Conversely, knowing the shape of an m = 1 eigenstate within any energy
range, one may assess by looking at the amount of repulsion the degree of complexity,
presumably unknown, of the boundaries.

The excellent agreement between Equations (34)–(36) and the numerical data from
the eigenstates of Figure 13 indicates that for extremely localized eigenstates with m = 1,
there is no need to diagonalize the whole matrix since, there is no mixing between different
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values of n. In order to obtain a good approximation of these eigenstates, one only needs
to diagonalize the block of size Mmax ×Mmax corresponding to the quantum number nα,
which is a good quantum number in the presence of perturbation.

Within this approach, it is also possible to study energy-localized eigenstates with
m > 1 using blocks of the Hamiltonian (17) of size Mmax × Mmax. So, in Figure 16, we
plot the 2nd, 3rd, and 4th lowest eigenstates in configuration representation of a block of
the Hamiltonian (17) of size 100× 100 for the one-flat-boundary billiard (left panels), an
antisymmetric billiard (central panels), and the symmetric billiard (right panels). They
correspond to eigenstates characterized by m = 2, 3, and 4, respectively. As expected,
they have 2, 3, and 4 maxima in the transverse direction, respectively. As well as for the
eigenstates characterized by m = 1, see Figures 13 and 15, the eigenstates of Figure 16 suffer
repulsion from the rough boundaries in the one-flat-boundary billiard and the symmetric
billiard, while in the antisymmetric billiard, the repulsion is absent.

Figure 16. Left column: 2nd, 3rd, and 4rd lowest eigenstates in the configuration representation
|Ψα(x, y)|2 for a block of the Hamiltonian (17) of size Mmax ×Mmax for the billiards of Figure 11a.
Middle and right column: the same but for the billiards of Figure 11b,c, respectively. NT = 100,
W1/Ly = 0.06, Lx/Ly = 1, Lx = 2π, ξ1(x) = ξ2(x), Mmax = 100, nα = 0, and k = 0 were used.

7. Conclusions

In this paper, we have studied the properties of rectangular billiards with one and
two rough boundaries. In the classical description, such billiards can be considered as
completely chaotic, although this has not been rigorously proven. Our interest was to
understand the typical structure of the eigenfunctions in the quantum description and to
discover the mechanism of occurrence of scar states. For numerical simulation, we have
chosen the method of reducing the original model with one particle moving inside the
billiard to a model of two artificial particles in a billiard with flat boundaries, however with
an effective interaction between the particles. Thus, the complexity of the rough boundary
is embedded into a quite complicated interaction potential. In this representation, the
Hamiltonian of the system can naturally be represented as the sum of two terms, one of
which corresponds to the motion of two particles in a billiard with flat walls, and the second
term describes the interaction between particles. As can be seen, such a scheme is similar to
that which is often used in physics when describing isolated systems with many interacting
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particles. Thus, the question arises about the correspondence between the properties of
eigenfunctions in a many-particle basis (in our case, a two-particle basis) and the properties
of eigenfunctions in the configuration space. As was found, this correspondence is not
simple, especially if we are interested in the degree of localization of the eigenfunctions
and, in particular, in the occurrence of scar states.

As a result of our study, we came to the conclusion that one can roughly speak of
three different types of eigenstates. The first type includes states whose density in the
configuration basis is concentrated in the vicinity of bouncing ball trajectories that are
perpendicular to two horizontal surfaces. Such highly localized functions (with some
degree of chaos) are analogous to well-studied scar states in stadium billiards. The second
type of eigenfunctions, which are strongly localized in the momentum space, can be
associated with the plane waves in the billiard with flat boundaries. To some extent, they
can also be termed as scar states because of their strong correspondence to unperturbed
eigenstates. There is a third type of eigenfunctions that consists of many components in
both the energy space of the Hamiltonian and in the configuration space. These eigenstates
are quite complicated and can be treated as partially chaotic. Thus, it can be assumed that
these eigenstates quickly become completely chaotic with increasing energy in comparison
with those functions that are strongly localized either in energy or in configuration space.

We have considered in detail how the number of eigenstates strongly localized in the
energy space decreases with increasing energy. This question is related to Shnirel’man’s
theorem, according to which, in the classical limit, the measure (number) of scar functions
decreases to zero. It is worth noting that this theorem does not predict at what rate (in
energy) all eigenfunctions become ergodic. In the general case of ergodic billiards, this
question remains open, but in our case, the estimate indicates that the number of scar states
(in the energy space) decreases rather slowly, namely, inversely proportional to the square
of the energy.

We were also interested in the “repulsion” effect, discovered in [22], according to
which for a billiard with one corrugated surface, some of the eigenstates suffer a shift of
the maximal density toward the surface, which is flat. Our numerical data showed that
this effect is highly pronounced for those eigenfunctions that are close to plane waves
traveling in the horizontal direction. For a subset of such eigenstates, we have derived an
approximate expression that clearly indicates an exponential localization in the momentum
space. Even more interesting was to compare the structure of this type of eigenstate for the
billiard with two corrugated surfaces. We have found that for symmetric rough surfaces,
the repulsion effect is strongly enhanced. On the other hand, for antisymmetric profiles,
the repulsion is absent. The origin of this phenomenon can be explained by analyzing
the structure of the Hamiltonian matrix, which is strongly influenced by the form of the
off-diagonal matrix elements that depend on the amplitude, first derivative, and the second
derivative of the billiard profiles. Apart from that, there are terms that describe the inter-
correlations between profiles. Our analysis explains both the repulsion enhancement and
the disappearance of repulsion. Due to this analysis, one can predict the impact of the type
of symmetry between the profiles on the scattering properties of quasi-one-dimensional
waveguides with corrugated surfaces.

This article is dedicated to Professor Giulio Casati on the occasion of his 80th birthday.
We wish him to be healthy and scientifically productive for the next 20 years.
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