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Abstract: Sufficient variable screening rapidly reduces dimensionality with high probability in
ultra-high dimensional modeling. To rapidly screen out the null predictors, a quantile-adaptive
sufficient variable screening framework is developed by controlling the false discovery. Without
any specification of an actual model, we first introduce a compound testing procedure based on the
conditionally imputing marginal rank correlation at different quantile levels of response to select
active predictors in high dimensionality. The testing statistic can capture sufficient dependence
through two paths: one is to control false discovery adaptively and the other is to control the
false discovery rate by giving a prespecified threshold. It is computationally efficient and easy
to implement. We establish the theoretical properties under mild conditions. Numerical studies
including simulation studies and real data analysis contain supporting evidence that the proposal
performs reasonably well in practical settings.

Keywords: high dimensionality; sufficient variable screening; false discovery controlling; quantile
heterogeneity

1. Introduction

When the dimension p grows exponentially with n, the unbearable computational
cost of the classical variable selection incurred by the ultra-high dimensionality will not
only heavily slow down the computing speed of the algorithm but also result in unstable
solutions [1]. To rapidly screen out the inactive predictors, variable screening methods
for ultra-high dimensional data coupled with response have been examined to reduce
dimension and effectively retain all the active variables with high probability in the reduced
variable space [2]. This is referred to as the sure screening property. Fan and Lv (2008)
proposed the concept of sure independence screening (SIS) based on the marginal Pearson
correlation coefficient in the linear regression model [1]. Since then, a series of variable
screening methods have been proposed successively, such as variable screening frameworks
based on the generalized linear model, additive model, and general models [3–6]. The above
methods are based on some specific model assumptions. In many scientific applications,
the correlation between predictors and the response is difficult to assume for ultra-high
dimensional data [7]. Model-based screening procedures enjoy quick computational speed
but suffer the risk of model misspecification [7,8].

To avoid the inconsistency between the assumptions of the regression model and
the actual distribution of data, model-free variable screening methods have been initially
designed for the continuous outcome variables. For example, Zhu et al. (2011) reported
a screening procedure to detect active predictors named SIRS; Li et al. (2012) proposed
a distance-based sure screening procedure called DC-SIS; He et al. (2013) introduced a
quantile-adaptive model-free variable screening for high dimensional data; Lin et al. (2013)
discussed a nonparametric ranking feature screening (NRS) through local information
flows of the predictors, and Lu and Lin (2020) studied feature screening procedure based
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on the unconditional model [7–11]. For ultra-high dimensional covariates coupled with the
categorical response, Mai and Zou (2013) advocated the Kolmogorov–Smirnov distance
for binary classification problems [12]. With a possibly diverging number of classes, the
marginal feature screening procedure for ultra-high dimensional discriminant analysis was
introduced by Huang et al. (2014) and Cui et al. (2015) [13,14]. Han (2019) researched a
general and unified nonparametric screening framework under conditional strictly convex
loss [15]. Zhou et al. (2020) established a forward screening procedure based on a new
measure called cumulative divergence [16]. Xie et al. (2020) explored a category-adaptive
screening procedure with ultrahigh dimensional heterogeneous categorical data [17].

As reported in Hao and Zhang (2017), the variable screening results depend on
the signal-to-noise (SNR) level: when the signal is weak with massive noise variables,
it could not be easy to detect the active variables from the noise variables, and the sure
screening property may not be established [18]. In terms of this situation, one path considers
controlling some false discoveries. In this regard, Tang et al. (2021) explored a quantile
correlation-based screening framework (QCS), which could screen variables by conducting
multiple testing to control the false discovery rate (FDR) [19]. Liu et al. (2022) posed a
two-step approach to specify the threshold for feature screening with the help of knockoff
features such that the FDR is controlled under a prespecified level [20]. For controlling the
FDR, Guo et al. (2022) advocated a data-adaptive threshold selection procedure with FDR
control based on sample-splitting [21].

However, most of the above sure screening methods are not sufficient variable screen-
ing (SVS) technology, which was first proposed in Cook (2004) and also discussed by Yin
and Hilafu (2015) and Yuan et al. (2022) [22–24]. For illustration, consider a population
with a response variable Y and a p-dimensional vector of predictors X = (X1, . . . , Xp)T,
let XA be a subset of X, and XĀ denotes the orthogonal complement of XA. Based on the
research of Yin and Hilafu (2015) and Yuan et al. (2022), sufficient variable screening means
to find the smallest and unique active variable set XA such that Y ⊥⊥ XĀ | XA, that is,
given the set XA, Y is independent of XĀ [23,24].

In this paper, without any specific regression or parametric assumptions, we advocate
a new sufficient variable screening procedure by using a robust multiple testing procedure
by controlling the false discovery to distinguish active variables by splitting the continuous
response at different quantile levels. Thus, we achieve quantile-adaptive sufficient variable
screening by controlling the false discovery (QA-SVS-FD). The proposed procedure is
based on a one-versus-rest (OVR) test statistic with an asymptotic chi-square distribution
under the null hypothesis. Thus, with the asymptotic distribution, the sufficient variables
set could be estimated precisely by controlling the FDR accurately at a given level for
high dimensionality or controlling the number of the FD adaptively with the error of
1. In addition, the proposed procedure is a model-free method for the measurement of
independence without any specified distribution model; thus, it is robust to detect sufficient
relevant variables against different model types.

The rest of this paper is organized as follows: Section 2 develops the sufficient variable
screening testing statistic by using the conditionally imputing marginal rank correlation at
different quantile levels of response. The false discovery controlling procedure under mild
conditions will be studied in Section 3. Sections 4 and 5 evaluate the proposed procedure’s
performance via extensive numerical research, which contains simulation studies and two
real data examples, which verify the robustness and flexibility of our methods. In Section 6,
we shall give a short concluding discussion. All the theoretical properties are proved in
Appendix A.

2. Sufficient Screening Utility

As the statement of Yuan et al. (2022), the analysis of sufficient variable screening
includes the iterative two-step screening procedure, which contains complex computa-
tion [24]. This section will propose a novel sufficient variable screening statistic by the
quantile-adaptive correlation test (QA-SVS).
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2.1. A Quantile-Adaptive Correlation Test Statistic

Throughout this paper, denote (Y, XT) as a pair of the continuous scalar of response
and the p-dimensional vector of covariates, where XT = (X1, . . . , Xp)T. The complete
observations {Yi, XT

i }, i = 1, . . . , n are independent and identically distributed observation
samples of (Y, XT). Based on the research of Yin and Hilafu (2015) [23] and Yuan et al.
(2022) [24], define two indicant sets, i.e, sufficient active or active variables index set A
consists of variables that are relevant to Y, andAc contains all redundant predictors or noise
predictors, where XA is a subset of X, and XAc denotes the orthogonal complement of XA.
Sufficient variable screening means to find the smallest and unique active variable set XA
such that Y ⊥⊥ XAc | XA, that is, given the set XA, Y is independent of XAc . Clearly, full
index set I = A∪Ac = {1, 2, . . . , p}. Without any specific assumption on the functional
correlation between the covariates and the response, inspired by Tang et al. (2021) [19], one
may consider testing the sufficient independence simultaneously between each Xj and Y
for 1 ≤ j ≤ p to detect important variables in the high dimensional setting

H0,j : Y ⊥⊥ Xj | X2 versus H1,j : Y 6⊥⊥ Xj | X2 (1)

for Xj ∈ X1, where ⊥⊥ represents independence, and (X1, X2)
T is a split of X. When the

part X2 satisfies that XA ⊇ X2, Xj ∈ X1 is regarded as a sufficient active predictor if and
only if H0,j is rejected.

Recall that the category-adaptive screening procedure in Xie et al. (2020) [17] is to
measure the marginal independence in high-dimensional heterogeneous data. Motivated
by the marginal utility, a test statistic is introduced based on the quantile split response
for testing (1) with high dimensionality without assuming any parametrical correlation
between Y and X. Let 0 = γ0 < γ1 < γ2 < . . . < γK = 1 be the sequence of quantile
grid points of Y, where D is prespecified positive integers. Denote the γk-th (1 ≤ k ≤ K)
quantile of Y as Qk. The theoretical quantiles can be estimated consistently by the sample
quantiles, which is that Q̂k = (1 − γk)Ybnγkc + γkYbnγkc+1 is the γk-th (1 ≤ k ≤ K− 1)
sample quantile of Y according to Hyndman and Fan (1996) [25]. For convenience, let
Q̂0 = −∞ and Q̂K = +∞, denote that Gk = [Qk−1, Qk) and Ĝk = [Q̂k−1, Q̂k). It is obvious
that pk = Pr(Y ∈ Gk) = γk − γk−1.

To explore the nature and provide a complete picture of the conditional distribution of
the outcome variable given the predictor vector, we assume the following assumptions:

(I) (Quantile-Heterogeneity) the index set of sufficient active predictors satisfies that
Ak = {1 ≤ j ≤ p : Pr(Y ∈ Gk|X) functionally depends on Xj} may be different
for different k = 1, 2, . . . , K;

(II) (Sparsity) the dimensionality p = o{exp(nα)} for some constant α > 0, but
|Ak| = sk = o(n), where |Ak| is the cardinality of Ak, and n is the sample size.

Assumption (I) describes heterogeneity of the sufficient correlated predictors set at dif-
ferent level quantiles of the response, and Assumption (II) provides the high-dimensional
settings.

Remark 1. The sufficient active variables index set at the γk-th quantile defined in Assumption (I)
screens active variables sufficiently when the response belongs to the grid [Qk−1, Qk). That is,
Ac

k =
{

1 ≤ j ≤ p : I(Y ∈ Gk) 6⊥⊥ Xj
∣∣Ak

}
, where Ac

k is the orthogonal complement of Ak. The
proof of equivalence will be expanded in Appendix A.1. In other words, A = {1 ≤ j ≤ p :
H0,j is true} = ∪K

k=1Ak.

Remark 2. If response Y ∈ {y1, y2, . . . , yK} is discrete, then Ak in Assumption (I) should be
rewritten as Ak =

{
1 ≤ j ≤ p : Pr(Y = yk

∣∣X) functionally depends on Xj
}

.

Remark 3. For the special case of K = 2, by the definition of Ak in Assumption (I), it is clear that
A1 = A2, which reduces to the active set Aγ = {1 ≤ j ≤ p : Qγ(Y|X) functionally depends on
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Xj} defined in He et al. (2013). We do not elaborate on it again as we regard it as a special case of
the proposed framework in this paper.

Lemma 1. For any j = 1, . . . , p and k = 1, . . . , K, if j /∈ Ak, then Fjk(x) = Fj(x), where
Fjk(x) = Pr

(
Xj ≤ x

∣∣Y ∈ Gk
)

and Fj(x) = Pr
(
Xj ≤ x

)
.

Lemma 1 will be proved in Appendix A.2. According to Yuan et al. (2022) [24], the
sufficient active variable set is actually screened based on the structure of (Y, XAk , XAc

k
).

Lemma 1 provides the information that the structure of (Y, XAk , XAc
k
) could be transformed

into another structure based on the marginal structure of (Y, Xj) by judging the difference
of Fjk(x) and Fj(x) for each j = 1, . . . , p and k = 1, . . . , K.

In terms of the quantile-heterogeneity of response, consider a series of tests to detect
sufficient active variables simultaneously at different quantile levels, that is,

H0,j,k : I(Y ∈ Gk) ⊥⊥ Xj | XAk versus H1,j,k : I(Y ∈ Gk) 6⊥⊥ Xj | XAk (2)

for 1 ≤ j ≤ p and 1 ≤ k ≤ K. Rewrite the test in Equation (1) as

H0,j,k : Y ⊥⊥ Xj | XA versus H1,j,k : Y 6⊥⊥ Xj | XA, (3)

where A = ∪K
k=1Ak. To investigate the difference of the conditional distribution of Xj

(j = 1, . . . , p) different quantile levels, for given k ∈ {1, . . . , K}, a variable screening
approach developed by capturing the dependence between I(Y ∈ Gk) and xj is specified as
the following screening utility:

υjk = 12 · (n + 1) · pk
1− pk

· τ2
jk, (4)

where τjk = EXj{Fjk(x)− Fj(x)} = Ex{Fjk(x)}− 1
2 , and Fjk(x)− Fj(x) reflects the difference

between conditional cumulative distribution function (CDF) and marginal CDF of Xj at
each quantile level. Actually, υjk = 12 · (n + 1) · VarOVR{τjk} = 12 · (n + 1) · (pk · τjk + (1− pk) · τjk̄),
where τjk̄ = EXj{Fjk̄(x)− Fj(x)} = Ex{Fjk(x)} − 1

2 , Fjk̄(x) = Pr
(
Xj ≤ x

∣∣Y /∈ [Qk−1, Qk)
)
,

and VarOVR{τjk} represents the variance of τjk in the one-versus-rest test of k-th series of
H0,j,k. As the definition in Equation (4), the higher υjk represents the stronger correlation
between the variable Xj and I(Y ∈ Gk).

Then, under the complete sample (X, Y), a sample estimate of τjk, j = 1, . . . , p,
k = 1, . . . , K is suggested as

τ̂jk =
1

n + 1

n

∑
l=1

{
1
n

n

∑
i=1

I(Xij ≤ xl j, Yi ∈ Ĝk)

p̂k

}
− 1

2
=

1
(n + 1)nk

n

∑
i=1

ηi · ξij −
1
2

,

where ηik = I(Yi ∈ Ĝk) represents whether the response of the i-th sample belongs to the
k-th grid, p̂k , nk/n = n−1 ∑n

i=1 ηik, and k = 1, . . . , K. Correspondingly, the test statistic
specifies the following conditional rank correlation, which is

υ̂jk = 12 · (n + 1) · nk
n− nk

τ̂2
jk = 12 · (n + 1) · nk

n− nk

(
1

(n + 1)nk

n

∑
i=1

η̂i · ξij −
1
2

)2

. (5)

2.2. Asymptotic Properties of the Test Statistic

According to approximation distribution for a sample sum in sampling without
replacement from a finite population in Mohamed and Mirakhmedov (2016) [26], the
asymptotic properties of τ̂jk and υ̂jk would be obtained as follows.
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Lemma 2 (Asymptotic Distribution of τ̂jk). if H0,j,k is true for all k = 1, 2, . . . , K and
j = 1, 2, . . . , p, and lim

n→∞
p̂k(1− p̂k) > 0, then we obtain the following asymptotic distribution:

τ̂jk
L−→ N

(
0,

1− p̂k
12(n + 1) p̂k

)
.

Denote Φ(u) = 2π−1/2 ∫ u
−∞ exp{− v2

2 }dv; then, Fτ̂jk (u) = Pr{τ̂jk < u
√

1− p̂k
12(n+1) p̂k

} satisfies
that

1− Fτ̂jk (u)

1−Φ(u)
=

Fτ̂jk (−u)

Φ(−u)
= 1 + O

(
n−1/2

)
,

where u = O(nβ) > 0 and β ≤ 1/2.

Corollary 1 (Asymptotic Distribution of υ̂jk). If H0,j,k is true for any k = 1, 2, . . . , K and

j = 1, 2, . . . , p, and lim
n→∞

p̂k(1− p̂k) > 0, we have υ̂jk
D−→ χ2

1, where χ2
m follows the chi-square

distribution with degree of freedom m. If H0,j is true for any j = 1, 2, . . . , p, we obtain υ̂j
D−→ χ2

K−1,
where υ̂j = (K− 1)/K ·∑K

k=1 υ̂jk. Then, υ̂jk and υ̂j satisfies that

Fυ̂jk (u)

Fχ2
1
(u)

= 1 + O
(

n−1/2
)

,
Fυ̂j(u)

Fχ2
K−1

(u)
= 1 + O

(
n−1/2

)
,

where Fχ2
K−1

(u) = Pr(χ2
K−1 ≤ u) is the CDF of χ2

K−1.

Lemma 2 and Corollary 1 will be proved in Appendices A.3 and A.4, respectively.
According to Lemma 2, it could be found that the asymptotic normal distribution of τ̂jk
depends on p̂k. Thus, to remove the influence of p̂k on asymptotic distribution and consider
the composite hypothesis testing in (3), υ̂jk is established in this paper.

When giving additional conditions as below, we can obtain Theorem 1 and 2.

(C1) There exists constants c1 > 0 and c2 > 0, s.t. c1/K ≤ min
1≤k≤K

pk ≤ max
1≤k≤K

pk ≤ c2/K;

(C2) There exists ρ0 = O(1/p2) > 0, s.t. lim
p→∞

min
j1∈Ak1

υj1k1 ≥ ρ0 ≥ lim inf
p→∞

max
j2 /∈Ak2

υj2k2 ;

(C3) The grids number of response satisfies K = O(nξ), where ξ > 0 and κ + ξ < 1/2.

Condition (C1) requires that the proportion of samples in each grid should not be
too small or too large. Condition (C2) guarantees that there exist thresholds ρ0 ensuring
that the smaller value of υjk ≤ ρ0 represents the weaker correlation. Condition (C3) allows
the number of grids to diverge as n increases. This ensures the rationality of the series of
hypothesis tests. Conditions of (C1)–(C3) provide concise foundations and do not specify
any distribution models and moment assumptions of variables.

Theorem 1 (Sure Screening Property). Suppose conditions of (C1) and (C3) hold. Then, for any
constant c3 > 0, we have

Pr( max
1≤j≤p

∣∣∣υ̂jk − υjk

∣∣∣ ≥ c3n−κ) ≤ 8p exp
(
−c4n1−2κ−2ξ

)
, (6)

where c4 > 0 and k = 1, ..., K.

Theorem 2 (Ranking Consistency Property). Suppose conditions of (C1) and (C2) hold. If
K log(p) = o(nρ2

0), then

lim inf
n→∞

{
min

j1∈Ak1

υ̂j1k1 − max
j2 /∈Ak2

υ̂j2k2

}
> 0. (7)
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We shall provide the proofs of Theorems 1 and 2 in Appendices A.5 and A.6, respec-
tively. Note that Theorem 1 is established for the fixed number of variables p. As long as
4(n + 2)p exp

(
−c4n1−2κ−ξ

)
to 0 asymptotically, the sure screening property of QA-SVS is

robust to heavy-tailed distributions of the predictors and the presence of potential outliers.
The ranking consistency property in Theorem 2 indicates that the values of υ̂jk of sufficient
active variables responding to the k-th grid can be ranked above that of all the inactive
ones with a high probability, which implies that the QA-SVS can separate the active and
inactive with a certain threshold. Theorems 1 and 2 mainly illustrate the properties of
the marginal utility itself, and the estimation of the certain threshold for the partition of
sufficient variable sets needs further work in Section 3.

3. False Discovery Control Model

Based on Theorems 1 and 2, we shall design two routes for screening sufficient active
variables by considering the false discovery (FD): one is to control the cardinality of FD
adaptively by detecting the outlier, and the other is to control false discovery rate (FDR)
accurately by survival analysis function.

3.1. Adaptive False Discovery Control Model

Recall the property (iii) of controlling the false discovery in Xie et al. (2020)–[17], the
number of screened variables is bounded with high probability. If we let ρ satisfy that
Sχ2

1
(ρ) = 1− Fχ2

K−1
(u) = 1/p, where ρ indicates the 1/p-th upper quantile of χ2

1, we can
a capture adaptive path to control the false discovery by the outlier method. Without
assuming any actual distribution, using the proposed test statistic υ̂jk, the false discovery is

FDk,ρ = ∑
j∈Ac

k

I(υ̂jk ≥ ρ),

where the expectation of false discovery rate is EFDk,ρ = E(FDk,ρ), and the variance of false
discovery rate is VFDk,ρ = Var(FDk,ρ) for any given ρ. By Corollary 1 in Section 2.2, under
H0,j,k, each υ̂jk converges to distribution of χ2

1 under certain mild conditions. Let qk = 1− sk
be the cardinality of Ac

k, for any given ρ, we have sr/p → 0 as p → ∞. Intuitively, the
FDRk,ρ could be estimated by

Theorem 3 (Adaptively Controlling False Discovery). Suppose conditions of (C1)–(C3) hold.
A fixed ρ = ρ̂0 satisfying Sχ2

1
(ρ̂0) = 1/p = O(n−2β), where β > 1/2, we obtain that

lim
p→∞

Pr{FDk,ρ̂0 > 0} = 1− e−1 (k = 1, . . . , K), (8)

lim
n→∞

EFDk,ρ̂0 = lim
n→∞

VFDk,ρ̂0 = 1, (9)

where EFDk,ρ̂0 = 1 + O(n−1/2) and VFDk,ρ̂0 = 1 + O(n−1/2).

We shall prove this property in Appendix A.7. Theorem 3 implies that the adaptive
threshold ρ̂0 can separate the active and inactive variables with a low false discovery in a
high probability, which converges to 1− e−1 as n increases. The expectation and variance
of the FD number can be controlled at 1 + O(n−1/2), indicating that the number of the
selected variables can be sufficiently controlled. The sufficient screened set is defined as

Âk,ρ̂0 ≡
{

j : υ̂jk ≥ ρ̂0, 1 ≤ j ≤ p
}

. (10)

The definition of Âk,ρ̂0 satisfies the estimation of the smallest and unique active variable set
XA such that Y ⊥⊥ XĀ | XA. Furthermore, we obtain the sufficient screening property of
Âk,ρ̂0 .
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Corollary 2 (Sufficient Screening Property by AFD). Supposing that conditions of (C1)–(C3)
hold, we have

Pr(Ak ⊂ Âk,ρ̂0) ≥ 1− 8sk exp
(
−c6n1−2κ−2ξ

)
,

where c6 is some positive constant, and sk = |Ak| is the true model size, k = 1, . . . , K.

Corollary 2 will be proved in Appendix A.8. In fact, Corollary 2 also can be regarded
as the sure screening property as in Fan and Lv (2008). Under the definition of the sufficient
variable, the utility in this paper screening the sufficient variables by controlling the false
discovery could lead to more precise results. Thus, rename the property in Corollary 2 as a
sufficient screening property. We call the proposed AFD control procedure QA-SVS-AFD.
The QA-SVS-AFD is computationally efficient and its validity to detect active variables is
guaranteed by Corollary 2. A stock-in-trade in the existing screening methods such as Xie
et al. (2020) [17] is to control the cardinality of the screened active variable set by setting a
certain threshold, and reduce the number of screened variables to be negligible with the
ultra-high dimensionality. However, the number of the FD is non-negligible. In this paper,
the QA-SVS-AFD procedure can control false discovery precisely by sufficiently controlling
the expectation and variance of false discovery to converge to 1.

The estimation of the certain threshold by Theorem 3 is to control the determination of
the rejection region under the level of O(1/p). In other words, we reject the null hypothesis
H0,j,k with the significant level around 1/p. As a result, the maximum subset of variables
in the rejection region is the estimation of the sufficient active variable set by the AFD
procedure. The AFD control path can be summarized as the following Algorithm 1:

Algorithm 1 QA-SVS-AFD algorithm.

Input: Observation sample (X, Y) and the number of grids K
Output: The screened sufficient variable set Âk,ρ̂0 (k = 1, . . . , K)
Step 1 Calculate υ̂k,1, · · · , υ̂k,p of Equation (5) for different k = 1, . . . , K;
Step 2 Compute ρ̂0 by Sχ2

1
(ρ̂0) = 1/p;

Step 3 Search for the screened sufficient active variable set Âk,ρ̂0 in Equation (10).

Remark 4. Alternatively, if one focuses on selecting sufficient predictors relevant to the response
Y, one can consider a refined version

Âρ̂0 ≡
{

j : υ̂j ≥ ρ̂∗0 , 1 ≤ j ≤ p
}

for testing the H0,j in Equation (1), where υ̂j = (K− 1)/K ·∑K
k=1 υ̂jk, j = 1, . . . , p and ρ̂∗0 satisfies

that Sχ2
K−1

(ρ̂∗0) = 1/p = O(n−2β). The estimations in Algorithm 1 are replaced by υ̂j and Âρ̂0 .

As a special case, when K = 2, we have Âρ̂0 = Â1,ρ̂0 = Â2,ρ̂0 . The result can be simply proved by
Corollary 2, and we omit it.

3.2. False Discovery Rate Control Model

The adaptive error detection control model can adaptively set the rejection region,
with the probability of rejection of the null hypothesis testing. It leads to a large type-II error
in hypothesis testing (2). Therefore, similar to Tang et al. (2021) [19], considering the control
of the type-I error in hypothesis testing (2), a false discovery rate (FDR) control procedure is
developed for testing H0,j,k simultaneously for j = 1, . . . , p, k = 1, . . . , K. Without assuming
any prespecified distribution, to sufficiently detect active variables at different quantile
levels, we provide a suitable estimation for the threshold ρ to separate sufficient active
variables by controlling the FDR of each H0,j,k.
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With the proposed test statistic υ̂jk, the false discovery proportion is

FDPk,ρ =
FDk,ρ

max{∑j∈I I(υ̂jk ≥ ρ), 1} =
∑j∈Ac

k
I(υ̂jk ≥ ρ)

max{∑j∈I I(υ̂jk ≥ ρ), 1} ,

for any given ρ, and the false discovery rate is FDRk,ρ = E(FDPk,ρ). By Corollary 1 in
Section 2.2, under H0,j,k, each υ̂jk converges to distribution of χ2

1 under conditions of
(C1)–(C3). Let qk = 1− sk be the cardinality of Ac

k, for any given ρ, under the assumption
that sr/p→ 0 as p→ ∞. Intuitively, the estimation for the FDRk,ρ can use the equation that

FDk,ρ/qk
max{∑j∈I I(υ̂jk≥ρ),1}/p . However, the separation of the null set Ac

k and qk is still intractable.

Thus, we attempt to estimate the FDR, by replacing FDk,ρ/qk by Sχ2
1
(ρ) = 1− Fχ2

1
(ρ), the

survival function of the distribution of χ2
1. Hence, for any given ρ, the estimated FDRk,ρ is

defined as

F̂DRk,ρ =
pSχ2

1
(ρ)

max{∑k∈I I(υ̂jk ≥ ρ), 1} .

Consequently, similar to the procedures of Benjamini and Hochberg (1995) [27] and
Tang et al. (2021) [19] to control the FDR at a prespecified level α ∈ (0, 1), we suggest
selecting the estimation of the threshold ρ for screening the sufficient active variables by

ρ̂k = inf
{

0 ≤ ρ ≤ ρ0 : F̂DRk,ρ ≤ α
}

(11)

for some constant ρ0 given in Condition (C2). In practical implementation, adopt the
appropriate value of υ̂1k, . . . , υ̂pk as the estimation of F̂DRk,ρ for ρ. Thus, the screened set
could be defined as

Âk,α ≡
{

j : F̂DRk,υ̂jk
≤ α, 1 ≤ j ≤ p

}
. (12)

Define υ̂lk ≡ arg maxk∈Âk,α
F̂DRk,υ̂jk

. In other words, υ̂lk is the threshold ρ such that FDRk,ρ is

maximized subject to F̂DRk,ρ ≤ α. Hence, the estimation of FDR is F̂DRk,υ̂jk
. The proposed

FDR control path can be summarized as the following Algorithm 2:

Algorithm 2 QA-SVS-FDR(K) algorithm.

Input: Observation sample (X, Y), the number of grids K, and the prespecified level α
Output: The screened sufficient variable sets Âk,α (k = 1, . . . , K)
Step 1 Calculate υ̂k,1, · · · , υ̂k,p of Equation (5) for different k = 1, . . . , K;
Step 2 Compute each F̂DRk,ρ of Equation (11) for ρ by taking each value of υ̂k,1, · · · , υ̂k,p;
Step 3 For given α, search for the set Âk,α ≡ {j : F̂DRυ̂jk ≤ α, 1 ≤ j ≤ p} in Equation (12);

Step 4 Find υk,l ≡ arg maxt∈Âk,α
F̂DRυ̂jk and let ρ̂k = υ̂k,l ;

Step 5 Separate the screened sufficient active set Âk,α of Equation (11) by ρ̂k.

We call the proposed FDR control path QA-SVS-FDR. The computational cost of the
QA-SVS-FDR is on the order of K ·O(p). The QA-SVS-FDR is also computationally efficient,
and its validity to detect active variables is guaranteed by the following theorem.

Theorem 4 (Sufficient Screening Property by Controlling FDR). Supposing conditions (C1)–
(C3) hold, we obtain that

Pr(Ak ⊂ Âk,α) ≥ 1− 8 exp
(
−c7n1−2κ−ξ

)
,
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where c7 is some positive constant and sk = |Ak| is the true model size, k = 1, . . . , K. For a
prespecified level α, if sk = |Ak| = O(nς) for some ς < 1/2, the FDR of the proposed multiple
testing procedure satisfies

lim
n→∞

F̂DRρ̂k

α
= 1,

where ρ̂k is given in Equation (11).

We shall prove Theorem 4 in Appendix A.9. Theorem 4 shows the sufficient screening
property of the estimation by controlling FDR accurately. The result of the screened
variable set by controlling the cardinality with an empirical threshold leads to the FDR
being non-negligible. Hence, in terms of the asymptotic null distribution of the test statistic
in Theorem 1, the FDR of the QA-SVS-FDR can be controlled accurately at a prespecified
level α, as the estimation of FDR can be approximated sufficiently well by large n.

Remark 5. Alternatively, if focusing on selecting sufficient predictors relevant to the response Y
by testing the H0,j in Equation (1), one can consider a refined version that is

FDPρ∗ =
∑j∈Ac I(υ̂j ≥ ρ∗)

max{∑j∈I I(υ̂j ≥ ρ∗), 1} ,

and the estimation of FDRρ∗ as

F̂DRρ∗ =
pSχ2

(K−1)
(ρ∗)

max{∑k∈I I(υ̂j ≥ ρ∗), 1} ,

where υ̂j = (K− 1)/K ·∑K
k=1 υ̂jk. Consequently, select the threshold ρ∗ by

ρ̂∗ = inf
{

0 ≤ ρ∗ ≤ ρ0 : FDRk,ρ∗ ≤ α
}

.

As a result, the screened sufficient active variable set is defined as

Âα ≡
{

j : F̂DRυ̂j ≤ α, 1 ≤ j ≤ p
}

.

Define υ̂l ≡ arg maxk∈Âα
F̂DRυ̂j . The estimation of the FDR is F̂DRk,υ̂jk

. The path of Âα is
summarized in Algorithm 3. Under the given level α, the FDR of the testing (3) satisfies that

lim
n→∞

F̂DRρ̂∗
α = 1. The conclusion can be simply proved by Corollary 2, and we omit it.

Algorithm 3 QA-SVS-FDR-S algorithm.

Input: Observation sample (X, Y), the number of grids K, and the prespecified level α
Output: The screened sufficient variable sets Âα

Step 1 Calculate υ̂1, · · · , υ̂p in Remark 5;
Step 2 Compute each F̂DRρ∗ in Remark 5 for ρ taking each value of υ̂1, · · · , υ̂p;
Step 3 For given α, separate for the set Âα in Remark 5;
Step 4 Find υ̂l ≡ arg maxk∈Âα

F̂DRυ̂j and let ρ̂∗ = υ̂l ;
Step 5 Separate the screened sufficient active set Âα in Remark 5 by ρ̂∗.

Thus far, we have completely shown the two paths of sufficient variable screening by
controlling the false discovery. The two paths have different essential frameworks: one is to
give the adaptive threshold and outlier detecting model to control the false discovery, and
the other is to control the false discovery rate accurately by using the survival functions for
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estimation under a given prespecified level α. These two paths both can control the false
discovery to sufficiently screen active predictors, which is simply the two-step sufficient
screening procedure in Yuan et al. (2022) [24].

4. Simulation Studies

In this section, the performance of the proposed procedure will be demonstrated via
several simulated examples. In practice, the sample splitting idea is adopted to avoid math-
ematical challenges caused by the reuse of the sample. Let {(Y(1)

i , X(1)T
i ), i = 1, . . . , n1}

and {(Y(2)
i , X(2)T

i ), i = 1, . . . , n2} be a random disjoint partition of {(Yi, XT
i ), i = 1, . . . , n}.

The proposed sufficient screening procedure consists of two steps: QA-SVS-SUP, to screen
all active variables; QA-SVS-FD, to control the FD adaptively (QA-SVS-AFD) and to control
the FDR accurately (QA-SVS-FDR). The two steps are specified as the following:

(1) QA-SVS-A: The p covariates are ranked in descending order according to Remark 5
based on {(Y(1)

i , X(1)T
i ), i = 1, . . . , n1} and evaluate the minimum model size that all active

variables are included.
(2) QA-SVS-FD: Based on {(Y(2)

i , X(2)T
i ), i = 1, . . . , n2}, (i) the sufficient predictors are

screened according to Equation (10) at different quantile levels, denoted by ÂAFD
k ; (ii) Given

an FDR level α, the threshold ρ̂k is estimated by Equation (11), and the selected set ÂAFD
k,α is

defined by Equation (12).

4.1. Performance of QA-SVS-A

In this subsection, the variable screening performance of our proposed QA-SVS is
compared with SIS (Fan and Lv, 2008) [1], the distance correlation-based screening (DC-SIS;
Li et al., 2012) [8], the quantile-adaptive model-free sure independence screening (QA-
SIS; He et al., 2013) [9], and the quantile-based correlation screening (QCS; Tang et al.,
2013) [19]. The performance of each procedure is evaluated via 5%, 25%, 50%, 75%, and
95% quantiles of the minimum model size that all active variables belong to based on 100
replications. The size is closer to the true model size, which indicates the better performance
of variable screening.

In the simulation, the predictors X =
(
X1, . . . , Xp

)T are generated from a p-variate
normal distribution with mean 0 and covariance matrix Σ = (σij)p×p, where σij = ρ|i−j|.
We set ρ = 0 and 0.5. Let the number of quantile grid points K = 5, 6, . . . , 11. To simulate a
high-dimensional scenario, we set n = 500 and p = 1000 or 5000 for each scenario. The
response variable is sampled from the following models:

Scenario 1.1: Z1 = 0.5X1 + 0.5X2 + 0.5X101 + ε;
Scenario 1.2: Z2 = 0.8X3 + 0.5(X4 + 1)2 + 0.5 tan(π(X102 + 1)/4) + ε;
Scenario 1.3: Z3 = 0.5 exp(3X5) + sin(πX6/2) + 5X103 I{X103 > Q(0.8, X103)}+ ε;
Scenario 1.4: Z4 = (1 + X7 + X8)

−3 exp{1 + 3 sin(πX104/2)}+ ε;
Scenario 1.5: Z5 = 0.5X9 + tan(π(X10 − 1)(X105 + 1)/4) + ε;
Scenario 1.6: Z6 = 2(X11 + 1)2X12X106 I{X12 > Q(0.5, X12), X106 < Q(0.5, X106)}+ ε.
The error term ε follows N (0, 1), independent of X. The quantiles of the minimum

model size in Scenario 1.1 and Scenario 1.2 that include all active variables with p = 1000
and p = 5000 are shown in Tables 1 and 2. Due to limited space, the simulation results of
the rest Scenario are presented in Appendix B Tables A1–A4.
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Table 1. The quantiles of minimum model size in Scenario 1.1 of Section 4.1.

ρ = 0 ρ = 0.5

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 1000
QA-SVS-A(4) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(6) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(7) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QCS(4) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 4.0
QCS(5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.0
QCS(6) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.0
QCS(7) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 5.0
QCS(8) 3.0 3.0 3.0 3.0 5.0 3.0 3.0 3.0 3.0 8.0
QCS(9) 3.0 3.0 3.0 3.0 10.5 3.0 3.0 3.0 3.0 6.5
QCS(10) 3.0 3.0 3.0 4.0 7.5 3.0 3.0 3.0 3.0 7.5
SIS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
DC-SIS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SIS(0.1) 3.0 3.0 5.0 10.0 60.0 3.0 3.0 3.0 5.0 23.0
QA-SIS(0.3) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 4.5
QA-SIS(0.5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5
QA-SIS(0.7) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 5.0
QA-SIS(0.9) 3.0 3.0 4.0 12.0 56.0 3.0 3.0 3.0 7.5 38.5

p = 5000
QA-SVS-A(4) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.5
QA-SVS-A(5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(6) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(7) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QCS(4) 3.0 3.0 3.0 3.0 5.0 3.0 3.0 3.0 3.0 7.0
QCS(5) 3.0 3.0 3.0 3.0 6.0 3.0 3.0 3.0 3.0 5.0
QCS(6) 3.0 3.0 3.0 3.0 5.0 3.0 3.0 3.0 3.0 8.5
QCS(7) 3.0 3.0 3.0 3.0 10.0 3.0 3.0 3.0 3.0 14.5
QCS(8) 3.0 3.0 3.0 3.0 30.0 3.0 3.0 3.0 3.0 24.0
QCS(9) 3.0 3.0 3.0 4.0 28.5 3.0 3.0 3.0 4.0 46.5
QCS(10) 3.0 3.0 3.0 5.0 36.5 3.0 3.0 3.0 5.5 71.5
SIS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
DC-SIS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SIS(0.1) 3.0 4.0 11.5 56.5 241.0 3.0 3.0 5.0 18.0 254.0
QA-SIS(0.3) 3.0 3.0 3.0 3.0 8.5 3.0 3.0 3.0 4.0 6.5
QA-SIS(0.5) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 4.5
QA-SIS(0.7) 3.0 3.0 3.0 3.0 14.0 3.0 3.0 3.0 3.0 9.0
QA-SIS(0.9) 3.0 4.0 13.0 55.0 160.0 3.0 3.0 6.0 14.0 222.5

Notes: QA-SVS-A(4), QA-SVS-A(5), . . ., and QA-SVS-A(10), our proposed method defined in Remark 3 with
different quantile grid points (K = 4, . . . , 10); QCS-A(4), QCS-A(5), . . ., and QCS-A(10), the quantile correlation-
based screening method (Tang et al., 2013) [19] with different quantile grid points (K = 4, . . . , 10); SIS, the sure
independence screening (Fan and Lv, 2008) [1]; DC-SIS, the distance correlation-based screening (Li et al., 2012) [8];
QA-SIS(0.1), QA-SIS(0.3), . . ., QA-SIS(0.9), the quantile-adaptive model-free sure independence screening (He et al.,
2013) [9] at different quantile levels.
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Table 2. The quantiles of minimum model size in Scenario 1.2 of Section 4.1.

ρ = 0 ρ = 0.5

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 1000
QA-SVS-A(4) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(6) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(7) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QCS(4) 3.0 3.0 3.0 3.0 11.0 3.0 3.0 3.0 3.0 4.0
QCS(5) 3.0 3.0 3.0 3.0 17.0 3.0 3.0 3.0 3.0 7.0
QCS(6) 3.0 3.0 3.0 4.0 12.5 3.0 3.0 3.0 3.0 5.0
QCS(7) 3.0 3.0 3.0 4.0 15.5 3.0 3.0 3.0 3.0 5.0
QCS(8) 3.0 3.0 3.0 5.0 35.0 3.0 3.0 3.0 3.0 8.0
QCS(9) 3.0 3.0 3.0 9.0 127.0 3.0 3.0 3.0 3.0 6.5
QCS(10) 3.0 3.0 3.0 6.0 32.5 3.0 3.0 3.0 3.0 7.5
SIS 287.0 486.5 697.5 870.0 986.5 127.5 330.5 573.5 824.0 971.0
DC-SIS 3.0 3.0 3.0 3.0 260.0 3.0 3.0 3.0 3.0 17.0
QA-SIS(0.1) 176.5 262.0 394.5 576.5 814.5 61.5 147.5 257.0 394.0 630.5
QA-SIS(0.3) 3.0 3.0 4.0 6.0 21.5 3.0 3.0 3.0 3.0 4.0
QA-SIS(0.5) 3.0 3.0 3.0 3.0 6.5 3.0 3.0 3.0 3.0 3.0
QA-SIS(0.7) 3.0 5.0 8.5 23.5 67.0 3.0 3.0 3.0 4.0 5.5
QA-SIS(0.9) 100.5 238.0 368.0 517.5 866.5 35.5 85.5 143.5 301.0 601.0

p = 5000
QA-SVS-A(4) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(5) 3.0 3.0 3.0 3.0 5.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(6) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(7) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(8) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(9) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(10) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0
QCS(4) 3.0 3.0 3.0 3.5 46.0 3.0 3.0 3.0 3.0 3.0
QCS(5) 3.0 3.0 3.0 8.0 72.5 3.0 3.0 3.0 3.0 3.0
QCS(6) 3.0 3.0 3.0 6.5 38.5 3.0 3.0 3.0 3.0 3.0
QCS(7) 3.0 3.0 3.0 10.5 171.5 3.0 3.0 3.0 3.0 3.0
QCS(8) 3.0 3.0 4.0 12.0 124.5 3.0 3.0 3.0 3.0 3.0
QCS(9) 3.0 3.0 4.0 15.5 353.5 3.0 3.0 3.0 3.0 3.0
QCS(10) 3.0 3.0 4.0 20.0 221.5 3.0 3.0 3.0 3.0 3.0
SIS 1391.0 2628.5 3487.0 4254.5 4810.5 1165.5 2144.0 3288.5 4218.5 4937.5
DC-SIS 3.0 3.0 3.0 4.0 1197.5 3.0 3.0 3.0 3.0 57.5
QA-SIS(0.1) 439.0 1062.5 1653.5 2543.5 3717.0 260.5 629.0 1142.0 1813.5 3317.0
QA-SIS(0.3) 4.0 6.0 9.5 20.5 110.5 3.0 3.0 4.0 5.0 9.5
QA-SIS(0.5) 3.0 3.0 3.0 5.0 13.0 3.0 3.0 3.0 3.0 3.0
QA-SIS(0.7) 5.0 11.0 25.0 61.0 377.0 3.0 3.0 4.0 5.0 9.5
QA-SIS(0.9) 625.0 1510.5 2279.0 3218.0 4569.0 175.0 500.0 868.0 1592.5 2403.0

Notes: All notations are the same as those in Table 1.

Under Scenario 1.1 with the linear model at a small signal-to-noise level, all five meth-
ods perform well. Under Scenario 1.2 with the additive model, QCS, DC-SIS and QA-SIS
perform comparably to the proposed QA-SVS-S procedure, while SIS fails to detect the
active predictors. Under Scenario 1.3 with a nonlinear relationship between the response
and predictors, all methods perform well to effectively screen out the inactive predictors
except for QA-SIS at high quantile level. Under Scenario 1.4 with a nonlinear relationship
between the response and predictors, the proposed QA-SVS-S and QCS screening proce-
dures behave effectively, QA-SIS behaves little weaker at the 0.5th quantile level, and the
other screening procedures struggle to maintain a reasonable model size at all quantiles.
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Under Scenarios 1.5 and 1.6 with interactions, the proposed QA-SVS-S and QCS perform
relatively stable, while both of them behave a little poorly when there are higher-order
effects. The QA-SIS in extremely low or high quantile level suffers a major setback, but
the proposed QA-SVS-S screens robustly. In addition, the performance of the proposed
QA-SVS-S is only discounted slightly when p increases from 1000 to 5000, but the other
methods are not. Furthermore, the results of the proposed QA-SVS-S in all Scenarios under
ρ = 0.5 indicate that the correlation of covariates provides sufficient screening relationships.
Through the different settings of the number of grid points K, it shows that the QA-SVS-S
will be more effective at detecting the active predictors as the increase of K, whereas QCS
has the opposite trend.

4.2. Performance of QA-SVS-FD

In this subsection, some scenarios are simulated to examine the proposed QA-SVS-FD
as well as the sufficient screening property of the proposed procedure. We compare the
variable screening performance of our proposed QA-SVS-FD with the quantile-based corre-
lation screening under controlling FDR (QCS-FDR; Tang et al., 2013) [19]. The predictors
X = (X1, . . . , Xp)T are generated from a p-variate normal distribution with mean 0 and
covariance matrix Σ = (σij)p×p. The response is generated from the following models:

Scenario 2.1: Y = ∑10
j=1 Xj + ε, Σ = (ρ|i−j|)p×p, and ρ = 0.5;

Scenario 2.2: Y = ∑50
j=1 Xj + ε, Σ = (ρ|i−j|)p×p, and ρ = 0.5;

Scenario 2.3: Y = exp(∑10
j=1 Xj) + ε, Σ = (ρ|i−j|)p×p, and ρ = 0.5;

Scenario 2.4: Y = exp(∑50
j=1 Xj) + ε, Σ = (ρ|i−j|)p×p, and ρ = 0.5;

Scenario 2.5: Y = ∑10
j=1(−1)j−1Xj + ε;

Scenario 2.6: Y = ∑50
j=1(−1)j−1Xj + ε;

Scenario 2.7: Y = ∑10
j=1 Xj/{0.5 + (1.5 + ∑4

j=2(−1)j−1Xj)
2}+ 0.1ε;

Scenario 2.8: Y = ∑50
j=1 Xj/{0.5 + (1.5 + ∑40

j=21(−1)j−1Xj)
2}+ 0.1ε.

Σ in Scenarios 2.5–2.8 has diagonal element 1 and sub-diagonal element 0.2. The
covariates are independent in Scenarios 2.1–2.4 and weakly dependent in Scenarios 2.5–2.8.
We consider n = 500 and p = 1000 or 5000 for all scenarios. Set the number of quantile
grid points K = 2, 3, 4, 5, 6. The nominal false discovery rate is α = 0.05. We evaluate the
performance based on the following criteria:

•
∣∣Â∣∣: the average number of screened variables;

• FDR: the average of empirical FDP;
• F1-score: the average of 2 · |{j : j ∈ A, j ∈ Â}|/(|{j : j ∈ A}|+ |{j : j ∈ Â}|).

Based on 100 replications, the results of the QA-SVS-FDR and the QCS procedure are
stored in Table 3, and the results with p = 5000 are presented in Appendix B Table A5.

Under Scenarios 2.1–2.4, the proposed QA-SVS-FDR performs as well as QCS-FDR.
The proposed QA-SVS-AFD has the same performance with a small K, whereas QA-SVS-
AFD would miss some active predictors as the increase of K. It can be found that the three
procedures control the empirical FDR under the prespecified level α for most scenarios.
As the increase of the number of active predictors, F1-score of the proposed QA-SVS-FD
(QA-SVS-AFD and QA-SVS-FDR) has a little improvement, such as 0.92 to 0.97. The
QCS-FDR shows the opposite trend. Combined with the |Â|, we obtain that our proposed
method screens out the null predictors more accurately but will lose some active predictors.
With sufficient screening by controlling FDR, our procedure can retain active predictors
as much as possible. Under Scenarios 2.5 and 2.7, it can be seen that our method works
slightly better than in QCS, especially the FDR and F1-score of QA-SVS-AFD reach 0 and
1, respectively. Under Scenarios 2.6 and 2.8, the proposed QA-SVS-AFD and QCS-FDR
both fail. However, it is worth mentioning that QA-SVS-FD has larger |Â| and F1-score
than QCS-FDR, which indicates that the performance of QA-SVS-FDR is more effective.
In addition, our QA-SVS-FD procedure works reasonably well as p increases from 1000 to
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5000, where QCS behaves slightly poorly. In summary, our proposed method performs
almost as well and is more effective than QCS-FDR in various practical settings.

In terms of the highly sensitivity of the model-free method to some factors that can
distort the underlying relationships between the covariates and the response, we suggest
that one can reduce the sensitivity by using the QA-SVS procedure with different numbers
of unfixing grid points. This can lead to different model complexity, where the large K can
lead to overfitting, and the small K can lead to under-fitting.

Table 3. The result of criteria in all scenarios under p = 1000 with α = 0.05 of Section 4.2.

Method QA-SVS-AFD(K) QA-SVS-FDR(K) QCS-FDR(K)

K 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

Scenario 2.1
|Â| 12.17 10.81 10.57 10.23 10.05 11.70 11.74 11.76 11.75 11.52 11.33 11.24 11.29 11.09 11.10
FDR 0.17 0.07 0.05 0.02 0.00 0.14 0.14 0.14 0.14 0.13 0.11 0.10 0.11 0.09 0.09
F1-score 0.90 0.96 0.97 0.99 1.00 0.92 0.92 0.92 0.92 0.93 0.94 0.94 0.94 0.95 0.95

Scenario 2.2
|Â| 50.40 48.14 44.87 37.95 26.82 52.16 52.29 52.28 52.21 52.35 50.53 50.52 50.16 49.59 48.59
FDR 0.02 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
F1-score 0.98 0.98 0.95 0.86 0.69 0.97 0.97 0.97 0.97 0.97 0.96 0.95 0.95 0.94 0.94

Scenario 2.3
|Â| 11.98 10.66 10.38 10.13 10.02 11.48 11.51 11.70 11.40 11.59 11.11 11.02 11.22 10.96 11.00
FDR 0.16 0.06 0.03 0.01 0.00 0.12 0.12 0.14 0.12 0.13 0.09 0.09 0.10 0.08 0.08
F1-score 0.91 0.97 0.98 0.99 1.00 0.93 0.93 0.92 0.94 0.93 0.95 0.95 0.94 0.96 0.95

Scenario 2.4
|Â| 50.31 46.07 39.30 26.54 14.55 52.22 52.26 51.75 51.88 51.77 49.77 47.84 46.93 44.97 43.69
FDR 0.02 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05
F1-score 0.98 0.96 0.88 0.69 0.45 0.97 0.97 0.97 0.97 0.97 0.95 0.93 0.92 0.90 0.89

Scenario 2.5
|Â| 10.82 9.93 9.16 7.84 5.71 10.36 10.73 10.50 10.44 10.55 9.93 9.99 9.76 9.57 9.09
FDR 0.08 0.00 0.00 0.00 0.00 0.04 0.06 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05
F1-score 0.96 0.99 0.95 0.87 0.72 0.98 0.97 0.97 0.98 0.97 0.94 0.95 0.94 0.93 0.90

Scenario 2.6
|Â| 14.87 3.63 0.53 0.07 0.01 12.86 15.04 12.49 10.79 9.23 1.54 1.35 1.07 0.61 0.48
FDR 0.06 NaN NaN NaN NaN 0.05 0.05 0.03 NaN NaN NaN NaN NaN NaN NaN
F1-score 0.43 0.13 0.02 0.00 0.00 0.38 0.43 0.38 0.33 0.29 0.05 0.04 0.03 0.02 0.02

Scenario 2.7
|Â| 11.11 10.00 10.00 9.99 9.93 10.66 10.44 10.65 10.45 10.54 10.62 10.60 10.64 10.45 10.61
FDR 0.09 0.00 0.00 0.00 0.00 0.06 0.04 0.06 0.04 0.05 0.05 0.05 0.05 0.04 0.05
F1-score 0.95 1.00 1.00 1.00 1.00 0.97 0.98 0.97 0.98 0.98 0.97 0.97 0.97 0.98 0.97

Scenario 2.8
|Â| 38.86 19.20 5.93 1.26 0.29 43.22 42.34 40.35 37.54 36.33 23.00 16.93 11.91 8.62 6.20
FDR 0.03 0.00 0.00 NaN NaN 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.05 NaN
F1-score 0.85 0.55 0.21 0.05 0.01 0.88 0.87 0.85 0.82 0.80 0.59 0.48 0.36 0.27 0.20

Notes: QA-SVS-AFD(K), our proposed method by controlling FD adaptively defined in Remark 4 with different
quantile grid points (K = 2, . . . , 6); QA-SVS-FDR(K), our proposed method by controlling FDR defined in Remark 5
with different quantile grid points (K = 2, . . . , 6); QCS-FDR(K), the quantile correlation-based screening method
(Tang et al., 2013) [19] with different quantile grid points (K = 2, . . . , 6).

∣∣Â∣∣: the average number of selected
predictors; FDR: the average of empirical false discovery proportion, where ’NaN’ indicates the method loss
validity; F1-score: the average of F1-score.

5. Real Dataset Research

In the era of rapid development of machine learning and pattern recognition, some
image recognition technologies are applied in the medical field. For example, through the
processing of lung CT images, we can identify whether the lung has a disease. The following
two methods are often used to quantitatively evaluate the severity of emphysema: one is
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CT density measurement. Based on the pixel image of CT digital, calculate the average
lung density of the patient, then establish the threshold, calculate the proportion of the
area below the threshold, and evaluate the situation of emphysema. The other is the
percentile density measurement (PD) technique. Analyze the attenuation distribution curve
of lung density, give a percentile (commonly 5% and 95%), calculate the area below the
percentile density curve, and evaluate the symptoms of emphysema [28]. In this section,
we shall apply our proposed method to analyze the lung CT image dataset downloaded
from Kaggle, which can segment lungs accurately.

There is a picture of a subject in Appendix C Figure A1. Among them, we regard 5%
and 95% PD data as the corresponding continuous response variable, respectively. For
smokers, these values are usually high, indicating that other substances in the lungs have
accumulated. The data include 267 instances and 512*512 continuous covariates stretched
by picture pixels.

By giving different values of quantile grid points K = 2, 3, . . . , 6 and considering the
threshold of FDR under the given prespecified level α = 0.05, we obtain the different
segmentations and extractions. The numbers of selected picture pixels are displayed in
Table 4. It is clear that QCS-FDR loses efficacy, and QA-SVS-AFD works when K ≤ 3.
Fortunately, QA-SVS-FDR works effectively under all values of K = 2, 3, . . . , 6. Compared
with the QA-SVS-AFD(K) and the QA-SVS-FDR(K), under the hypothesis testing (2), it
could be found that the screened active variable set is estimated by the rejection region
of the QA-SVS-AFD(K) path, which controls the probability around 1/(512 ∗ 512) with
not enough number of active variables. The QA-SVS-FDR(K) selects the active variable
sufficiently by testing the null hypothesis of testing (2) under the given prespecified FDR
level α = 0.5. We illustrate the extraction by plotting the segmented lung CT with the
average of the values of the selected predictors, which are presented in Appendix C,
Figures A2–A6. These results may provide some information for measuring important
clinical parameters (lung volume, PD, etc); considering the length of this paper, we do not
go further.

Table 4. The numbers of selected picture pixels in applications of Section 5.

K 2 3 4 5 6

5% PD
QA-SVS-AFD(K) 20,152 2435 28 0 0
QA-SVS-FDR(K) 89,353 85,426 83,991 76,492 74,106
QCS-FDR(K) 262,144 262,144 262,144 262,144 262,144

95% PD
QA-SVS-AFD(K) 5151 502 15 0 0
QA-SVS-FDR(K) 76,800 76,442 75,863 78,157 66,473
QCS-FDR(K) 262,144 262,144 262,144 262,144 262,144

Note: The number of complete figure pixels is 262,144. QA-SVS-AFD(K), our proposed method by controlling FD
adaptively defined in Remark 4 with different quantile grid points; QA-SVS-FDR(K), our proposed method by
controlling FDR defined in Remark 5 with different quantile grid points; QCS-FDR(K), the quantile correlation-
based screening method (Tang et al., 2013) [19] with different quantile grid points.

6. Conclusions

In this paper, we propose a multiple testing procedure with false discovery control
to detect active variables sufficiently. The multiple testing procedure can be applied with
the quantile-adaptive screening method when the dimensionality is ultra-high. Although
the QA-SVS procedure is built on the quantile-adaptive marginal screening statistic, by
controlling the FD of the marginal structural testings, the QA-SVS procedure can screen
out sufficient variables through the precise separation of the sufficient variable set. As the
results in this paper, if the grid points K grow faster than n and p, the QA-SVS statistic can
capture more subtle values better than QC-SIS, which is in line with the definition of the
sufficient variable. In addition, the convergent rate of the asymptotic null distribution of
our proposed procedure is larger than the QCS under a large K. In the simulation studies,

https://www.kaggle.com/datasets/kmader/finding-lungs-in-ct-data
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we set different values of K to inspect the performance of the QA-SVS. Nevertheless, it
would be of interest to study a data-driven way to select K. We leave some space here for
the future research.
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Appendix A. Main Proof

Appendix A.1. Proof of Remark 1

Proof. According to the definition of Ak in Assumption (I), for any xAc
k
∈ RAc

k
, we have

Pr(Y ∈ Gk | X) = Pr(Y ∈ Gk | XAk ). (A1)

Due to that X = (XAk , XAc
k
), for any xAc

k
∈ RAc

k
, multiply Pr(XAc

k
= xAc

k
| XAk ) on both

sides of the Equation (A1), we obtain that

Pr(Y ∈ Gk, XAc
k
=xAc

k
| XAk ) = Pr(XAc

k
=xAc

k
| XAk ) · Pr(Y ∈ Gk | XAk ).

Thus, we obtain that

Pr(Y ∈ Gk, XAc
k
≤ xAc

k
| XAk ) = Pr(XAc

k
≤ xAc

k
| XAk ) · Pr(Y ∈ Gk | XAk ).

Due to the multiplicative law of probability, it is clear that

I(Y ∈ Gk) 6⊥⊥ Ac
k | Ak.

In terms of invertibility, we proved that

Ak = {1 ≤ j ≤ p : Pr(Y ∈ Gk | X) functionally depends on Xj}
= {1 ≤ j ≤ p : I(Y ∈ Gk) 6⊥⊥ Xj | XAk}.

Thus, Ak is the sufficient screening variables index set.

Appendix A.2. Proof of Lemma 1

Proof. Note that Ac
k = {1 ≤ j ≤ p : I(Y ∈ Gk) ⊥⊥ Xj | XAk}; this indicates that

Pr(Y ∈ Gk, XAc
k
≤ xAc

k
| XAk ) = Pr(Y ∈ Gk | XAk ) · Pr(XAc

k
≤ xAc

k
| XAk )

⇐⇒ Pr(XAc
k
≤ xAc

k
| Y ∈ Gk, XAk ) = Pr(XAc

k
≤ xAc

k
| XAk )

⇐⇒ EXAc
k

{
Pr(XAc

k
≤ xAc

k
| Y ∈ Gk, XAk )

}
= EXAc

k

{
Pr(XAc

k
≤ xAc

k
| XAk )

}
⇐⇒ Pr(XAc

k
| Y ∈ Gk) = Pr(XAc

k
).



Entropy 2023, 25, 524 17 of 32

Thus, we obtain that Fj(x | Y ∈ Gk)− Fj(x) = 0 holds when j /∈ Ak.

Appendix A.3. Proof of Lemma 2

Proof. Note Ω = {0, 1, . . . , n− 1}, and Ωk = {ξ1, ξ2, . . . , ξe}(e = 1, . . . , n) is an e size
sample set random sampled in equal probability without replacement from the population,
where ξi(i = 1, 2, . . . , e) represents the i-th random sample, which satisfies a discrete
uniform distribution from 0 to n− 1, that is, ξi ∼ DiscreteU(0, n− 1). ξi has the following
properties:

Eξi =
n− 1

2
, Eξ2

i =
(n− 1)(2n− 1)

6
, Varξi =

n2 − 1
12

.

In addition, for all i1 6= i2, where i1, i2 ∈ {1, 2, . . . , n},

Eξi1 ξi2 =
(n− 2)(3n− 1)

12
, Cov

(
ξi1 , ξi2

)
= −n + 1

12
.

For continuous variables subject to arbitrary distribution X j =
{

x1j, x2j, . . . , xnj
}

, let
ξij = ∑n

k 6=i I(Xij ≤ xkj). It is easy to find that the random variable ξij(i = 1, 2, . . . , n)
is a special case in Mohamed and Mirakhmedov (2016) [26], where e = n. According
to the definition of τ̂jk and ξij, it is obviously established that Pr(ξi = r) = 1/n(i =
1, 2, . . . , n; t = 0, 1, . . . , n − 1) and ξi1 6= ξi2(∀i1 6= i2). By the definition of ξij, for all
j = 1, 2, . . . , p, k = 1, 2, . . . , K,

1
n + 1

n

∑
k=1

1
n

n

∑
i=1

I(xij ≤ xkj, Yi ∈ Ĝk)

p̂k

=
1

n(n + 1) p̂k

n

∑
k=1

n

∑
i=1

I
(
Yi ∈ Ĝk

)
I(xij ≤ xkj)

=
1

n(n + 1) p̂k

[
n

∑
k=1

n

∑
i 6=k

I
(
Yi ∈ Ĝk

)
I(xij ≤ xkj) +

n

∑
k=1

I
(
Yi ∈ Ĝk

)]

=
1

n(n + 1) p̂k

n

∑
i=1

I
(
Yi ∈ Ĝk

)
ξij +

1
n + 1

.

If H0,j,k(j = 1, 2, . . . , p; k = 1, 2, . . . , K) is true, the expectation and variance of τ̂jk can be
obtained as follows:

E
{

τ̂jk

}
= E

{
1

n + 1

n

∑
k=1

1
n

n

∑
i=1

I(xij ≤ xkj, Yi ∈ Ĝk)

p̂k
− 1

2

}

= E
{

1
n(n + 1) p̂k

n

∑
i=1

I
(
Yi ∈ Ĝk

)
ξij

}
+

1
n + 1

− 1
2

=
1

n(n + 1) p̂k

n

∑
i=1

I
(
Yi ∈ Ĝk

)
E
{

ξij
}
+

1
n + 1

− 1
2

=
1

n(n + 1) p̂k

n− 1
2

np̂k +
1

n + 1
− 1

2
= 0

and

Var
{

τ̂jk

}
= Var

{
1

n + 1

n

∑
k=1

1
n

n

∑
i=1

I(xij ≤ xkj, Yi ∈ Ĝk)

p̂k
− 1

2

}

= Var

{
1

n(n + 1) p̂k

n

∑
i=1

I
(
Yi ∈ Ĝk

)
ξij

}
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=
1

n2(n + 1)2 p̂2
k

[
n

∑
i=1

I
(
Yi ∈ Ĝk

)
Var
{

ξij
}

+
n

∑
i1 6=i2

I
(
Yi1 ∈ Ĝk, Yi2 ∈ Ĝk

)
Cov

(
ξi1 j, ξi2 j

)]

=
1

n2(n + 1)2 p̂2
k

{
np̂k

n2 − 1
12

− np̂k(np̂k − 1)
n + 1

12

}
=

1− p̂k
12(n + 1) p̂k

.

Let Ωn = (ζ1n, . . . , ζnn) be a random permutation of {0, 1 . . . , n− 1}, and r = (r1, . . . , rN)
is a random vector independent of ζ1n, . . . , ζnn satisfying P{r1 = k1, . . . , rn = kn} = 1/(n!),
where k = (k1, . . . , kn) is also a random permutation of 1, . . . , n. Note that Snp̂k ,n = ζr1n +
· · · + ζrnp̂k

n represents a sum of n random vector samples chosen at random without

replacement from the population Ωn. It can be expressed equivalently as Snp̂k ,n = I{Q̂k−1 ≤
Y1 < Q̂k}ζ1N + · · ·+ I{Q̂k−1 ≤ Yn < Q̂k}ζnn, where I(·) represents indicative function. It
is shown that ∑n

i=1 I
(
Yi ∈ Ĝk

)
ξij and Snp̂k ,n have the same distribution. Denote

τ =
n− 1

2
, b2 =

n2 − 1
12

, ζ̂mn =
(ζmn − τ)

b
,

σ2 =
(1− p̂k)(n2 − 1)

12
, σ∗2 =

(1− p̂k)(n + 1)n
12

,

Ak =
1
n

n

∑
m=1

ζ̂k
mn, Bk =

1
n

n

∑
m=1
|ζ̂mn|k.

Let Fn(u) = Pr
{

Snp̂k ,n < uσ∗
√

np̂k + np̂kτ
}

. Based on the same distribution of Snp̂k ,n

and ∑n
i=1 I(Yi ∈ Ĝk)ξij, for any j ∈ {1, . . . , p}, we have

Fn(u) = Pr

{
n

∑
i=1

I
(
Yi ∈ Ĝk

)
ξij < uσ∗

√
np̂k + np̂kτ

}

= Pr

{
1

np̂k(n + 1)

(
n

∑
i=1

I
(
Yi ∈ Ĝk

)
ξij − np̂k

n− 1
2

)
< u

σ∗√
np̂k(n + 1)

}

= Pr

{
τ̂jk < u

√
1− p̂k

12(n + 1) p̂k

}
:= Fτ̂jk (u).

Considering

τ̂jk =
1

n + 1

n

∑
k=1

1
n

n

∑
i=1

I(xij ≤ xkj, Yi ∈ Ĝk)

p̂k
− 1

2

=
1

n(n + 1) p̂k

[
n

∑
k=1

n

∑
i 6=k

I
(
Yi ∈ Ĝk

)
I(xij ≤ xkj) +

n

∑
k=1

I
(
Yi ∈ Ĝk

)]
− 1

2

=
1

n(n + 1) p̂k

[
n

∑
k=1

n

∑
i 6=k

I
(
Yi ∈ Ĝk

)
I(xij ≤ xkj)

]
− n− 1

2(n + 1)

=
n− 1

2(n + 1)
− 1

n(n + 1) p̂k

[
n

∑
k=1

n

∑
i 6=k

I
(
Yi ∈ Ĝk

)
I(xij ≥ xkj)

]

= −
[

1
n(n + 1) p̂k

n

∑
i=1

I
(
Yi ∈ Ĝk

)
ξ ′ij −

n− 1
2(n + 1)

]
,

where continuous variable xj satisfies Pr(xij = xkj) = 0. Define ξ ′ij = ∑n
k 6=i I(Xij ≥ Xkj);

then, ξ ′ij has the same distribution with Snp̂k ,n; as a result, ξ ′ij has the same distribution
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with ξij. In other words, τ̂jk and −τ̂jk have the same distribution, which is Fτ̂jk (u) = 1−
Fτ̂jk (−u). If lim

n→∞
p̂k(1− p̂k) > 0, we have the following relationship by using Theorem 3.4,

Corollary 3.4, Corollary 3.5, and Corollary 3.6 of Mohamed and Mirakhmedov (2016) [26],
and we can easily obtain that

• For all u = o(
√

n) ≥ 0, we obtain that

1− Fτ̂jk (u)

1−Φ(u)
=

Fτ̂jk (−u)

Φ(−u)
= exp

{
u3
√

n
Ln

(
u√
n

)}(
1 + O

(
u + 1√

n

))
. (A2)

where Ln(v) is an odd power series that, for all sufficiently large N, is majorized by a power
series with coefficients not depending on N, and is convergent in some discussions, and
Ln(v) converges uniformly in n for sufficiently small values of v, where Ln(0) = 0.

• For all u = o(n1/4) ≥ 0, we obtain that

1− Fτ̂jk (u)

1−Φ(u)
=

Fτ̂jk (−u)

Φ(−u)
= exp

{
u3
√

n
O
(

u√
n

)}(
1 + O

(
u + 1√

n

))
=

(
1 + O

(
u4

n

))(
1 + O

(
u + 1√

n

))
. (A3)

• For all u = o(n1/6) ≥ 0, we obtain that

1− Fτ̂jk (u)

1−Φ(u)
=

Fτ̂jk (−u)

Φ(−u)
= 1 + O

(
(u + 1)3
√

n

)
. (A4)

• For all 0 ≤ u ≤ C min
(√

n∗ q̂/ max
∣∣ŶmN

∣∣, (n∗ q̂)1/6/B1/3
3

)
, we have

1− Fτ̂jk (u) = (1−Φ(u))
(

1 + O
(
(u + 1)3B3/

√
n∗ q̂
))

(A5)

Based on the above cases, using Taylor’s expansion of the Equations (A2)–(A5),
the following conclusions can be obtained through the order correlation of u and n: if
H0,j,k(j = 1, 2, . . . , p; k = 1, 2, . . . , K) is true, then

1− Fτ̂jk (u)

1−Φ(u)
=

Fτ̂jk (−u)

Φ(−u)
= 1 + O

(
n−1/2

)
,

where Φ(−u) = 1/2p = O(nα) and α ≤ 1/2. In other words, τ̂jk has the asymptotic normal
distribution N (0, (1− p̂k)/(12(n + 1) p̂k)) for all j ∈ {1, 2, . . . , p} and all k ∈ {1, 2, . . . , K}.

Appendix A.4. Proof of Corollary 1

Proof. By definition of υ̂jk, we can easily find that 12(n + 1)υ̂jk has the asymptotic dis-
tribution as χ2

1, where χ2
1 is the chi-square distribution with degree of freedom 1. Since

∑K
k=1 p̂kτ̂jk = 0, then 12(n + 1)∑K

k=1 υ̂jk = 12(n + 1)υ̂j has the asymptotic distribution as
χ2

K−1 with degree of freedom K− 1.

Appendix A.5. Proof of Theorem 1

Proof. For some j = 1, . . . , p, let {Xij : i = 1, . . . , n} be a random sample of Xj. Some
notations are employed. Let pk = Pr(Y ∈ Gk) and p∗k = Pr

(
Y ∈ Ĝk

)
. Write Wk = I(Y ∈ Gk),
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W∗k = I(Y ∈ Ĝk), Wki = I
(
Yi ∈ Ĝk

)
, f j(k, x) = I(Xj ≤ x, Y ∈ Gk), f ∗j (k, x) = I

(
Xj ≤ x, Y ∈ Ĝk

)
,

fij(k, x) = I
(
Xij ≤ x, Yi ∈ Ĝk

)
, ζ j(k) = EX{Fjk(x)},

ζ∗j (k) = EX{F∗jk(x)} = EX{Pr(Xj ≤ x | Y ∈ Ĝk)},

ζ̃ j(k) =
1
n2

n

∑
l=1

n

∑
i=1

I(Xij ≤ Xl j, Yi ∈ Ĝk)

p̂k
,

and

ζ̂ j(k) =
1

n(n + 1)

n

∑
l=1

n

∑
i=1

I(Xij ≤ Xl j, Yi ∈ Ĝk)

p̂k
.

Let Fn(·) be the empirical distribution function. By Hoeffding’s inequality, for any k and
certain constant c8 > 0,

Pr{|F(Qk)− Fn(Qk)| ≥ ε} ≤ exp
(
−2nc8ε2

)
hold for any ε ∈ (0, 1), where Rxj is the support of a continuous variable xj, k = 1, . . . , K
and = 1, . . . , p. Due to the fact that W∗k −Wk = I(Q̂k−1 ≤ Y < Qk−1) + I(Qk ≤ Y < Q̂k),
we obtain that

Pr{E(|W∗k −Wk|) ≥ 2ε}
=1− Pr{E(|W∗k −Wk|) < 2ε}
≤1− Pr{|F(Qk)− Fn(Qk)| < ε, |F(Qk−1)− Fn(Qk−1)| < ε}
≤1− (1− exp(−2nc8ε2))2

≤2 exp(−2nc8ε2) + o(exp(−2nc8ε2))

=2 exp(−2nc8ε2). (A6)

Similarly, due to the fact that p∗k − pk = (F(Qk)− Fn(Qk))− (F(Qk−1)− Fn(Qk−1)), we
have

Pr{|p∗k − pk| ≥ 2ε} = 1− Pr{|p∗k − pk| < 2ε}
≤1− Pr{|F(Qk)− Fn(Qk)| < ε, |F(Qk−1)− Fn(Qk−1)| < ε}
≤2 exp(−2nc8ε2). (A7)

Note that

|ζ∗j (k)− ζ j(k)| =
∣∣∣∣∣E{ f ∗j (k, x)}

p∗k
−

E
{

f j(k, x)
}

pk

∣∣∣∣∣
≤
E{ f ∗j (k, x)}|p∗k − pk|

pk p∗k
+

∣∣∣E{ f ∗j (k, x)− f j(k, x)}
∣∣∣

pk

≤ sup
x∈Rxj

E{ f ∗j (k, x)}|p∗k − pk|
pk p∗k

+ sup
x∈Rxj

∣∣∣E{I(Xj ≤ x) · (W∗j (k)−Wj(k))}
∣∣∣

pk

=
|p∗k − pk|+E

(∣∣W∗k −Wk
∣∣)

pk
,

where the last equality holds due to the fact that

sup
x∈Rxj

E{ f ∗j (k, x)} = sup
x∈Rxj

Pr
(
xj ≤ x, Y ∈ Ĝk

)
= p∗k
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and

sup
x∈Rxj

E
∣∣∣{ f ∗j (k, x)− f j(k, x)}

∣∣∣ = sup
x∈Rxj

∣∣∣E{I(Xj ≤ x) · (W∗j (k)−Wj(k))}
∣∣∣

= sup
x∈Rxj

Pr
(

xj ≤ x, Y ∈ Gk, Y /∈ Ĝk
)
+ sup

x∈Rxj

Pr
(
xj ≤ x, Y /∈ Gk, Y ∈ Ĝk

)
=E(|W∗k −Wk|).

According to Equations (A6) and (A8), we obtain that

Pr(|ζ∗j (k)− ζ j(k)| ≥ ε)

≤Pr

(
|p∗k − pk|+E

(∣∣W∗k −Wk
∣∣)

pk
≥ ε

)
≤Pr(|p∗k − pk|+E(|W∗k −Wk|) ≥ εc1/2K)
≤Pr(|p∗k − pk| ≥ εc1/4K) + Pr(E(|W∗k −Wk|) ≥ εc1/4K)

≤4 exp(−nc9ε2/K2) (A8)

hold for any ε ∈ (0, 1), k = 1, . . . , K and = 1, . . . , p. According to Lemmaa 1 and 2 of Xie et
al. (2020) [17], under Conditions (C1) and (C3), for any ε ∈ (0, 1/2) and j = 1, . . . , p, there
exists a positive constant c3, which satisfies that

Pr
{∣∣∣ζ̃ j(k)− ζ∗j (k)

∣∣∣ ≥ ε
}
≤ 4(n + 2) exp

(
−c3nε2/R

)
. (A9)

Let

ζ̂ j(k)− ζ∗j (k) ≡
n

n + 1

{
ζ̃ j(k)− ζ∗j (k)

}
+ ∆,

where ∆ = −ζ j(k)∗/(n + 1).
It follows from Condition (C3) and Equations (A5) and (A9) that K = O

(
nξ
)

for
ξ + κ < 1/2. By letting ε = 2 ∗ c∗3n−κ = 2c∗3n−1/2β for 0 ≤ κ < 1/4 and c∗3 > 0, we have

Pr
(

max
1≤j≤p

∣∣∣τ̂jk − τj,k

∣∣∣ ≥ 2c∗3n−κ

)
≤ pPr

(∣∣∣τ̂jk − τj,k

∣∣∣ ≥ 2c∗3n−κ
)

=pPr
{∣∣ζ̂ j(k)− ζ j(k)

∣∣ ≥ 2c∗3n−κ
}

=pPr
{∣∣∣(ζ̂ j(k)− ζ∗j (k)) + (ζ∗j (k)− ζ j(k))

∣∣∣ ≥ 2c∗3n−κ
}

≤p
(

1− Pr
{∣∣∣ζ̂ j(k)− ζ∗j (k)

∣∣∣ < c∗3n−κ
)
· Pr
{∣∣∣ζ∗j (k)− ζ j(k)

∣∣∣ < c∗3n−κ
})

≤p
(
1− pI1 · pI2

)
,

where pI1 ≡ Pr
{∣∣∣ζ̂ j(k)− ζ∗j (k)

∣∣∣ < c∗3n−κ
)

and pI2 ≡ Pr
{∣∣∣ζ∗j (k)− ζ j(k)

∣∣∣ < c∗3n−κ
}

. For pI1 ,
we have that

pI1 = 1− Pr
{∣∣∣ζ̂ j(k)− ζ∗j (k)

∣∣∣ ≥ c∗3n−κ
)

≥ 1− Pr

{∣∣∣ζ̃ j(k)− ζ∗j (k)
∣∣∣ ≥ (n + 1)

(
c∗4n−κ − |∆|

)
n

}
≥ 1− 4(n + 2) exp

(
−c10n1−2κ−ξ

)
,

where c10 is a positive constant. For pI2 , we have that

pI2 = 1− Pr
{∣∣∣ζ∗j (k)− ζ j(k)

∣∣∣ ≥ c∗3n−κ
}
≥ 1− 4 exp(−c11n1−2κ−2ξ)
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where c11 > 0 is a constant. The last inequality above holds due to the fact that ∆ = O(1/n).
Thus,

Pr
(

max
1≤j≤p

∣∣∣τ̂jk − τj,k

∣∣∣ ≥ 2c∗3n−κ

)
≤p
[
1−

(
1− 4(n + 2) exp

(
−c10n1−2κ−ξ

))
·
(

1− 4 exp(−c11n1−2κ−2ξ)
)]

≤8p exp(−c4n1−2κ−2ξ)

Let c3 = 4p̂k/(1− p̂k)(c∗3)
2; by the definition of υ̂jk, we have

Pr( max
1≤j≤p

|υ̂jk − υjk| ≥ c4n−κ) ≤ 8p exp
(
−c4n1−2κ−ξ

)
.

Appendix A.6. Proof of Theorem 2

Proof. It follows from Condition (C2) and Theorem 1 that

Pr

(
min

j1∈Ak1

∣∣∣υ̂jk

∣∣∣− max
j2 /∈Ak2

∣∣∣υ̂jk

∣∣∣ < ρ0

2

)

≤Pr

{(
min

j1∈Ak1

∣∣∣υ̂jk

∣∣∣− max
j2 /∈Ak2

∣∣∣υ̂jk

∣∣∣)−( min
j1∈Ak1

∣∣∣υj,k

∣∣∣− max
j2 /∈Ak2

∣∣∣υj,k

∣∣∣) < −ρ0

2

}

≤Pr

{∣∣∣∣∣
(

min
j1∈Ak1

∣∣∣υ̂jk

∣∣∣− max
j2 /∈Ak2

∣∣∣υ̂jk

∣∣∣)−( min
j1∈Ak1

∣∣∣υj,k

∣∣∣− max
j2 /∈Ak2

∣∣∣υj,k

∣∣∣)∣∣∣∣∣ > ρ0

2

}

≤Pr
(

2 max
1≤j≤p

∣∣∣υ̂jk − υj,k

∣∣∣ > ρ0

2

)
≤8p exp

(
−c7nρ2

0/K
)

,

where c7 > 0 is a constant. K log(p) = o
(
nρ2

0
)

ensures that there exists some n0 > 0 for n >

n0, p ≤ exp
(
c7nρ2

0/2K
)
. Consequently, we have that lim inf

n→∞

{
min

j1∈Ak1

υ̂jk − max
j2 /∈Ak2

υ̂jk

}
> 0

almost surely.

Appendix A.7. Proof of Theorem 3

Proof. Due to the equivalence of 12 · (n + 1) · υ̂jk ≥ ρ and |τ̂jk| ≥
√

ρ
1− p̂k

12(n+1) p̂k
, proof of

Theorem 3 will obtained by |τ̂jk|. Note that

F|τ̂jk |(u) := Pr

{
|τ̂jk| < u

√
1− p̂k

12(n + 1) p̂k

}
, (j ∈ {j : j /∈ Ak}; k = 1, . . . , K);

F|τ̂k |(u) := Pr

{
|τ̂jk| < u

√
1− p̂k

12(n + 1) p̂k
, ∀j ∈ {j : j /∈ Ak}

}
, (k = 1, . . . , K);

Fc
|τ̂k |(u) := Pr

{
|τ̂jk| ≥ u

√
1− p̂k

12(n + 1) p̂k
, ∃j ∈ {j : j /∈ Ak}

}
, (k = 1, . . . , K).

Then, denote qk = p− sk, and we have

F|τ̂jk |(u) = Fτ̂jk (u)− Fτ̂jk (−u) = 1− 2Fτ̂jk (−u),
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F|τ̂k |(u) = [F|τ̂jk |(u)]
qk = [1− 2Prτ̂jk (−u)]qk ,

Fc
|τ̂k |(u) = 1− F|τ̂k |(u) = 1− [1− 2Prτ̂jk (−u)]qk .

When β ∈ (2,+∞), we have ρ = o(n1/4) as a constant. Hence, we obtain

1− Fτ̂jk (
√

ρ)

1/2p
=

Fτ̂jk (−
√

ρ)

1/2p
= 1 + O

(
n−1/2

)
. (A10)

By the definition of Fc
|τ̂k |

(x), it implies that

Fc
|τ̂k |(k) = 1−

{
1− p−1

[
1 + O

(
n−1/2

)]}qk
. (A11)

From the definition of ultra-high dimensional data, we have p = o(exp{nα}), α > 0 and
sk = o(n). If α > 1/2, according to Equations (A10) and (A11), we have{

1− p−1
[
1 + O

(
n−1/2

)]}qk
= exp

{
qk · log

{
1− p−1

[
1 + O

(
n−1/2

)]}}
= exp

{
−qk ·

(
p−1

[
1 + O

(
n−1/2

)]
+ o(1/p)

)}
= exp

{
−1 + O(n−1/2)

}
exp{o(1/p)} → e−1.

To conclude, Fc
|τ̂k |

(k)→ 1− e−1 a.s. n→ ∞; in other words,

lim
p→∞

Pr{FDk,ρ̂0 > 0} = lim
p→∞

Pr{ ∑
j∈Ac

k

I(υ̂jk ≥ ρ) > 0} = 1− e−1 (k = 1, . . . , K).

The number of variables screened into the adaptive FD set is subjecting to the p times
Bernoulli test; then, the expectation and variance of the number of the false discovery are

EFD = qk · 1/p = (1 + O(n−1/2))(1− o(p−1)) = 1 + O(n−1/2),

VFD = qk · 1/p · (1− 1/p) = (1 + O(n−1/2))(1− o(p−1))2 = 1 + O(n−1/2).

Appendix A.8. Proof of Corollary 2

Proof. According to the Condition (C2), the definition of ρ̂0 in Section 3.1 and maxj∈Ak |
υ̂j,k − υj,k |≤ cn−κ in Theorem 1, we have

min
j∈Ak
|υ̂jk| ≥ min

j∈Ak
(|υjk| − |υ̂j,k − υjk|) ≥ min

j∈Ak
|υjk| −max

j∈Ak
|υjk − υ̂j,k| ≥ cn−κ .

Therefore, we obtain that

Pr
(
Ak ⊂ Âk,ρ̂0

)
≥ Pr

(
max
j∈Ak
|υ̂j,k − υj,k| ≤ cn−κ

)
≥ 1− 8psr exp

(
−c6n1−2κ−ξ

)
holds for some constant c6 > 0.

Appendix A.9. Proof of Theorem 4

Proof. Similar to Proof of Corollary 2, it is clear that

Pr(Ak ⊂ Âk,α) ≥ 1− 8psk exp
(
−c7n1−2κ−ξ

)
holds for some constant c7 > 0.
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In order to prove F̂DRρ̂k → α in probability, under the assumption that qk/p→ 1 as
p→ ∞ and for any ρ > 0, by Corollary 1 and the Hoeffding’s inequality, it suffices to show
that

sup
0≤ρ≤ε

 ∑
j∈Ac

k

I(υ̂jk ≥ ρ)/
{

pSχ2
1
(ρ)
}→ 1 (A12)

in probability as n → ∞, where ε > 0 is a constantSχ2
1
(ρ) = 1 − Fχ2

1
(ρ), the survival

function of the distribution of χ2
1. Thus,

FDPk,ρ =
FDk,ρ

max{∑j∈I I(υ̂jk ≥ ρ), 1} =
∑j∈Ac

k
I(υ̂jk ≥ ρ)/qk

max{∑j∈I I(υ̂jk ≥ ρ), 1}/p

=
pSχ2

1
(ρ)

max{∑j∈I I(υ̂jk ≥ ρ), 1} =
pSχ2

1
(ρ)

max{pSχ2
1
(ρ) + ∑j∈Ak

I(υ̂jk ≥ ρ), 1} .

Notice that ∑j∈Ak
I(υ̂jk ≥ ρ) is monotone in ρ and asymptotically converges to sk, and

Sχ2
1
(ρ) is continuous and monotone. Then, there exists a unique constant 0 < ρ̃k ≤ Cn−β

such that

pSχ2
1
(ρ̂k)

max{∑j∈I I(υ̂jk ≥ ρ̂k), 1} = α (A13)

in probability as n → ∞. Therefore, according to the Equations (A12) and (A13), we
obtain that

lim
n→∞

F̂DRρ̂k

α
= 1.

Appendix B

Table A1. The quantiles of minimum model size in Scenario 1.3 of Section 4.1.

ρ = 0 ρ = 0.5

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 1000
QA-SVS-A(4) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.0
QA-SVS-A(5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0
QA-SVS-A(6) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0
QA-SVS-A(7) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.0
QA-SVS-A(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0
QA-SVS-A(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0
QA-SVS-A(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.0
QCS(4) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.5 5.0
QCS(5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 7.0
QCS(6) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.5
QCS(7) 3.0 3.0 3.0 3.0 3.5 3.0 3.0 3.0 4.0 11.5
QCS(8) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 4.0 12.0
QCS(9) 3.0 3.0 3.0 3.0 4.5 3.0 3.0 3.0 4.0 7.5
QCS(10) 3.0 3.0 3.0 3.0 3.5 3.0 3.0 3.0 4.0 10.0
SIS 3.0 3.0 3.0 3.0 6.5 3.0 3.0 4.0 5.0 6.0
DC-SIS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.5
QA-SIS(0.1) 3.0 3.0 3.0 3.0 4.5 3.0 3.0 3.0 3.5 16.5
QA-SIS(0.3) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QA-SIS(0.5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.0
QA-SIS(0.7) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 4.0 4.0 10.5
QA-SIS(0.9) 4.0 15.0 32.5 74.5 217.0 4.5 14.5 36.5 81.5 299.0
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Table A1. Cont.

ρ = 0 ρ = 0.5

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000
QA-SVS-A(4) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.0
QA-SVS-A(5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0
QA-SVS-A(6) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 6.0
QA-SVS-A(7) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 8.0
QA-SVS-A(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 6.0
QA-SVS-A(9) 3.0 3.0 3.0 3.0 3.5 3.0 3.0 3.0 4.0 7.0
QA-SVS-A(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 6.5
QCS(4) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 4.0 6.0
QCS(5) 3.0 3.0 3.0 3.0 7.0 3.0 3.0 3.0 4.0 6.0
QCS(6) 3.0 3.0 3.0 3.0 5.0 3.0 3.0 3.0 4.0 54.0
QCS(7) 3.0 3.0 3.0 3.0 5.0 3.0 3.0 3.0 4.0 32.0
QCS(8) 3.0 3.0 3.0 3.0 8.0 3.0 3.0 3.0 4.0 60.5
QCS(9) 3.0 3.0 3.0 3.0 6.5 3.0 3.0 3.0 4.0 19.5
QCS(10) 3.0 3.0 3.0 3.0 7.5 3.0 3.0 4.0 6.0 92.0
SIS 3.0 3.0 3.0 3.0 18.5 3.0 3.0 4.0 5.0 11.5
DC-SIS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.0
QA-SIS(0.1) 3.0 3.0 3.0 3.0 31.0 3.0 3.0 3.0 4.0 28.0
QA-SIS(0.3) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5
QA-SIS(0.5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 7.5
QA-SIS(0.7) 3.0 3.0 3.0 4.0 18.5 3.0 3.0 3.0 7.0 27.5
QA-SIS(0.9) 16.0 58.5 130.5 323.5 1382.0 6.0 31.0 124.5 421.5 1844.0

Notes: QA-SVS-A(4), QA-SVS-A(5), . . ., and QA-SVS-A(10), our proposed method defined in Remark 3 with
different quantile grid points (K = 4, . . . , 10); QCS-A(4), QCS-A(5), . . ., and QCS-A(10), the quantile correlation-
based screening method (Tang et al., 2013) [19] with different quantile grid points (K = 4, . . . , 10); SIS, the sure
independence screening (Fan and Lv, 2008) [1]; DC-SIS, the distance correlation-based screening (Li et al., 2012) [8];
QA-SIS(0.1), QA-SIS(0.3), . . ., QA-SIS(0.9), the quantile-adaptive model-free sure independence screening (He et al.,
2013) [9] at different quantile levels.

Table A2. The quantiles of minimum model size in Scenario 1.4 of Section 4.1.

ρ = 0 ρ = 0.5

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 1000
QA-SVS-A(4) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(6) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(7) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QCS(4) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0
QCS(5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.0
QCS(6) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.0
QCS(7) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.0
QCS(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 8.0
QCS(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 6.5
QCS(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.5
SIS 414.0 686.0 781.5 894.0 979.5 558.5 706.5 824.5 932.0 988.0
DC-SIS 441.5 619.0 742.5 840.0 962.0 341.5 601.0 747.5 895.0 971.0
QA-SIS(0.1) 135.5 223.0 321.5 428.5 626.5 82.5 134.5 201.5 303.0 543.0
QA-SIS(0.3) 14.0 28.0 49.5 93.5 237.5 10.0 24.5 65.0 116.0 593.5
QA-SIS(0.5) 8.0 20.0 32.0 54.5 162.5 3.0 5.0 6.0 8.0 15.0
QA-SIS(0.7) 37.5 73.0 146.5 223.0 394.5 9.0 15.5 20.0 32.5 56.5
QA-SIS(0.9) 152.5 291.0 418.0 562.0 816.0 60.5 145.0 215.5 307.5 548.5
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Table A2. Cont.

ρ = 0 ρ = 0.5

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000
QA-SVS-A(4) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(6) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(7) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QCS(4) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QCS(5) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QCS(6) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QCS(7) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QCS(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QCS(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
QCS(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
SIS 2126.0 3353.0 3956.5 4469.5 4874.5 3038.5 3633.5 4071.0 4528.5 4954.5
DC-SIS 1949.0 3324.0 4045.5 4387.5 4832.0 1485.5 3097.5 3959.0 4368.0 4702.0
QA-SIS(0.1) 507.5 1137.5 1470.0 1981.5 3183.0 433.0 747.5 1177.5 1573.5 2852.5
QA-SIS(0.3) 54.5 97.0 177.0 348.5 1122.5 39.0 126.0 288.0 595.5 2742.0
QA-SIS(0.5) 33.5 95.0 184.5 351.5 711.0 6.0 11.0 15.0 29.0 62.5
QA-SIS(0.7) 143.0 419.5 690.0 1263.5 2217.5 34.5 60.5 100.0 175.0 402.0
QA-SIS(0.9) 670.5 1140.0 1775.5 2586.5 3707.5 439.5 717.0 1022.0 1547.0 2662.5

Notes: QA-SVS-A(4), QA-SVS-A(5), . . ., and QA-SVS-A(10), our proposed method defined in Remark 3 with
different quantile grid points (K = 4, . . . , 10); QCS-A(4), QCS-A(5), . . ., and QCS-A(10), the quantile correlation-
based screening method (Tang et al., 2013) [19] with different quantile grid points (K = 4, . . . , 10); SIS, the sure
independence screening (Fan and Lv, 2008) [1]; DC-SIS, the distance correlation-based screening (Li et al., 2012) [8];
QA-SIS(0.1), QA-SIS(0.3), . . ., QA-SIS(0.9), the quantile-adaptive model-free sure independence screening (He et al.,
2013) [9] at different quantile levels.

Table A3. The quantiles of minimum model size in Scenario 1.5 of Section 4.1.

ρ = 0 ρ = 0.5

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 1000
QA-SVS-A(4) 3.0 4.0 9.0 28.5 317.0 3.0 3.0 6.0 24.0 156.5
QA-SVS-A(5) 3.0 3.0 8.0 40.0 179.5 3.0 3.0 4.0 8.0 42.5
QA-SVS-A(6) 3.0 3.0 5.0 12.0 93.5 3.0 3.0 4.0 5.0 23.0
QA-SVS-A(7) 3.0 3.0 5.0 13.0 82.0 3.0 3.0 4.0 9.5 59.5
QA-SVS-A(8) 3.0 3.0 4.0 11.5 52.0 3.0 3.0 3.0 7.5 71.0
QA-SVS-A(9) 3.0 3.0 4.0 11.0 47.5 3.0 3.0 3.0 6.0 53.5
QA-SVS-A(10) 3.0 3.0 4.0 10.5 89.5 3.0 3.0 4.0 6.5 59.0
QCS(4) 3.0 3.0 4.0 10.0 46.0 3.0 3.0 3.0 6.0 60.5
QCS(5) 3.0 3.0 4.0 8.0 58.0 3.0 3.0 4.0 6.5 66.5
QCS(6) 3.0 3.0 4.0 11.0 251.0 3.0 3.0 3.0 6.0 44.0
QCS(7) 3.0 3.0 4.0 11.5 76.5 3.0 3.0 4.0 6.0 58.5
QCS(8) 3.0 3.0 6.0 17.5 118.0 3.0 3.0 4.0 9.5 76.5
QCS(9) 3.0 4.0 6.0 22.5 118.0 3.0 3.0 4.0 15.0 66.5
QCS(10) 3.0 4.0 7.0 20.0 156.5 3.0 3.0 5.0 9.5 72.5
SIS 260.0 559.0 802.5 922.5 981.5 227.5 574.5 769.5 907.0 988.0
DC-SIS 3.0 3.0 6.0 28.0 450.0 3.0 3.0 4.0 19.5 350.0
QA-SIS(0.1) 82.0 168.5 300.0 521.5 849.5 70.0 132.0 241.5 395.0 737.5
QA-SIS(0.3) 10.5 21.0 42.5 98.0 195.0 4.5 12.0 21.0 53.0 306.0
QA-SIS(0.5) 5.5 20.5 56.0 166.5 517.5 3.0 9.5 24.5 90.5 439.5
QA-SIS(0.7) 4.0 11.0 30.5 85.5 309.0 7.5 15.5 35.5 114.5 355.0
QA-SIS(0.9) 93.5 191.0 382.0 587.0 798.5 111.5 259.5 467.5 660.5 852.5
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Table A3. Cont.

ρ = 0 ρ = 0.5

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000
QA-SVS-A(4) 3.0 12.0 58.5.0 200.0 831.0 3.0 5.0 13.0 81.0 615.5
QA-SVS-A(5) 3.0 6.0 18.0 98.0 791.0 3.0 4.0 8.0 33.0 242.5
QA-SVS-A(6) 3.0 4.0 9.0 45.0 322.0 3.0 4.0 8.0 31.5 241.0
QA-SVS-A(7) 3.0 4.0 6.5 42.0 549.5 3.0 4.0 7.0 29.0 165.0
QA-SVS-A(8) 3.0 4.0 7.0 26.0 152.5 3.0 3.0 6.0 19.5 183.5
QA-SVS-A(9) 3.0 4.0 12.5 70.0 552.0 3.0 3.0 5.5 19.0 423.5
QA-SVS-A(10) 3.0 5.0 12.5 44.0 539.0 3.0 3.0 6.0 28.5 334.5
QCS(4) 3.0 3.0 6.0 14.5 166.0 3.0 3.0 4.0 14.5 163.5
QCS(5) 3.0 4.0 6.5 30.0 209.5 3.0 3.0 4.0 8.5 73.5
QCS(6) 3.0 4.0 9.5 40.0 594.5 3.0 3.0 5.0 17.0 160.5
QCS(7) 3.0 4.0 12.0 50.0 417.0 3.0 3.0 7.0 25.0 125.5
QCS(8) 3.0 5.0 20.0 64.5 619.0 3.0 3.0 7.0 25.0 94.0
QCS(9) 3.0 6.0 22.0 97.0 642.5 3.0 4.0 9.0 39.5 324.0
QCS(10) 3.0 6.0 21.5 163.0 1131.5 3.0 4.0 8.0 37.5 431.5
SIS 1341.0 3294.5 4114.0 4586.0 4968.0 1252.5 3027.5 3972.0 4524.0 4937.5
DC-SIS 3.0 5.0 12.0 110.0 1952.0 3.0 4.0 10.0 57.5 1297.5
QA-SIS(0.1) 423.0 1111.5 1827.0 3080.0 4736.5 350.0 709.5 1175.5 1655.0 3101.0
QA-SIS(0.3) 19.0 77.0 198.0 556.0 1755.5 14.0 45.5 128.0 402.0 1319.0
QA-SIS(0.5) 13.5 82.5 377.5 787.0 2140.0 4.0 32.0 177.5 469.5 2936.0
QA-SIS(0.7) 16.5 48.0 177.5 472.0 1475.0 22.5 96.5 336.0 777.5 2261.5
QA-SIS(0.9) 549.0 1025.5 1727.0 2413.0 3997.5 434.5 1132.5 2093.5 3309.0 4599.5

Notes: QA-SVS-A(4), QA-SVS-A(5), . . ., and QA-SVS-A(10), our proposed method defined in Remark 3 with
different quantile grid points (K = 4, . . . , 10); QCS-A(4), QCS-A(5), . . ., and QCS-A(10), the quantile correlation-
based screening method (Tang et al., 2013) [19] with different quantile grid points (K = 4, . . . , 10); SIS, the sure
independence screening (Fan and Lv, 2008) [1]; DC-SIS, the distance correlation-based screening (Li et al., 2012) [8];
QA-SIS(0.1), QA-SIS(0.3), . . ., QA-SIS(0.9), the quantile-adaptive model-free sure independence screening (He et al.,
2013) [9] at different quantile levels.

Table A4. The quantiles of minimum model size in Scenario 1.6 of Section 4.1.

ρ = 0 ρ = 0.5

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 1000
QA-SVS-A(4) 3.0 11.0 41.5 211.0 717.0 3.0 3.0 3.0 4.0 5.0
QA-SVS-A(5) 3.0 4.5 26.5 126.5 380.5 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(6) 3.0 3.0 13.0 69.5 319.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(7) 3.0 3.0 6.0 18.0 309.0 3.0 3.0 3.0 3.0 3.5
QA-SVS-A(8) 3.0 3.0 6.0 16.5 107.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(9) 3.0 3.0 4.5 10.0 94.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(10) 3.0 3.0 4.0 13.0 112.5 3.0 3.0 3.0 3.0 3.0
QCS(4) 4.0 31.5 95.3 329.5 730.5 3.0 3.0 3.0 5.5 71.0
QCS(5) 8.0 39.0 148.5 437.0 742.0 3.0 3.0 3.0 4.0 10.5
QCS(6) 4.0 28.5 88.0 287.0 664.5 3.0 3.0 3.0 4.0 46.0
QCS(7) 3.5 22.5 95.5 256.0 563.5 3.0 3.0 3.0 3.0 6.0
QCS(8) 3.0 19.0 67.0 201.0 535.0 3.0 3.0 3.0 3.0 11.0
QCS(9) 3.0 8.0 50.0 165.5 494.5 3.0 3.0 3.0 3.0 11.0
QCS(10) 3.0 9.5 38.0 124.0 539.0 3.0 3.0 3.0 3.0 7.5
SIS 3.0 3.0 3.0 3.0 7.0 3.0 3.0 3.0 3.0 3.0
DC-SIS 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0
QA-SIS(0.1) 4.0 7.5 14.5 28.0 152.0 3.0 4.0 5.0 7.5 15.0
QA-SIS(0.3) 4.0 35.0 110.0 247.0 840.5 3.0 3.0 3.0 5.0 17.0
QA-SIS(0.5) 27.5 141.0 262.0 516.5 880.5 3.0 4.0 7.0 35.5 258.0
QA-SIS(0.7) 49.5 185.0 425.0 736.5 929.0 8.5 32.0 160.5 385.5 865.0
QA-SIS(0.9) 241.5 456.5 648.5 878.0 985.0 67.0 275.0 541.5 754.5 972.0
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Table A4. Cont.

ρ = 0 ρ = 0.5

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000
QA-SVS-A(4) 6.0 52.0 347.0 1262.5 3451.5 3.0 3.0 3.0 3.0 5.5
QA-SVS-A(5) 3.0 17.5 149.0 472.0 2285.5 3.0 3.0 3.0 3.5 6.0
QA-SVS-A(6) 3.0 11.0 47.5 293.0 1288.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(7) 3.0 5.0 19.5 89.5 1288.0 3.0 3.0 3.0 3.0 4.0
QA-SVS-A(8) 3.0 3.0 10.0 95.0 923.0 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(9) 3.0 4.0 8.0 33.5 783.5 3.0 3.0 3.0 3.0 3.0
QA-SVS-A(10) 3.0 4.0 11.0 58.0 725.5 3.0 3.0 3.0 3.0 3.0
QCS(4) 40.5 329.0 853.5 1965.0 3801.0 3.0 3.0 4.0 32.0 277.0
QCS(5) 12.5 164.5 515.0 1677.5 3445.5 3.0 3.0 3.0 3.0 112.0
QCS(6) 6.5 62.5 262.0 917.0 2845.5 3.0 3.0 3.0 5.5 35.0
QCS(7) 18.5 105.0 404.5 937.0 2855.0 3.0 3.0 3.0 4.0 31.5
QCS(8) 5.5 84.0 333.0 788.5 3004.0 3.0 3.0 3.0 4.0 16.0
QCS(9) 3.0 46.0 173.5 596.5 1803.5 3.0 3.0 3.0 4.0 28.5
QCS(10) 6.5 40.5 213.5 939.0 2590.5 3.0 3.0 3.0 5.0 13.0
SIS 3.0 3.0 3.0 3.0 43.5 3.0 3.0 3.0 3.0 7.5
DC-SIS 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0
QA-SIS(0.1) 8.0 23.0 52.5 149.0 919.0 5.0 11.0 17.5 27.0 55.5
QA-SIS(0.3) 3.0 117.5 562.0 1466.0 3196.5 3.0 3.0 4.0 6.5 109.0
QA-SIS(0.5) 69.5 611.5 1754.5 3333.5 4554.0 3.5 8.0 59.0 552.5 1786.5
QA-SIS(0.7) 184.5 1131.0 2307.0 3419.0 4573.0 17.0 287.5 886.5 1798.0 3692.5
QA-SIS(0.9) 867.0 1881.5 3007.0 3863.5 4763.5 841.5 1862.5 2873.0 3834.0 4603.0

Notes: QA-SVS-A(4), QA-SVS-A(5), . . ., and QA-SVS-A(10), our proposed method defined in Remark 3 with
different quantile grid points (K = 4, . . . , 10); QCS-A(4), QCS-A(5), . . ., and QCS-A(10), the quantile correlation-
based screening method (Tang et al., 2013) [19] with different quantile grid points (K = 4, . . . , 10); SIS, the sure
independence screening (Fan and Lv, 2008) [1]; DC-SIS, the distance correlation-based screening (Li et al., 2012) [8];
QA-SIS(0.1), QA-SIS(0.3), . . ., QA-SIS(0.9), the quantile-adaptive model-free sure independence screening (He et al.,
2013) [9] at different quantile levels.

Table A5. The result of criteria in all scenarios under p = 5000 with α = 0.05 of Section 4.2.

Method QA-SVS-AFD(K) QA-SVS-FDR(K) QCS-FDR(K)

K 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

Scenario 2.1
|Â| 12.08 10.69 10.52 10.23 10.04 11.68 11.69 11.92 11.88 11.53 11.17 11.22 11.25 11.29 11.10
FDR 0.16 0.06 0.05 0.02 0.00 0.14 0.14 0.16 0.15 0.13 0.10 0.10 0.10 0.11 0.09
F1-score 0.91 0.97 0.98 0.99 1.00 0.92 0.92 0.91 0.92 0.93 0.95 0.94 0.94 0.94 0.95

Scenario 2.2
|Â| 50.33 48.23 45.02 38.21 27.37 52.35 51.98 52.22 52.19 52.05 50.22 50.67 49.77 49.41 48.43
FDR 0.02 0.00 0.00 0.00 0.00 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.04
F1-score 0.98 0.98 0.95 0.86 0.70 0.97 0.98 0.97 0.97 0.97 0.96 0.96 0.95 0.95 0.94

Scenario 2.3
|Â| 12.09 10.67 10.40 10.10 10.02 11.74 11.58 11.52 11.60 11.57 11.08 10.90 11.16 10.90 10.90
FDR 0.17 0.06 0.04 0.01 0.00 0.14 0.13 0.13 0.13 0.13 0.09 0.08 0.10 0.08 0.08
F1-score 0.91 0.97 0.98 1.00 1.00 0.92 0.93 0.93 0.93 0.93 0.95 0.96 0.95 0.96 0.96

Scenario 2.4
|Â| 50.05 45.91 39.33 25.62 15.27 52.23 51.96 51.91 52.07 51.56 49.53 48.03 47.22 44.47 43.53
FDR 0.02 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05
F1-score 0.98 0.96 0.88 0.67 0.46 0.97 0.97 0.97 0.97 0.97 0.95 0.93 0.92 0.90 0.89
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Table A5. Cont.

Method QA-SVS-AFD(K) QA-SVS-FDR(K) QCS-FDR(K)

K 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

Scenario 2.5
|Â| 10.89 9.88 9.30 7.95 5.90 10.47 10.43 10.54 10.47 10.40 10.00 10.09 9.88 9.62 9.48
FDR 0.08 0.00 0.00 0.00 0.00 0.04 0.04 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.05
F1-score 0.96 0.99 0.96 0.88 0.73 0.98 0.98 0.97 0.98 0.98 0.94 0.95 0.94 0.93 0.92

Scenario 2.6
|Â| 14.81 3.65 0.49 0.08 0.00 12.65 13.93 12.88 10.88 9.95 1.83 1.30 0.94 0.72 0.45
FDR 0.05 NaN NaN NaN NaN 0.04 0.04 0.05 0.04 0.04 NaN NaN NaN NaN NaN
F1-score 0.43 0.13 0.02 0.00 0.00 0.38 0.41 0.38 0.33 0.31 0.06 0.05 0.03 0.02 0.02

Scenario 2.7
|Â| 10.92 10.02 9.99 9.99 9.90 10.39 10.51 10.46 10.52 10.60 10.66 10.72 10.63 10.53 10.50
FDR 0.08 0.00 0.00 0.00 0.00 0.03 0.04 0.04 0.05 0.05 0.06 0.06 0.05 0.05 0.04
F1-score 0.96 1.00 1.00 1.00 0.99 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.98 0.98

Scenario 2.8
|Â| 38.60 18.94 6.36 1.24 0.19 43.52 41.46 40.05 38.34 36.21 22.75 17.21 11.87 8.08 6.15
FDR 0.02 0.00 0.00 NaN NaN 0.05 0.04 0.05 0.05 0.04 0.04 0.05 NaN NaN NaN
F1-score 0.85 0.55 0.22 0.05 0.01 0.89 0.86 0.84 0.83 0.80 0.59 0.48 0.35 0.26 0.20

Notes: QA-SVS-AFD(K), our proposed method by controlling FD adaptively defined in Remark 4 with different
quantile grid points (K = 2, . . . , 6); QA-SVS-FDR(K), our proposed method by controlling FDR defined in Remark 5
with different quantile grid points (K = 2, . . . , 6); QCS-FDR(K), the quantile correlation-based screening method
(Tang et al., 2013) [19] with different quantile grid points (K = 2, . . . , 6).

∣∣Â∣∣: the average number of selected
predictors; FDR: the average of empirical false discovery proportion, where ’NaN’ indicates the method loss
validity; F1-score: the average of F1-score.

Appendix C

Figure A1. A lung CT figure of a subject in the dataset.
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(a) Result with response of 5% PD (b) Result with response of 95% PD

Figure A2. Screened important pixels of lung CT by QA-SVS-FDR under K = 2. The black pixels
indicate the useless pixels, and the white pixels represent the important pixels.

(a) Result with response of 5% PD (b) Result with response of 95% PD

Figure A3. Screened important pixels of lung CT by QA-SVS-FDR under K = 3.

(a) Result with response of 5% PD (b) Result with response of 95% PD

Figure A4. Screened important pixels of lung CT by QA-SVS-FDR under K = 4.
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(a) Result with response of 5% PD (b) Result with response of 95% PD

Figure A5. Screened important pixels of lung CT by QA-SVS-FDR under K = 5.

(a) Result with response of 5% PD (b) Result with response of 95% PD

Figure A6. Screened important pixels of lung CT by QA-SVS-FDR under K = 6.
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