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Abstract: The order reduction method is an important approach to optimize higher-order binary
Markov random fields (HoMRFs), which are widely used in information theory, machine learning and
image analysis. It transforms an HoMRF into an equivalent and easier reduced first-order binary Markov
random field (RMRF) by elaborately setting the coefficients and auxiliary variables of RMRF. However,
designing order reduction methods is difficult, and no previous study has investigated this design
issue. In this paper, we propose an order reduction design framework to study this problem for the
first time. Through study, we find that the design difficulty mainly lies in that the coefficients and
variables of RMRF must be set simultaneously. Therefore, the proposed framework decomposes the
design difficulty into two processes, and each process mainly considers the coefficients or auxiliary
variables of RMRF. Some valuable properties are also proven. Based on our framework, a new family
of 14 order reduction methods is provided. Experiments, such as synthetic data and image denoising,
demonstrate the superiority of our method.

Keywords: Markov random field; discrete optimization; energy minimization; order reduction
method; higher-order binary MRF; image desnoising

1. Introduction

The higher-order binary Markov random field (HoMRF) is a non-convex optimization
model widely used in the fields of economy, information theory, quantum computing,
machine learning and image analysis [1–14]. Recently, a new order reduction method has
been developed to optimize HoMRF energies. The order reduction method transforms the
HoMRF into a reduced quadratic binary Markov random field (RMRF) by elaborately setting
the coefficients and auxiliary variables of RMRF to ensure the equivalence between HoMRF
and RMRF. By equivalently transforming a complex HoMRF into an easier RMRF, the order
reduction method achieves remarkable performance and thus has attracted increasing
attention from researchers.

Since it is difficult to reduce an HoMRF into an RMRF in a single step, the mainstream
approach is to transform a higher-order monomial into a sum of linear and quadratic mono-
mials, and then iteratively perform this operation for all higher-order monomials of the
HoMRF until a RMRF is obtained. According to the higher-order monomials to be reduced,
previous order reduction methods can be divided into two categories: the methods of reduc-
ing higher-order negative monomials, and the methods of reducing higher-order positive
monomials. In first category, Freedman et al. [15] developed an order reduction method for
higher-order negative monomials for the first time. Then, Anthony et al. [16–18] proposed
an order reduction method that is a more general form of the method [15]. Both two
methods require only a binary auxiliary variable to produce submodular monomials, which
can be easily minimized in polynomial time [19]. Anthony et al. [16–18] and Yip et al. [20]
also developed two alternative methods to reduce higher-order negative monomials. Since
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these two methods produce nonsubmodular monomials that make minimizing RMRF to
be an NP-hard problem, they are rarely used in practice.

Compared with reducing higher-order negative monomials, designing the order reduc-
tion method for higher-order positive monomials is much more difficult [1,2,16–18,21,22].
Ishikawa [1,2] firstly developed a method of reducing higher-order positive monomials,
by summarizing the rules in a large number of order reduction methods from the third-
order to seventh-order positive monomials. Further, Anthony et al. [16–18] initiated a
systematic study of lower and upper bounds on the number of binary auxiliary variables
required by the order reduction methods. Nevertheless, Anthony et al. [16–18] only proved
the existence of these upper and lower bounds, and failed to design any specific order
reduction method that matches the corresponding upper and lower bounds. Until recently,
Boros et al. [21,22] provided four order reduction methods, which utilize less auxiliary vari-
ables than Ishikawa [1,2]. Compared with the method of reducing higher-order negative
monomial, the method of reducing higher-order positive monomials suffer from two critical
problems: the nonsubmodular quadratic monomials obtained lead to the NP-hard problem
of minimizing RMRF energies, and the introduced multiple binary auxiliary variables
increase the computational complexity.

Therefore, designing more powerful order reduction methods for higher-order positive
monomials is important and challenging. We observe that the main obstacle of designing
order reduction methods for higher-order positive monomials is the interdependence
between the coefficients and auxiliary variables of RMRF. Studies [21,22] also noticed the
interdependence of auxiliary variables and coefficients. When designing order reduction
methods that use logarithmic auxiliary variables, they proved that the coefficients increase
exponentially. However, they did not further research the interdependence issue. Such
interdependence forces us to consider the auxiliary variables and coefficients of RMRF
simultaneously rather than separately, which greatly increases the design difficulty.

In this paper, we propose a unified design framework to reduce higher-order positive
monomials. The proposed framework not only significantly decreases the difficulty of
designing order reduction methods, but also provides 14 order reduction methods that
allow applications in different fields to pick up their best method. Since the main dif-
ficulty of reducing HoMRF is due to the interdependence between the coefficients and
auxiliary variables of RMRF, our core idea is to decompose this difficulty into two easier
processes, where each process considers the coefficients or auxiliary variables separately.
The flowchart of the proposed framework is shown in Figure 1. First, we generalize pre-
vious order reduction methods and propose a novel general reduction function (GRF) that
requires only one auxiliary variable for any higher-order positive monomial. Different
from the previous order reduction methods that utilize multiple binary auxiliary variables,
our integral auxiliary variable is fixed, hence we can focus on setting the coefficients of
RMRF. We rigorously prove the properties of the minimum value range of the integral
auxiliary variable. Second, since the coefficients are already considered in the first process,
we propose substitution and minimum transformations that convert the integral auxiliary
variable of GRF into binary auxiliary variables. With the proposed transformations, we can
concentrate on setting the binary auxiliary variables of RMRF. Based on the framework, a
new family of 14 order reduction methods is proposed. Moreover, some state-of-the-art
reduction methods can be easily derived from the proposed framework. We believe that
our novel framework may take the design of order reduction methods to a new level.
Comparison experiments show the superiority of our work.
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Higher-order Positive Monomial

General Reduction Function (GRF)

Substitution/Minimum Transformation

Order Reduction Method

Figure 1. Graphical flowchart of the order reduction design framework for the higher-order
positive monomial.

The main contributions of our study are as follows:

1. We propose an order reduction design framework that divides the complex de-
sign of order reduction methods into two simpler processes. Compared with ex-
isting works, our framework significantly decreases the design difficulty for order
reduction methods.

2. A novel GRF is developed to generalize previous order reduction methods. Unlike the
previous methods with multiple binary auxiliary variables, GRF utilizes an integral
auxiliary variable. Some valuable properties of GRF are also rigorously proved.

3. Two sets of substitution and minimum transformations are developed to produce more
order reduction methods. A variety of 14 order reduction methods are produced to
enable applications in different fields to choose their most suitable method. Moreover,
four state-of-the-art order reduction methods can be easily derived from our work.

2. Notation and Related Work

In this section, we provide some basic terminologies, as well as the notations and
backgrounds necessary for understanding the subsequent sections.

2.1. Higher-Order Binary Markov Random Field

In this paper, we focus on the binary Markov random field, since a Markov random
field with any multi-labels can be converted to a binary Markov random field via standard
techniques [2,23–26]. An HoMRF, also known as a pseudo-Boolean function [19,27], is a bi-
nary Markov random field whose order is greater than two. It is defined as E : {0, 1}n → R.
Here, n is the number of variables and R is the set of real numbers. The energy function E
can be uniquely expressed as multilinear polynomials [19]:

E(x1, . . . , xn) = ∑
S⊆[n]

cS ∏
i∈S

xi (1)

where x1, . . . , xn are binary variables, [n] = {1, 2, . . . , n}, cS ∈ R is the coefficient of
cS ∏i∈S xi. In particular, when S = ∅, cS denotes the constant of E(x1, . . . , xn). The size
of S is denoted by |S|. If |S| > 2, the monomial cS ∏i∈S xi is a higher-order monomial.
For brevity, a general higher-order negative monomial is denoted as −x1x2 · · · x|S|, and a
general higher-order positive monomial is denoted as x1x2 · · · x|S|, 2 < |S| 6 n. Denote the
complement of xi as x̄i=1− xi, i ∈ [n].

Although minimizing a general energy function is generally an NP-hard problem [19,28],
the submodular energy function can be minimized globally in polynomial time. Proposition
24 in [19] is commonly used to judge whether E satisfies submodular.

As the higher orders make an HoMRF more difficult to optimize, the study [29]
first proposes a substitution-based method to transform an HoMRF into a reduced binary
Markov random field (RMRF). However, there are already experiments showing its poor
performance [1,2]. Although some works can effectively reduce an HoMRF [27,30–35] or
minimize an HoMRF [36–43], they can only be applied to some special HoMRFs, which
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limits their applications. In this paper, we focus on reducing the general HoMRF. In
reference [18], the RMRF of an HoMRF is formally defined as follows.

Definition 1. Given an HoMRF E(x1, . . . , xn), R is an RMRF of E(x1, . . . , xn) if R : {0, 1}n ×
{0, 1}l → R is a quadratic polynomial depending on x1, . . . , xn and on l auxiliary variables
y1, . . . , yl such that

E(x1, . . . , xn) = min
y1,...,yl∈{0,1}m

R(x1, . . . , xn, y1, . . . , yl), ∀x1, . . . , xn ∈ {0, 1}n. (2)

2.2. Related Works of Order Reduction Methods

As shown in Definition 1, the goal of reducing the HoMRF E is to design an equivalent
RMRF R for E. However, directly reducing E into R is extremely difficult. A mainstream
order reduction method is to transform the higher-order monomials of E one by one until R
is obtained. Note that an important property of the higher-order monomial cSx1x2 · · · x|S|
is symmetry, which means that it is invariant under any permutation of the coordinates
{1, 2, . . . , m} of the variable x. Most of reduction methods [16,18,21,22] utilize the symmetry
to reduce higher-order monomials based on the following concept:

Definition 2. A function f (x, y) : {0, 1}|S| × {0, 1}m → R is called the reduction function (RF)
of −x1x2 · · · x|S| or x1x2 · · · x|S| if it is a symmetric quadratic polynomial about x1, x2, . . . , x|S|
and satisfies

− x1x2 · · · x|S| = min
y∈{0,1}m

f (x, y) (3)

or
x1x2 · · · x|S| = min

y∈{0,1}m
f (x, y) (4)

where x = (x1, x2, . . . , x|S|)> and y = (y1, y2, . . . , ym)>.

We introduce the order reduction methods of higher-order negative terms and
higher-order positive terms, respectively. First, for the higher-order negative monomial,
Freedman et al. [15] are the first to provide:

− x1x2 · · · x|S| = min
y∈{0,1}

(|S| − 1−
|S|

∑
i=1

xi)y. (5)

This method produces a submodular [19] RF and requires only one auxiliary variable. Thus,
it achieves excellent experimental performance [1–4]. A more general form of Equation (5)
is proposed by paper [17]:

− x1x2 · · · x|S| = min
y∈{0,1}

(c|S| − 1− c
|S|

∑
i=1

xi)y (6)

where c > 1 is the coefficient. To reduce the higher-order negative monomial, Anthony et al. [18]
provide another method with one auxiliary variable, but their method do not satisfy sub-
modular; alternatively, Yip et al. [20] propose a method that is an equivalent transformation
of Equation (5).

Second, to reduce the higher-order positive monomial, order reduction method gen-
erates a nonsubmodular RF and requires multiple auxiliary variables, which is the main
reason for the difficulty in minimizing the RMRF. A lot of efforts have been devoted
to designing the RF for a higher-order positive monomial. Ishikawa [1,2] observes the
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RF of x1x2x3, x1x2x3x4, . . . , x1x2x3x4x5x6x7 and then summarizes the first order reduction
method high order clique reduction (HOCR) for a general higher-order positive monomial:

x1x2 · · · x|S| = min
y1,...,ym∈{0,1}m

m

∑
i=1

(
ci,|S|

(
2i−

|S|

∑
i=1

xi
)
− 1
)

yi + ∑
16i<j6|S|

xixj (7)

where

m = b |S| − 1
2
c, ci,|S| =

{
1, |S| is odd and m = i,
2, otherwise.

The researches [21,22] systematically study the upper and lower bounds of the number of
auxiliary variables for several classes of specially structured pseudo-Boolean functions,
and provide two order reduction methods that require a logarithmic number of auxiliary
variables. One is the logarithmic reduction type-1 (LogR-1) method:

x1x2 · · · x|S| = min
y0,...,ym−1∈{0,1}

(
c +

|S|

∑
i=1

xi −
m−1

∑
i=0

2iyi
)2 (8)

where m = dlog2(|S|)e and c = 2m − |S|. Another is the logarithmic reduction type-2
(LogR-2) method

x1x2 · · · x|S| = min
y1,...,ym∈{0,1}

1
2
(
c +

|S|

∑
i=1

xi −
m

∑
i=1

2iyi
)(

c +
|S|

∑
i=1

xi −
m

∑
i=1

2iyi − 1
)

(9)

where m = dlog2(|S|)e− 1 and c = 2m+1−|S|. However, they notice that Equations (8) and (9)
require exponential coefficients, which have a negative impact on computational perfor-
mance. Thus, the following linear reduction (LinR) method is developed:

x1x2 · · · x|S| = min
y1,...,ym∈{0,1}

1
2
( |S|

∑
i=1

xi − cy1 − 2
m

∑
i=2

yi
)( |S|

∑
i=1

xi − cy1 − 2
m

∑
i=2

yi − 1
)

(10)

where |S|4 6 m 6 |S|
2 and c = |S| − 2m. Finally, they propose a square root reduction (SqrtR)

method that nicely matches the lower bound in [17]:

x1x2 · · · x|S| = miny0,...,yc−1∈{0,1}
y′0,...,y′c−1∈{0,1}

(
yi0 y′i0 +λ

(
(1−∑c−1

i=0 yi)
2 + (1−∑c−1

j=0 y′j)
2)

+λ
(

∑
|S|
i=1 xi − (c ∑c−1

i=0 i · yi + ∑c−1
j=0 j · y′j)

)2
) (11)

where m = 2d
√
|S|+ 1 e is the number of auxiliary variables, c = m

2 , and λ is a large
number. yi0 and y′i0 must satisfy the condition c · i0 · yi0 + j0 · y′j0 = |S|.

3. The First Process of the Proposed Framework: General Reduction Function (GRF)

In this section, we define a novel reduction function g(x, z) and demonstrate the
convenience of designing it in Section 3.1. Then, we prove some critical properties of g(x, z)
in Section 3.2.

3.1. General Reduction Function (GRF)

Based on Definition 2, setting the coefficients and auxiliary variables of RMRF is
greatly simplified to designing f (x, y). However, designing f (x, y) is still very difficult,
mostly owing to the interdependence between the coefficients and the auxiliary variables
of f (x, y). Such interdependence has rarely been studied, yet it must be considered when
designing f (x, y). Therefore, to avoid considering both coefficients and auxiliary variables,
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we propose a novel function g(x, z) with a fixed auxiliary variable z, which allows us to
focus on designing the coefficient.

Definition 3. A function g(x, z) : {0, 1}|S| ×W → R is called the general reduction function
(GRF) of x1x2 · · · x|S| if it is a symmetric polynomial about x1, x2, . . . , x|S| and satisfies

x1x2 · · · x|S| = min
z∈W

g(x, z) (12)

where x = (x1, x2, . . . , x|S|)>; W = {0, 1, . . . , |W| − 1} is the value space of z and |W| is the size
of W.

Since the higher-order negative monomial has the excellent reduction method
Equations (5) and (6), Definition 3 only considers the higher-order positive monomial.
Furthermore, g(x, z) relaxes the restriction of f (x, y) in two ways: g(x, z) can be more than
quadratic and z has not be binary. Since g(x, z) is symmetric about x1, . . . , x|S|, we denote
an auxiliary function h : {0, 1, . . . , |S|} ×W→ R of g(x, z):

g(x, z) =g1(z) +
|S|

∑
i=1

g2(z)xi + ∑
16i<j6|S|

cxixj

=g1(z) + g2(z)k + cθ(k) = h(k, z) (13)

where g1 : W → R and g2 : W → R are polynomials; k = ∑
|S|
i=1 xi and θ(k) = k(k− 1)/2;

c ∈ R is the coefficient.
Since g(x, z) is a GRF of x1x2 · · · x|S|, then x1x2 · · · x|S| = minz∈W h(k, z) = 1(k = |S|),

where the indicator function 1(k = |S|) = 1⇔ k = |S|. Obviously, h(k, z) is simple with
only two variables. Thus, we can easily utilize it to formulate three specific forms of g(x, z).

1. Let W1 = {0, 1, . . . , |S|}. Then, the general reduction type-1 (GR-1) method is

x1x2 · · · x|S| = min
z∈W1

(
1(z = |S|) + λ‖z− x1 − · · · − x|S|‖2

2

)
(14)

where ‖ · ‖2 is the 2-norm, λ > 1 is a large number and the indicator function
1(z = |S|) = 1⇔ z = |S|.

2. Let W2 = {0, 1, . . . , |S| − 1}. Then, the general reduction type-2 (GR-2) method is

x1x2 · · · x|S| = min
z∈W2

‖z− x1 − · · · − x|S|‖2
2. (15)

3. Let W3 = {0, 1, . . . , b |S|−1
2 c}. Then, the general reduction type-3 (GR-3) method is

x1x2 · · · x|S| = min
z∈W3

1
2
(
2z−

|S|

∑
i=1

xi
)(

2z + (−1)|S| −
|S|

∑
i=1

xi
)
. (16)

3.2. Properties of GRF

The computational complexity of minimization algorithms, such as the sequential
tree-reweighted algorithm (TRW-S) [44,45], depend heavily on the size of W. Therefore, it is
natural to hope that the size of W is as small as possible. Before the discussion, we prove
some important properties of g(x, z).

Theorem 1. Let g(x, z) be the GRF of x1x2 · · · x|S| and h(k, z) be the auxiliary function of g(x, z).

1. g1(z) > 0 and g1(z) 6≡ 0;
2. c > 0;
3. g2(z) 6 0.
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Proof.

1. Prove that g1(z) > 0. Based on the definition of h(k, z), minz∈W h(k, z) = 1(k = |S|).
If k = 0, then minz∈W h(0, z) = 0. According to Equation (13), h(0, z) = g1(z). Thus,
minz∈W h(0, z) = minz∈W g1(z) = 0⇒ g1(z) > 0.

2. Prove that c > 0. Since minz∈W h(k, z) = 1(k = |S|), if k = 1, then minz∈W h(1, z) = 0.
According to Equation (13), h(1, z) = g1(z) + g2(z). Suppose an integral z0 ∈ W
such that

min
z∈W

h(1, z) = min
z∈W

(
g1(z) + g2(z)

)
= g2(z0) + g1(z0) = 0⇒ g2(z0) = −g1(z0).

Similarly, if k = |S|, then minz∈W h(|S|, z) = 1. When z = z0, we have

h(|S|, z0) > min
z∈W

h(|S|, z) = 1.

According to Equation (13), the above inequality is

g1(z0) + |S|g2(z0) +
|S|(|S| − 1)

2
c > 1.

Since g2(z0) = −g1(z0), g1(z0) > 0 and |S| > 2, the above inequality is transformed as

g1(z0)− |S|g1(z0) +
|S|(|S| − 1)

2
c > 1

⇒|S|(|S| − 1)
2

c− (|S| − 1)g1(z0) > 1

⇒c >
2 + 2(|S| − 1)g1(z0)

|S|(|S| − 1)
> 0.

3. Prove that g2(z) 6 0. We prove this case by contradiction. Suppose z = z0 ∈W such
that g2(z0) > 0 and minz∈W h(k, z) = h(k, z0) = 1(k = |S|). We discuss it in two cases
according to the value of k.

(a) If 1 6 k < |S|, then h(k, z0) = 0. According to Equation (13), we have

h(k, z0) = g1(z0) + kg2(z0) +
k(k− 1)

2
c = 0

⇒g2(z0) = −
1
k

g1(z0)−
k− 1

2
c.

where 1 6 k < |S|. Since g1(z0) > 0 and c > 0, then g2(z0) < 0, contradicting
the assumption that g2(z0) > 0.

(b) If k = |S|, then h(|S|, z0) = 1. Suppose z0 6= z1 ∈W such that

min
z∈W

h(1, z) = h(1, z1) = g2(z1) + g1(z1) = 0⇒ g2(z1) = −g1(z1).

Directly from the definition of h(k, z), we can write

h(|S|, z1) > min
z∈W

h(|S|, z) = h(|S|, z0)

⇒ g1(z1) + |S|g2(z1) +
|S|(|S| − 1)

2
c > g1(z0) + |S|g2(z0) +

|S|(|S| − 1)
2

c

⇒ g1(z1) + |S|g2(z1) > g1(z0) + |S|g2(z0).
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Since |S| > 2, g2(z1) = −g1(z1), g1(z) > 0 and g2(z0) > 0, we have

(1− |S|)g1(z1) > g1(z0) + |S|g2(z0)

⇒g1(z1) 6
g1(z0) + |S|g2(z0)

1− |S| < 0

which contradicts the fact that g1(z) > 0. Therefore, g2(z) 6 0.

4. Prove that g1(z) 6≡ 0. We prove this case by contradiction. Suppose that g1(z) ≡ 0.
Based on the definition of h(k, z) and Equation (13), there exists z0 ∈ Z such that

min
z∈Z

h(1, z) = min
z∈Z

(
g1(z) + g2(z)

)
= min

z∈Z
g2(z) = g2(z0) = 0.

In other words,
g2(z) > min

z∈Z
g2(z) = g2(z0) = 0.

If g2(z) > 0, it contradicts the fact that g2(z) 6 0; if g2(z) = 0, then minz∈W h(k, z) = θ(k)c
that cannot be equal to 1(k = |S|), contradicting the definition of h(k, z). Thus,
g1(z) 6≡ 0.

Theorem 2. Let g(x, z) be the GRF of x1x2 · · · x|S| and h(k, z) be the auxiliary function of g(x, z).
There exists z0 ∈W such that at most three integers 0 6 k1 < k2 < k3 6 |S| satisfy h(k1, z0) = 0,
h(k2, z0) = 0, h(k3, z0) = 1(k3 = |S|).

Proof. According to the description in this theorem, ∃z0 ∈ W is such that h(k1, z0) = 0,
h(k2, z0) = 0, h(k3, z0) = 1(k3 = |S|), where three integers 0 6 k1 < k2 < k3 6 |S|. Based
on the Equation (13), we have

g1(z0) + k1g2(z0) +
k1(k1−1)

2 c = 0,

g1(z0) + k2g2(z0) +
k2(k2−1)

2 c = 0,

g1(z0) + k3g2(z0) +
k3(k3−1)

2 c = 1(k3 = |S|).
(17)

If k3 6= |S|, then c = 0 which contradicts Theorem 1; if k3 = |S|, there exists a solution of
Equation (17) such that h(k1, z0) = 0, h(k2, z0) = 0, h(k3, z0) = 1(k3 = |S|) = 1. Therefore,
There exists z0 ∈ W such that three integers 0 6 k1 < k2 < k3 6 |S| satisfy h(k1, z0) = 0,
h(k2, z0) = 0, h(k3, z0) = 1(k3 = |S|).

Now we prove that z0 ∈W corresponds to at most three integers. We prove this by contra-
diction. Suppose that there exists z0 ∈W such that four integers 0 6 k1 < k2 < k3 < k4 6 |S|
satisfy h(k1, z0) = 0, h(k2, z0) = 0, h(k3, z0) = 0 and h(k4, z0) = 1(k4 = |S|). Then,
according to the Equation (13), we have

g1(z0) + k1g2(z0) +
k1(k1−1)

2 c = 0,

g1(z0) + k2g2(z0) +
k2(k2−1)

2 c = 0,

g1(z0) + k3g2(z0) +
k3(k3−1)

2 c = 0,

g1(z0) + k4g2(z0) +
k4(k4−1)

2 c = 1(k4 = |S|).

(18)

To hold the equivalence of Equation (18), k4 must be less than |S|, i.e., k4 < |S|. At this
point, c must be zero, which contradicts Theorem 1. For the case that there are more than
four integers, the proof is similar.
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Corollary 1. Let g(x, z) be the GRF of x1x2 · · · x|S| and h(k, z) be the auxiliary function of g(x, z).
If z0 ∈W is such that h(k1, z0) = 0, h(k2, z0) = 0, h(k3, z0) = 1(k3 = |S|), where three integers
0 6 k1 < k2 < k3 6 |S|, then k3 = |S| and

c =
2

(|S| − k1)(|S| − k2)

Proof. Based on Theorem 2, to make Equation (17) hold and not contradict the fact that
c > 0, k3 must be equal to |S| and the solution of Equation (17) is

g1(z0) =
k1k2

(|S| − k1)(|S| − k2)

g2(z0) =
1− k1 − k2

(|S| − k1)(|S| − k2)

c =
2

(|S| − k1)(|S| − k2)
.

Theorem 3. Let g(x, z) be a GRF of x1x2 · · · x|S| and W be the value space of z. The minimum

size of W is d |S|2 e.

Proof. In order to obtain the minimum size of W, we should let the value z0 ∈ W corre-
spond to as many values of k as possible to satisfy minz∈W h(k, z0) = 1(k = |S|). To do this,
we choose one value z0 ∈ W such that minz∈W h(k1, z0) = 0, minz∈W h(k2, z0) = 0 and
minz∈W h(|S|, z0) = 1, where 0 6 k1 < k2 < |S|, based on Theorem 2. For ∀z1 ∈ W and
z1 6= z0, let z1 correspond to two integers 0 6 j1 < j2 < |S|, j1 6= k1 and j2 6= k2 such that
minz∈W h(j1, z1) = 0 and minz∈W h(j2, z1) = 0 (or minz∈W h(j1, z1) = 0, minz∈W h(j2, z1) = 0
and minz∈W h(|S|, z1) = 1). Therefore, for k ∈ {0, 1, . . . , |S|}, we need at least d |S|2 e values
in W to ensure minz∈W h(k, z) = 1(k = |S|). The theorem is proved.

Apparently, the size of W3 in Equation (16) is d |S|2 e that matches the minimum size of
W. Although Equations (14) and (15) do not satisfy the minimum size of W, they can not
only derive some state-of-the-art order reduction methods shown in the next section, but
also help to better analyze our framework shown in the experiments.

4. The Second Process of the Proposed Framework: Transformation from GRF to RF

This section proposes two transformations that convert the GRF g(x, z) to the RF
f (x, y) in Sections 4.1 and 4.2.

4.1. Substitution Transformation

The first is the substitution transformation, which defines z(y) and then substitutes z
in g(x, z) with z(y):

g(x, z)
z=z(y)−−−−→ g(x, z(y)) = f (x, y). (19)

To ensure that f (x, y) is quadratic, z(y) must be linear and cover all values of z. Thus, we
provide three forms:
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z(y) = (|W| −m)y1 +
m

∑
i=2

yi,
|W|

2
6 m 6 |W| − 1 (20)

z(y) = (|W| − 2m + 1)y1 +
m

∑
i=2

2yi,
|W|

4
6 m 6

|W|
2

(21)

z(y) =
m

∑
i=1

2i−1yi, m = dlog2(|W|)e (22)

Then, substituting z in Equations (15) and (16) with Equation (20) or (21) or (22), we obtain
six novel order reduction methods. By inserting Equation (20) into Equation (15), the
substitution reduction type-1 (SR-1) method is defined as:

x1x2 · · · x|S| = miny∈{0,1}m g(x, z(y)) = miny∈{0,1}m ‖z(y)− x1 − · · · − x|S|‖2
2

= miny∈{0,1}m ‖(|S| −m)y1 + ∑m
i=2 yi − x1 − · · · − x|S|‖2

2, |S|
2 6 m 6 |S| − 1

(23)

Similarly, we substitute z in Equation (15) with Equation (21) and the substitution reduction
type-2 (SR-2) method is

x1x2 · · · x|S| = min
y∈{0,1}m

‖(|S| − 2m + 1)y1 +
m

∑
i=2

2yi − x1 − · · · − x|S|‖2
2,
|S|
4

6 m 6
|S|
2

. (24)

Substituting z in Equation (15) with Equation (22), the substitution reduction type-3 (SR-3)
method is

x1x2 · · · x|S| = min
y∈{0,1}m

‖
m

∑
i=1

2i−1yi − x1 − · · · − x|S|‖2
2, m = dlog2(|S|)e. (25)

Substituting z in Equation (16) with Equation (20), the substitution reduction type-4 (SR-4)
method is

x1x2 · · · x|S| = min
y∈{0,1}m

1
2
(
2(d |S|

2
e −m)y1 +

d

∑
i=2

2yi −
m

∑
i=1

xi
)
·

(
2(d |S|

2
e −m)y1 +

d

∑
i=2

2yi + (−1)|S| −
|S|

∑
i=1

xi
)

(26)

where d
|S|
2 e
2 6 m 6 d |S|2 e − 1. Substituting z in Equation (16) with Equation (21), the

substitution reduction type-5 (SR-5) method is

x1x2 · · · x|S| = min
y∈{0,1}m

1
2
(
2(d |S|

2
e − 2m + 1)y1 +

m

∑
i=2

4yi −
|S|

∑
i=1

xi
)
·

(
2(d |S|

2
e − 2m + 1)y1 +

m

∑
i=2

4yi + (−1)|S| −
|S|

∑
i=1

xi
)

(27)

where d
|S|
2 e
4 6 m 6

d |S|2 e
2 . Substituting z in Equation (16) with Equation (22), the substitution

reduction type-6 (SR-6) method is

x1x2 · · · x|S| = min
y∈{0,1}m

1
2
( m

∑
i=1

2iyi −
|S|

∑
i=1

xi
)( m

∑
i=1

2iyi + (−1)|S| −
|S|

∑
i=1

xi
)

(28)

where m = dlog2(d
|S|
2 e)e.
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The RFs transformed from Equations (20)–(22) is simpler and clearer than some state-
of-the-art reduction methods. For example, substituting z in Equation (15) with

z(y) =
m−1

∑
i=0

2iyi − 2m + |S|+ 1− (−1)|S|

2

where m = dlog1(|S|)e, we obtain LogR-1 Equation (8) that has an extra −2m + |S| and
thus is more complex than SR-3 Equation (25). Substituting z in Equation (16) with

z(y) =
m

∑
i=1

2i−1yi − 2m +
|S|
2

+
1− (−1)|S|

4

where m = dlog1(|S|)e − 1, we obtain LogR-2 Equation (9) that has an extra −2m + |S|
2 and

thus is more complex than SR-6 Equation (28). Note that LinR can be viewed as substituting
z in Equation (16) with

z(y) =
1
2
(|S| − 2m)y1 +

m

∑
i=2

yi +
1− (−1)|S|

4

where |S|/4 6 m 6 |S|/2.

4.2. Minimum Transformation

Unlike Equation (19), the minimum transformation utilizes the minimum operation to
obtain f (x, y):

g(x, z)
z=z(y)−−−−→ g(x, z(y)) = min

y∈{0,1}d
f (x, y). (29)

Compared with the proposed substitution transformation, the minimum transformation
is capable of avoiding the exponential coefficients in Equation (22) and transforming
Equation (14) into an RF. There are two specific forms.

First, suppose a vector of auxiliary variables: y = (y1, . . . , ym) ∈ {0, 1}m where
m = |W| − 1. We define

z(y) = y1 + y1y2 + · · ·+ y1y2 · · · ym. (30)

By inserting Equation (30) into Equation (14), we have

g(x, z(y)) =1(z(y) = |S|) + z2(y)− 2z(y)
|S|

∑
i=1

xi + (
|S|

∑
i=1

xi)
2

=1(
|S|

∑
i=1

i

∏
j=1

yj = |S|) +
|S|

∑
i=1

(2i− 1− 2
|S|

∑
i=1

xi)
i

∏
j=1

yj + (
|S|

∑
i=1

xi)
2

= min
y∈{0,1}|S|

y|S| +
|S|

∑
i=1

(2i− 1− 2
|S|

∑
i=1

xi)yi + (
|S|

∑
i=1

xi)
2

= min
y∈{0,1}|S|

f (x, y).

Thus, the minimum reduction type-1 (MR-1) method is

x1x2 · · · x|S| = min
z∈W

g(x, z) = min
y∈{0,1}|S|

y|S| +
|S|

∑
i=1

(2i− 1− 2
|S|

∑
i=1

xi)yi + (
|S|

∑
i=1

xi)
2. (31)
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Similarly, for the Equation (15) case, we have the minimum reduction type-2 (MR-2) method:

x1x2 · · · x|S| = min
y∈{0,1}|S|−1

|S|−1

∑
i=1

(2i− 1− 2
|S|

∑
i=1

xi)yi + (
|S|

∑
i=1

xi)
2. (32)

For the Equation (16) case, we have the minimum reduction type-3 (MR-3) method:

x1x2 · · · x|S| = min
y∈{0,1}b

|S|−1
2 c

b |S|−1
2 c

∑
i=1

(
4i− 2 + (−1)|S| − 2

|S|

∑
i=1

xi
)
yi

+ ∑
16i<j6|S|

xixj +
1− (−1)|S|

2

|S|

∑
i=1

xi. (33)

Second, suppose a vector of auxiliary variables: y = (y1, . . . , ym, y′1, . . . , y′m) ∈ {0, 1}2m

where m = d
√
|W|e. We define

z(y) = m
m

∑
i=1

(i− 1) · yi +
m

∑
j=1

(j− 1) · y′j. (34)

To ensure the equivalence of Equation (29), we add a penalty term in f (x, y), which is:

x1x2 · · · x|S| = min
y∈{0,1}2m

f (x, y) = min
y∈{0,1}2m

g(x, z(y))+λ
(
(1−

m

∑
i=1

yi)
2 +(1−

m

∑
j=1

y′j)
2) (35)

where λ is a large number. For Equation (14), 1(z(y) = |S|) = yi0 y′i0 where yi0 and y′i0
satisfy m(i0 − 1) · yi0 + (j0 − 1) · y′j0 = |S|. By substituting z and 1(z = |S|) in Equation (14)
with z(y) and 1(z(y) = |S|), the SqrtR Equation (11) is obtained. Similarly, substituting z
in Equation (15) with Equation (34), we obtain the minimum reduction type-4 (MR-4) method:

x1x2 · · · x|S| = min
y∈{0,1}2m

‖m
m

∑
i=1

(i− 1) · yi +
m

∑
j=1

(j− 1) · y′j −
|S|

∑
k=1

xk‖2
2

+ λ
(
(1−

m

∑
i=1

yi)
2 + (1−

m

∑
j=1

y′j)
2) (36)

where m = d
√
|S|e. Finally, substituting z in Equation (16) with with Equation (34), we

obtain the minimum reduction type-5 (MR-5) method:

x1x2 · · · x|S| = min
y∈{0,1}2m

1
2
(
2m

m

∑
i=1

(i− 1) · yi +
m

∑
j=1

2(j− 1) · y′j −
|S|

∑
k=1

xk
)

·
(
2m

m

∑
i=1

(i− 1) · yi +
m

∑
j=1

2(j− 1) · y′j + (−1)|S| −
|S|

∑
k=1

xk
)

(37)

+ λ
(
(1−

m

∑
i=1

yi)
2 + (1−

m

∑
j=1

y′j)
2)

where m = d
√
d |S|2 e e.

5. Experiments and Discussions

In this section, we compare the proposed method (GR-1, GR-2, GR-3, SR-1, SR-2,
SR-3, SR-4, SR-5, SR-6, MR-1, MR-2, MR-3, MR-4 and MR-5) with state-of-the-art order
reduction methods (HOCR, LogR-1, LogR-2, LinR and SqrtR) on synthetic data and image
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denoising. Table 1 summarizes the order reduction methods developed in this paper. To
ensure the fairness of the comparison, we utilize the classical algorithm TRW-S [44,45]
to minimize the RMRFs reduced by these order reduction methods, and conduct the
comparison experiments with the same hardware and software environment (AMD Ryzen
5800U, RAM 16GB, Nvidia RTX 3050 and MATLAB 2022a).

Table 1. Comparison of the proposed 14 order reduction methods for the higher-order positive
monomial x1x2 · · · x|S|.

Methods GRF Transformation Number of Auxiliary Variables Type of Auxiliary Variables

GR-1 Equation (14) (14) None m = 1 Integral
GR-2 Equation (15) (15) None m = 1 Integral
GR-3 Equation (16) (16) None m = 1 Integral
SR-1 Equation (23) (15) (20) |S|

2 6 m 6 |S| − 1 Binary
SR-2 Equation (24) (15) (21) |S|

4 6 m 6 |S|
2 Binary

SR-3 Equation (25) (15) (22) m = dlog2(|S|)e Binary

SR-4 Equation (26) (16) (20) d |S|2 e
2 6 m 6 d |S|2 e − 1 Binary

SR-5 Equation (27) (16) (21) d |S|2 e
4 6 m 6

d |S|2 e
2 Binary

SR-6 Equation (28) (16) (22) m = dlog2(d
|S|
2 e)e Binary

MR-1 Equation (31) (14) (30) m = |S| Binary
MR-2 Equation (32) (15) (30) m = |S| − 1 Binary
MR-3 Equation (33) (16) (30) m = b |S|−1

2 c Binary
MR-4 Equation (36) (15) (34) m = d

√
|S|e Binary

MR-5 Equation (37) (16) (34) m = d
√
d |S|2 e e Binary

5.1. Synthetic Data Experiments

In the first experiment, we follow the approach in the paper [46] to generate a series of
synthetic HoMRFs, which have the following form:

E(x1, x2, . . . , xn) =
n

∑
i=1

cixi + ∑
S⊆[n],|S|>2

ES(xS1 , xS2 . . . , xS|S|) (38)

where x1, x2, . . . , xn ∈ {0, 1}, ci ∈ R is the coefficient, and ES : {0, 1}|S| → R. We synthesize
HoMRfs of order three to seven. For each order, we generate 500 HoMRFs with n = 50,
500 HoMRFs with n = 200, and 10 HoMRFs with n = 1000. The variables x1, x2, . . . , xn
are randomly sampled from a uniform distribution, and the coefficient ci and the values
of ES are randomly sampled from a standard Gaussian distribution. The energy results of
each order achieved by different order reduction methods are shown in Table 2, Table 3
and Table 4, respectively. Note that for SqrtR, MR-4 and MR-5, λ = 5.

Table 2. Comparison of energy (×10) averaged over 500 HoMRFs with 50 variables, achieved by
different order reduction methods. We highlight the best performance in bold.

Methods 3rd-Order 4th-Order 5th-Order 6th-Order 7th-Order

HOCR Equation (7) −9.98 −10.03 −13.04 −15.72 −19.22
LogR-1 Equation (8) −6.22 −3.72 −3.21 −6.53 −7.49
LogR-2 Equation (9) −8.82 −10.03 −10.12 −8.98 −9.99
LinR Equation (10) −9.98 −10.03 −10.10 −10.30 −11.89
SqrtR Equation (11) −2.89 −3.46 −5.08 −6.82 −8.45
GR-1 Equation (14) −0.59 −0.16 −0.06 −0.02 −0.01
GR-2 Equation (15) −0.59 −0.16 −0.06 −0.02 −0.01
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Table 2. Cont.

Methods 3rd-Order 4th-Order 5th-Order 6th-Order 7th-Order

GR-3 Equation (16) −7.92 −10.21 −10.99 −15.41 −17.17
SR-1 Equation (23) −6.19 −5.38 −6.16 −6.73 −7.56
SR-2 Equation (24) −4.86 −4.85 −5.76 −7.15 −6.94
SR-3 Equation (25) −4.19 −3.72 −7.91 −8.30 −8.68
SR-4 Equation (26) −8.82 −10.03 −7.72 −10.3 −7.95
SR-5 Equation (27) −8.82 −10.03 −10.02 −14.35 −11.79
SR-6 Equation (28) −8.82 −10.03 −6.73 −10.22 −9.99
MR-1 Equation (31) −6.01 −6.35 −8.89 −12.18 −14.56
MR-2 Equation (32) −5.95 −6.53 −8.97 −11.75 −14.46
MR-3 Equation (33) −9.98 −10.03 −13.04 −15.72 −19.22
MR-4 Equation (36) −5.19 −4.22 −7.84 −9.34 −8.49
MR-5 Equation (37) −6.68 −8.93 −9.08 −11.59 −12.01

The order reduction methods below the solid line are designed by our framework.

Table 3. Comparison of energy (×102) averaged over 500 HoMRFs with 200 variables, achieved by
different order reduction methods. We highlight the best performance in bold.

Methods 3rd-Order 4th-Order 5th-Order 6th-Order 7th-Order

HOCR Equation (7) −4.11 −4.00 −4.86 −5.74 −6.88
LogR-1 Equation (8) −2.61 −1.44 −1.28 −2.68 −3.28
LogR-2 Equation (9) −3.52 −4.00 −4.18 −3.69 −4.10
LinR Equation (10) −4.11 −4.00 −3.81 −3.75 −4.37
SqrtR Equation (11) −1.12 −1.39 −2.20 −3.09 −3.96
GR-1 Equation (14) −0.18 −0.05 −0.01 −0.01 0.00
GR-2 Equation (15) −0.18 −0.05 −0.01 −0.01 0.00
GR-3 Equation (16) −3.24 −4.05 −4.13 −5.52 −6.15
SR-1 Equation (23) −2.57 −2.11 −2.22 −2.24 −2.36
SR-2 Equation (24) −1.91 −1.86 −2.21 −2.67 −2.66
SR-3 Equation (25) −1.67 −1.44 −3.26 −3.55 −3.78
SR-4 Equation (26) −3.52 −4.00 −2.76 −3.75 −2.51
SR-5 Equation (27) −3.52 −4.00 −4.07 −5.41 −4.82
SR-6 Equation (28) −3.52 −4.00 −2.46 −3.81 −4.11
MR-1 Equation (31) −2.36 −2.36 −3.24 −4.14 −5.21
MR-2 Equation (32) −2.34 −2.41 −3.21 −4.00 −5.00
MR-3 Equation (33) −4.11 −4.00 −4.86 −5.74 −6.88
MR-4 Equation (36) −2.10 −1.62 −3.30 −3.86 −3.47
MR-5 Equation (37) −2.75 −3.54 −3.69 −4.64 −5.05

The order reduction methods below the solid line are designed by our framework.

Table 4. Comparison of energy (×103) averaged over 10 HoMRFs with 1000 variables, achieved by
different order reduction methods. We highlight the best performance in bold.

Methods 3rd-Order 4th-Order 5th-Order 6th-Order 7th-Order

HOCR Equation (7) −1.97 −1.92 −2.21 −2.66 −3.15
LogR-1 Equation (8) −1.25 −0.66 −0.60 −1.30 −1.60
LogR-2 Equation (9) −1.65 −1.92 −2.02 −1.72 −1.86
LinR Equation (10) −1.97 −1.92 −1.80 −1.64 −1.95
SqrtR Equation (11) −0.51 −0.64 −1.01 −1.40 −1.84
GR-1 Equation (14) −0.07 −0.02 −0.01 0.00 0.00
GR-2 Equation (15) −0.07 −0.02 −0.01 0.00 0.00
GR-3 Equation (16) −1.57 −1.94 −2.00 −2.57 −2.91
SR-1 Equation (23) −1.22 −0.97 −0.96 −0.99 −0.93
SR-2 Equation (24) −0.86 −0.85 −1.06 −1.27 −1.21
SR-3 Equation (25) −0.74 −0.66 −1.61 −1.72 −1.85
SR-4 Equation (26) −1.65 −1.92 −1.29 −1.64 −1.01
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Table 4. Cont.

Methods 3rd-Order 4th-Order 5th-Order 6th-Order 7th-Order

SR-5 Equation (27) −1.65 −1.92 −1.99 −2.54 −2.30
SR-6 Equation (28) −1.65 −1.92 −1.12 −1.75 −1.86
MR-1 Equation (31) −1.09 −1.08 −1.45 −1.82 −2.20
MR-2 Equation (32) −1.09 −1.06 −1.45 −1.79 −2.17
MR-3 Equation (33) −1.97 −1.92 −2.21 −2.66 −3.15
MR-4 Equation (36) −0.97 −0.73 −1.53 −1.80 −1.46
MR-5 Equation (37) −1.29 −1.66 −1.78 −2.24 −2.44

The order reduction methods below the solid line are designed by our framework.

First, from Tables 2–4, it can be seen that for the third-order HoMRFs, the best en-
ergy performance is obtained by HOCR, LinR and MR-3; for the forth-order HoMRFs,
the best energy performance is obtained by GR-3; for the fifth-order to seventh-order
HoMRFs, the best energy performance is obtained by HOCR and MR-3. As shown in
Equations (7), (16) and (33), these methods with the best performance all have fewer num-
ber of auxiliary variables and smaller coefficients, which is strongly supported by the
research [18,21,22,46]. Although the performance of HOCR is identical to that of MR-3,
designing HOCR is more difficult than MR-3. Since HOCR is designed by summarizing
the RF f (x, y) of the third-order to seventh-order positive monomials [1,2], it is heuristic.
Therefore, it must be fortunate enough to heuristically find the required RFs from a large
number of RFs. As for LinR, it is designed by a complex mathematical theory in the ref-
erences [21,22]. In contrast, our design framework explicitly gives two processes, each of
which is much more rigorous than HOCR [1,2] and simpler than LinR [21,22].

Moreover, as we discussed in Section 4.2, the state-of-the-art order reduction methods
LogR-1 and LogR-2 [21,22] can be derived from our design framework. We also present
two methods SR-3 and SR-6 that are more concise forms of LogR-1 and LogR-2. For the
energy performance, SR-3 and SR-6 outperform LogR-1 and LogR-2, respectively, shown
in Tables 2–4. It shows that the proposed framework produces superior order reduction
methods than state-of-the-art ones.

Third, to validate the importance of the proposed theorems in Section 3.2, we compare
the energy performance of GR-1 Equation (14), GR-2 Equation (15) and GR-3 Equation (16).
As seen in Tables 2–4, while GR-3 achieves the best energy performance on the fourth-
order HoMRFs and the second best energy performance on the fifth-order to seventh-order
HoMRFs, GR-1 and GR-2 perform poorly. This result shows that GR-3 is more preferable
than GR-1 and GR-2. Furthermore, the RFs transformed from GR-3 are also more preferable
than those from GR-1 and GR-2: SR-4, SR-5 and SR-6 are superior to SR-1, SR-2 and
SR-3 in energy performance, respectively; MR-3 outperforms MR-1 and MR-2, and MR-
5 outperforms SqrtR and MR-4. All these results indicate the importance of GR-3 and
demonstrate that the size of value space |W| does significantly affect the efficiency of the
reduction method.

Finally, we compare the energy performance of substitution transformations
Equations (20)–(22) and minimum transformations Equations (30) and (34) in Section 3.2.
As shown in Tables 2–4, SR-4, SR-5 and SR-6 have exactly the same energy performance on
the third-order and fourth-order HoMRFs, since their formulas are the same in lower order
HoMRFs. For the fifth-order, sixth-order and seventh-order HoMRFs, SR-4, SR-5 and SR-6
have different energy performance, and the performance of SR-5 is superior to that of SR-4
and SR-6. It demonstrates that for the GR-3, the substitution transformation Equation (21)
is better than other transformations Equations (20) and (22). Similarly, it can be seen from
SR-1, SR-2 and SR-3 that no substitution transformations Equations (20)–(22) has obvious
advantages for GR-2. Furthermore, MR-1 and MR-3 show the better energy than SqrtR and
MR-5 respectively in any case, and MR-2 shows the better energy than MR-4 in most cases.
This result reveals that with the same GRF, the minimum transformation Equation (30) is
more preferable than the minimum transformation Equation (34). We can conclude that
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no matter what transformation g(x, z) chooses, the fewer auxiliary variables and smaller
coefficients lead to superior results.

5.2. Image Denoising

In this section, we conduct the second experiment on the benchmark [1,2], Fields of
Expert (FoE) [47,48], which is a widely used HoMRF model for image denoising. FoE
represents the prior probability of an image distribution as:

E(x1, . . . , xn) =
n

∑
i=1

(ai − xi)
2

2σ2 +
n

∑
i=1

αi log
[

1 +
1
2
(Ai ∗ xi)

]
where n is the number of pixels of the final image, ai is the value of the i-th pixel in the
noise image, and Ai ∗ xi denotes the result of convolving the patch at pixel i with filter
Ai. The parameters Ai and αi are learned from a database of natural images [47,48]. For
more details, please refer to [1,2,47,48]. In the benchmark [1,2], 10 images from the widely
known Berkeley Segmentation Database (BSDS500) [47–49] are selected. Gaussian noise
with a standard deviation σ is added to each image. For efficiency, we shrink the image size
by half. To make a fair comparison, we set the same starting point and maximum number
of 100 iterations for order reduction methods.

We utilize the energy and the peak signal to noise ratio (PSNR) and the calculation time
to compare the performance of different reduction methods. The results are shown in
Table 5. We also plot the curves of the energy and PSNR with iterations shown in Figure 2.
A visual example of image denoising is illustrated in Figure 3. Note that for the FoE model,
HOCR and LinR are the same. Thus, they have the same performance in terms of energy
and PSNR and differ only slightly in terms of calculation time. The same is true for SR-4,
SR-5 and SR-6. For SqrtR, MR-4 and MR-5, λ = 5.

Table 5. Comparison of energy, PSNR and calculation time achieved by different order reduction
methods, averaged over the benchmark [1,2]. We highlight the best performance in bold.

Methods
Energy (×104) PSNR Time (×102 s)

σ = 15 σ = 20 σ = 25 σ = 15 σ = 20 σ = 25 σ = 15 σ = 20 σ = 25

HOCR Equation (7) 5.24 4.74 4.45 27.02 25.18 24.05 3.51 3.76 3.62
LogR-1 Equation (8) 7.36 7.77 7.02 25.52 21.91 22.17 5.47 5.69 5.41
LogR-2 Equation (9) 5.27 4.83 4.16 27.09 25.36 24.30 3.52 3.74 3.63
LinR Equation (10) 5.24 4.74 4.45 27.02 25.18 24.05 3.51 3.78 3.62
SqrtR Equation (11) 8.08 8.31 8.62 25.20 21.68 21.35 9.08 9.02 8.66
GR-1 Equation (14) 8.13 9.26 10.55 26.18 24.01 22.24 4.09 4.35 4.19
GR-2 Equation (15) 8.13 9.26 10.55 26.18 24.01 22.24 4.08 4.35 4.18
GR-3 Equation (16) 5.28 4.83 4.59 27.08 25.31 24.28 5.59 5.63 5.61
SR-1 Equation (23) 6.28 6.16 5.82 26.05 23.53 23.04 5.92 5.76 5.84
SR-2 Equation (24) 6.03 6.07 6.38 27.10 25.45 24.16 3.89 3.82 3.90
SR-3 Equation (25) 6.57 6.39 6.46 26.20 24.38 23.42 5.57 5.41 5.48
SR-4 Equation (26) 5.27 4.83 4.58 27.09 25.36 24.30 3.47 3.48 3.56
SR-5 Equation (27) 5.27 4.83 4.58 27.09 25.36 24.30 3.47 3.47 3.55
SR-6 Equation (28) 5.27 4.83 4.58 27.09 25.36 24.30 3.47 3.47 3.55
MR-1 Equation (31) 6.31 6.24 6.30 25.94 23.92 22.88 6.63 6.65 6.77
MR-2 Equation (32) 6.51 6.50 6.47 25.70 23.44 22.53 5.27 5.36 5.39
MR-3 Equation (33) 5.27 4.82 4.58 27.09 25.35 24.30 3.46 3.45 3.53
MR-4 Equation (36) 6.29 6.11 6.04 26.17 24.14 23.21 7.59 7.69 7.61
MR-5 Equation (37) 5.58 5.29 5.25 27.17 25.58 24.48 7.60 7.72 7.62

The order reduction methods below the solid line are designed by our framework.
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(a)

(b)

(c)

(d)

Figure 2. Energy and PSNR with iterations on the benchmark [1,2], averaged over the denoising
results. (a) Comparison of order reduction methods LogR-1, LogR-2, SR-3 and SR-6. (b) Comparison
of order reduction methods GR-1, GR-2 and GR-3. (c) Comparison of order reduction methods SR-1,
SR-2, SR-3, SR-4, SR-5 and SR-6. Note that SR-4, SR-5 and SR-6 are identical for the FoE model.
(d) Comparison of order reduction methods SqrtR, MR-1, MR-2, MR-3, MR-4 and MR-5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 3. Visual example of image denoising. (b–f) Denoising results achieved by state-of-the-art order
reduction methods. (g–t) Denoising results achieved by the proposed order reduction methods. (a) Noise
Image. (b) HOCR Equation (7). (c) LogN-1 Equation (8). (d) LogN-2 Equation (9). (e) LinR Equation (10).
(f) SqrtR Equation (11). (g) GR-1 Equation (14). (h) GR-2 Equation (15). (i) GR-3 Equation (16). (j) SR-1
Equation (23). (k) SR-2 Equation (24). (l) SR-3 Equation (25). (m) SR-4 Equation (26). (n) SR-5 Equation (27).
(o) SR-6 Equation (28). (p) MR-1 Equation (31). (q) MR-2 Equation (32). (r) MR-3 Equation (33). (s) MR-4
Equation (36). (t) MR-5 Equation (37).
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First, as shown in Table 5, the best performance of the energy, PSNR and calculation
time is obtained by LinR, MR-5 and MR-3, respectively. For the denoised images with
σ = 20, MR-3 has 1.68% higher energy than LinR and 0.89% lower PSNR than MR-5.
However, the calculation time of MR-3 is 8.73% and 55.31% lower than that of LinR and
MR-5, respectively. Thus, MR-3 balances energy, PSNR and calculation time and achieves
the overall best performance. Similarly, for the denoised images with σ = {15, 25}, MR-3
also obtains the overall best performance. As discussed in the synthetic data experiment,
MR-3 also has the advantage of lower design difficulty, which fully demonstrates the
superiority of the proposed framework.

Moreover, as we discussed in Section 4.2, the proposed SR-3 and SR-6 are simpler and
clearer than LogR-1 and LogR-2. It can be seen from the Figure 2a and Table 5 that SR-3
outperforms LogR-1 in energy, PSNR and calculation time, while SR-6 outperforms LogR-2
in calculation time. The results indicate that the proposed framework can improve the
performance of some state-of-the-art order reduction methods.

Third, we compare different GR-1 Equation (14), GR-2 Equation (15) and GR-3
Equation (16) in Section 3.1. As shown in Figure 2b and Table 5, GR-3 has better perfor-
mance than GR-1 and GR-2 in terms of energy, PSNR and calculation time. In Figure 3,
GR-1 and GR-2 keep more noise, while GR3 preserves the important edge information
while removing noise, which demonstrates the superiority of Equation (16). Similarly,
MR-3 outperforms MR-1 and MR-2, and MR-5 outperforms SqrtR and MR-4, shown in
Figures 2d and 3. This shows that the RF f (x, y) transformed from Equation (16) is su-
perior to that from Equations (14) and (15). These results indicate that |W| significantly
affect the efficiency of the reduction method and that proving the theorems in Section 2.2
is important.

Forth, we compare different transformations Equations (20)–(22), (30) and (34) in
Section 3.2. As shown in Figure 2c and Table 5, SR-2 performs best among SR-1 and SR-3
in energy, PSNR and calculation time. The visual results in Figure 3 also show that SR-2
outperforms SR-1 and SR-3, which demonstrates that Equation (21) is more preferable
than Equations (20) and (22). Similarly, MR-1 outperforms SqrtR in energy, PSNR and
calculation time; MR-2 and MR-3 outperform MR-4 and MR-5, respectively, in energy and
calculation time. This result demonstrates the significant advantage of Equation (30) over
Equation (34) in energy and calculation time, while for PSNR, Equation (34) is slightly
better than Equation (30).

Moreover, we analyze the stability and convergence of different order reduction
methods. To numerically investigate the stability of order reduction methods, the input
images in the benchmark [1,2] are added with Gaussian noise of different standard de-
viations σ = {15, 20, 25}. The results are shown in Table 5. As it can be seen, different
order reduction methods show almost the same hierarchy of denoising performances for
σ = {15, 20, 25}, which demonstrates that the order reduction methods exhibit a very ro-
bust response against the standard deviation changes. In Figure 4, to show the convergence
of different order reduction methods, we plot the energy changes obtained by different
order reduction methods for all images in the benchmark [1,2]. The experimental results
show that all order reduction methods converge for all images in the benchmark [1,2].
Among these methods, the curves of LogR-1, SqrtR and SR-1 are not smooth enough,
indicating that they are more susceptible to the influence of fusion move [1,2], which is a
standard technique that converts Markov random field with any multi-labels into a binary
Markov random field. Moreover, most of the proposed order reduction methods (GR-1,
GR-2, GR-3, SR-2, SR-3, SR-4, SR-5, SR-6, MR-1, MR-2, MR-3, MR-4 and MR-5) converge
smoothly to their respective energies, which illustrates the superiority of the proposed
design framework.
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(a) HOCR Equation (7) (b) LogN-1 Equation (8) (c) LogN-2 Equation (9) (d) LinR Equation (10)

(e) SqrtR Equation (11) (f) GR-1 Equation (14) (g) GR-2 Equation (15) (h) GR-3 Equation (16)

(i) SR-1 Equation (23) (j) SR-2 Equation (24) (k) SR-3 Equation (25) (l) SR-4 Equation (26)

(m) SR-5 Equation (27) (n) SR-6 Equation (28) (o) MR-1 Equation (31) (p) MR-2 Equation (32)

(q) MR-3 Equation (33) (r) MR-4 Equation (36) (s) MR-5 Equation (37)

Figure 4. Energy with iterations achieved by different order reduction methods. In each subplot,
every gray curve indicates the energy of one image in the benchmark [1,2], and the red curve indicates
the average energy of all images in the benchmark [1,2].
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Finally, we summarize two important conclusions that are helpful for designing
effective reduction methods. First, the fewer the auxiliary variables y in f (x, y), the better
the experimental performance. For example, as shown in Figure 2 and Table 5, LinR, LogR-
2 and MR-3 with the least y in f (x, y) have excellent performance. Second, the smaller
coefficients in f (x, y) are also beneficial to the experimental performance, especially the
calculation time. For example, MR-3 has the fastest calculation time since it has the fewest
coefficients y in f (x, y).

6. Conclusions

In this paper, we propose a novel framework that significantly reduces the design
difficulty for order reduction methods. The framework generalizes previous order reduc-
tion methods and proposes a novel GRF, which is then transformed into more RFs. The
experimental results validate the superiority of the proposed design framework. There are
several interesting directions for future work. First, although the proposed order reduction
methods are able to reduce HoMRF with any order, minimizing the RMRF reduced from
HoMRF would fail when the order of HoMRF is particularly high. Therefore, the efficiency
of order reduction methods is the priority for future research. Second, there is a few of
applications for order reduction methods. We plan to introduce the order reduction method
into more fields.
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