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Abstract: The recent link discovered between generalized Legendre transforms and non-dually flat
statistical manifolds suggests a fundamental reason behind the ubiquity of Rényi’s divergence and
entropy in a wide range of physical phenomena. However, these early findings still provide little
intuition on the nature of this relationship and its implications for physical systems. Here we shed
new light on the Legendre transform by revealing the consequences of its deformation via symplectic
geometry and complexification. These findings reveal a novel common framework that leads to
a principled and unified understanding of physical systems that are not well-described by classic
information-theoretic quantities.

Keywords: information theory; entropy measures; information geometry

1. Introduction

The Legendre transform [1] plays a key—albeit perhaps not always transparent—role
in many areas of mathematical physics. Specifically, it allows for the identification of
dual coordinates and potentials that yield theories in terms of more convenient variables,
being instrumental in diverse areas in physics ranging from relativistic field theory to
condensed matter physics. Applications of the transform have their roots in classical
physics—in analytical mechanics serving as a link between its Lagrangian and Hamiltonian
formulations, and in thermodynamics bridging intensive and extensive variables. These
notions have led to more general frameworks which, in turn, gave rise to the development
of symplectic topology [2].

Far from being a relic, the Legendre transform still plays an important role in con-
temporary physics. It plays an important role in classical field theory, where the index of
pairs of components becomes continuous. It is also used in quantum field theory, where it
relates the generator of connected Green functions to the quantum effective action, i.e., the
generator of one-particle irreducible Green functions. Furthermore, the relevance of the
Legendre transform has lead to generalizations in the context of perturbative quantum field
theories [3,4]. Overall, the transform continues to be at the core of important developments
in current research.

The Legendre transform also plays a fundamental role in information geometry,
where it mediates the relationship between primal and dual coordinates within the non-
Riemannian geometry induced by dually flat statistical manifolds [5]. This duality gives
rise to relationships of orthogonality in these geometries, corresponding to alternative
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representations of physical systems based on control parameters or expectation values [6].
Interestingly, the generalized Legendre transform naturally arises in curved (i.e., non-
Euclidean) statistical manifolds [7,8], which establishes a rigorous and highly non-trivial
link with Rényi’s divergence and entropy [9–11]. These recent findings suggest the existence
of a fundamental reason that could explain why Rényi entropy and divergence naturally
appear in a range of physical phenomena of interest. In effect, recent applications of Rényi
measures to physics includes quantum systems [12,13], strongly coupled or entangled sys-
tems [14–16], phase transitions [12,17,18], and multifractal thermodynamics [19,20], among
others. However, these early findings on the link between the generalized Legendre trans-
forms and curved geometries still provide little intuition on the nature of this relationship
and its meaning and implications for physical systems in general.

The goal of this article is to shed new light on the generalized Legendre transform by
investigating its geometric implications. For this purpose, we characterize deformations in
the Legendre transform and relate them with generalizations of the Bregman divergence,
which are naturally associated with curved statistical manifolds. By leveraging these tools,
our contribution focuses on two domains: geometrical aspects related to phase-space flow
and manifold complexification. Our results show how the symplectic structure induced
by the deformed Legendre transforms leads to a modification of what is understood as
a ‘canonical pair,’ which in turn illuminates the nature of the corresponding maximum
entropy distributions. Furthermore, our results bring new insights to the relationship
between the Kullback–Leibler divergence (related to the Shannon entropy), α-divergence
(related to Tsallis’ entropy), and the Rényi divergence via manifold complexification and
Kähler manifolds. The complex geometry yields new conditions on the possible values of
the manifold curvature, which are closely related to holomorphic polarization. Additionally,
we report on the thermodynamic aspects related to the deformed Legendre transform in
Ref. [21]. Taken together, these results lead to a larger, unified picture that extends standard
geometric and thermodynamic relationships associated with classic information-theoretic
quantities such as Shannon’s entropy.

The rest of the paper is structured as follows. First, Section 2 provides a brief overview
on the standard interpretation of the Legendre transform in mathematical physics. Then,
Section 3 explores how the transform naturally arises in information geometry and intro-
duces the intimate relationship that exists between a generalized Legendre transform and
the curvature of statistical manifolds. Building on these foundations, Section 4 investigates
the consequences of generalized Legendre transforms on the symplectic structure and flows
and on the complexification of statistical manifolds. Finally, Section 5 summarizes our
mains conclusions.

2. Preliminaries

The Legendre transform is, at its core, an exploration of the properties of convex
functions. Despite its importance, the transform is unfortunately typically introduced
as an obscure algebraic ‘trick’, with no explanation of why it plays such an important
role in many different areas of physics. For completeness, this section presents a basic
standard interpretation of the Legendre transform in mathematical physics, which is then
complemented by a deeper view based on information geometry in Section 3.

The most straightforward interpretation of the Legendre transform comes from the
geometry of graphs of functions [22]. In this view, the Legendre transform of a convex
function F is another function G that keeps track of the (negative) height at which the
tangent to F touches the y-axis, which is usually reparametrized in terms of the slope of F.
This view is easy to grasp, but unfortunately makes the construction seem arbitrary while
failing to explain why this procedure is so fundamental.

A more principled view comes from an algebraic perspective as follows. If F(x) with
x = (x1, . . . , xn) ∈ Rn is a strictly convex function (i.e., its Hessian is positive-definite),
then the partial derivative yi(x) := ∂F/∂xi(x) is a monotonous function of x1, . . . , xn for
i = 1 . . . n. This means that there exists an isomorphism between x and y = (y1, . . . , yn);
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said differently, there exist mappings yi(x) and xk(y) that transform one into the other.
Using these mappings, it would be natural to consider the possibility of reparametrizing
F in terms of y instead of x. However, instead of focusing on such reparametrization, an
elegant move is to consider instead the function G(y) = x · y− F

(
x(y), y

)
. Interestingly,

the resulting pair F(x) and G(y) exhibit the following symmetry:

∂G
∂yk

= xk,
∂F
∂xi

= yi. (1)

Useful properties of this transformation are that it preserves convexity (i.e., the transform
of a convex function results into another convex function) and it is an ‘involution’, that
is, the Legendre transform of the transform of a convex function is the function itself.
The symmetry of these relationships is graphically represented in the right-hand side of
Figure 1.

Figure 1. A graphical representation of the Legendre transform and its deformations. (Left:) While
the standard Legendre transform acts on concave duals, the deformed one acts between C-concave
functions. Each transform brings elements of one space to the other. Please note that while Section 2
presents the classical view of Legendre transforms acting over convex functions, the rest of this
work follows Ref. [9] in focusing on concave functions. (Right:) The symmetry that governs the
algebraic relationships between convex dual functions and dual coordinates, which is mediated by
the Legendre derivative operator DL, which differs from the standard Euclidean gradient when the
transform is deformed.

Overall, one can think of the Legendre transform as acting on two inputs, x and F,
and providing two outputs: the dual variable y and the convex conjugate G (similarly, the
Fourier transform of a time series F(t) can be thought of as giving two outputs too: the spec-
trum of amplitudes G(s) (analogous to the conjugate function) and the frequency domain s
itself (analogous to the dual variable)). Pairs of convex functions {F, G} satisfying Equa-
tion (1) are known as convex duals, with {x, y} being known as dual variables. Additionally,
convex functions and their duals satisfy the Fenchel inequality F(x) + G(y) ≥ x · y. The
multiple useful properties of Legendre duals are leveraged in various areas of mathematics
and engineering, particularly in convex optimization [23].

A more general definition of the Legendre transform of a convex function is given by

G(y) = sup
x
{C(x, y)− F(x)}. (2)

This definition applies even when F is not everywhere differentiable, and recovers the
above procedure for the case where C(x, y) = x · y. For other choices of C, this opens
the door to so-called “deformed” Legendre transforms, which play an important role in
optimal transport theory [24]. Interestingly, dual functions according to these generalized
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Legendre transforms satisfy relationships analogous to Equation (1), but where the role
of the Euclidean gradient is replaced by a ‘Legendre derivative’ operator DL, which is
formally defined in Section 3.4. The goal of this paper is to explore the implications of such
deformations of the Legendre transforms for physical systems.

3. Legendre Transform in Information Geometry

In this section we present the key role of the Legendre transform in statistical manifolds.
For this purpose, Section 3.1 first introduces the necessary background about information
geometry to the unfamiliar reader. Then, Section 3.2 explains how the standard Legendre
transform describes the geometry of dually flat spaces, which are naturally associated with
the Kullback–Leibler divergence and the Shannon entropy. Building on this, Section 3.3
then presents how other divergences lead to more general geometries, and Section 3.4
develops how generalized Legendre transforms are a natural way to build and describe
them. Please note that hereafter we use Einstein’s summation convention for convenience
of the notation.

3.1. The Dual Structure of Statistical Manifolds

Our exposition is focused on statistical manifolds M whose elements are probability
distributions pξ(s), with s ∈ S being the possible events accounted for by the probability
distribution and ξ ∈ O ⊂ Rd with O an open subset of a set of parameter values. The
geometry of such statistical manifolds is determined by two structures: a metric tensor g and
a torsion-free affine connection pair (∇,∇∗) that are dual with respect to g. Intuitively, g
establishes norms and angles between tangent vectors and, in turn, establishes curve length
and the shortest curves. On the other hand, the affine connection establishes covariant
derivatives of vector fields establishing the notion of parallel transportation between
neighboring tangent spaces, which defines what is a straight curve.

Traditional Riemannian geometry is built on the assumption that the shortest and the
straightest curves locally coincide, which is pivotal to the development of general relativity.
This assumption leads to the study of metric-compatible Levi–Civita connections, as its
geodesics are locally distance-minimizing and satisfy ∇ = ∇∗ and are, hence, completely
determined from the metric. However, modern approaches motivated in information
geometry [25] and gravitational theories [26,27] consider more general scenarios, where
connections may not be derivable from the metric. In such geometries, the parallel transport
operator Π : TpM → TqM and its dual Π∗ (the dual transport operator acts on cotangent
vectors and is defined by the condition of guaranteeing gq(ΠV, Π∗W) = gp(V, W) for all
W ∈ TpM and V ∈ T∗p M ) induced by ∇ and ∇∗, respectively might differ. The departure
of ∇ and ∇∗ from self-duality can be shown to be proportional to Chentsov’s tensor,
which allows for a single degree of freedom traditionally denoted by α ∈ R [25]. Put
simply, α captures the degree of asymmetry between short and straight curves, with α = 0
corresponding to metric-compatible connections where ∇ = ∇∗.

An important property of the geometry of a statistical manifold (M , g,∇,∇∗) is its
curvature, which can be of two types: the (Riemann–Christoffel) metric curvature or the
curvature associated to the connection. Both quantities capture the distortion induced by
parallel transport over closed curves, the former with respect to the Levi–Civita connection
and the latter with respect to ∇ and ∇∗. In the sequel, we use the term curvature to
refer exclusively to the latter type. Statistical manifolds with zero curvature (equivalently,
manifolds where it is possible to find a coordinate chart pair under which the connections
and its dual vanish for any point of the manifold) are said to be dually flat.

3.2. Dually Flat Geometry, Bregman Divergences, and the Legendre Transform

The geometry of Riemannian manifolds is typically formulated in terms of a single set
of local coordinates. However, the fact that non-Riemannian manifolds have two dissimilar
affine connections ∇ and ∇∗ makes it more natural to describe their geometry in terms of
two dual coordinates ξ and η [25]. Specifically, while in Riemannian geometry orthogonality
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can be assessed between the different dimensions of a single set of coordinates, in statistical
manifolds it is more fruitful to consider orthogonality between elements of the primal ξ and
dual coordinates η [6,10]. A standard example of dual coordinates in a statistical manifold
is where ξ corresponds to the natural parameters of an exponential family distribution and
η corresponds to the corresponding expectation values. In the sequel, we follow Schouten’s
notation in which upper indices are reserved for dual coordinates, i.e.,

∂i =
∂

∂ξ i and ∂i =
∂

∂ηi
. (3)

Under this notation, ∂i gives rise to a basis for the tangent space TpM , while ∂i is related to
a natural dual basis of the cotangent space T∗p M .

A Riemannian metric is always “locally flat”, i.e., it can be brought down to its
signature (a Kronecker delta) at a given point p ∈M by choosing an appropriate coordinate
chart. It is not guaranteed, however, that such a chart would preserve the delta at a
neighborhood of p; finding a chart that satisfies this property globally is the hallmark of
a flat geometry. Analogously, affine geometries are also locally flat when considering its
dual entry, therefore satisfying g(∂i, ∂j) = δ

j
i for an appropriate pair of primal and dual

coordinate charts {ξ i, ηi} at some point p. In a similar fashion, this property in general only
holds locally; dually flat geometries are characterized by the fact that one can find a pair
of coordinates that satisfies this condition of orthogonality on the whole manifold (under
these coordinate charts, one can show that both the connections and its dual are vanishing,
hence the term dual flatness).

For an orthogonal pair {ξ, η} of a given dually flat manifold, the gradients of the
mappings ξ 7→ η and η 7→ ξ are both symmetric. To confirm this, let us first note that

gij = g(∂iηk∂k, ∂j) = ∂iηkg(∂k, ∂j) = ∂iηkδk
j = ∂iηj,

where the first equality follows from the chain rule of derivatives ∂i = ∂iηk∂k. Then,
using the fact that Riemannian metrics are always symmetric, one can see that ∂iηj =

gij = gji = ∂jηi. A similar derivation shows that gij = ∂iξ j, and hence ∂iξ j = ∂jξ i (note
that gij = ∂iηj and gij = ∂iξ j is consistent with the fact that for orthogonal coordinates
g(∂i, ∂k) = gijgjk = δi

k).
There is an intimate relationship between an orthogonal pair of coordinates in a dually

flat manifold and the Legendre transform. To see this, we first note that the symmetry
of the Jacobian of ξ → η implies the existence of a closed 1-form dω = 0, and this—via
Poincare Lemma—implies in turn the existence of a scalar potential ψ ∈ C∞ that satisfies

ηi = ∂iψ and gij = ∂i∂jψ. (4)

Note that the second condition, combined with the fact that gij is positive-semidefinite,
implies that ψ is convex. By a similar line of reasoning, the symmetry of gi,j induces a dual
convex potential ϕ that satisfies

ξ i = ∂i ϕ and gij = ∂i∂j ϕ. (5)

Furthermore, a direct calculation shows that the dual potentials ψ(ξ1, ..., ξn) and ϕ(η1, ..., ηn)
always satisfy d{ψ + ϕ− ξ iηi} = 0. This implies that, modulo an unimportant constant,
the following relationship holds over any dually flat manifold (Equation (6) holds on any
manifold but only locally; in contrast, dually flat spaces are a special case in which dual
potentials ϕ, ψ that satisfy Equations (4) and (5) can be defined over the whole manifold):

ψ + ϕ− ξ iηi = 0. (6)

Let us now consider the behavior of Equation (6) on dually flat spaces when the
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coordinates and potentials are evaluated at different points of the manifold. For this, let
us denote as ξ(p) and η(q) the coordinates and dual coordinates of p, q ∈M , respectively,
and define the so-called Bregman divergence D as

D(p||q) := ϕ
(
η(p)

)
+ ψ

(
ξ(q)

)
− ξ i(q)ηi(p). (7)

Then, the differential of the mapping q 7→ D(p0||q) is

d
{
D(p0, q)

}
=
(

∂iψ
(
ξ(q)

)
− ηi(p0)

)
dξ i(q)

=
(
ηi(q)− ηi(p0)

)
dξ i(q). (8)

From this, and considering that D by definition is a difference between a linear and two
convex functions, one can verify that this mapping attains its unique minimum when
q = p0. Interestingly, at this minimal value one recovers Equation (6), which implies that
D = 0. This shows that Bregman divergences are non-negative.

These results suggest an alternative definition for ϕ and ψ, conceiving them as a
maximum of the following maps:

ϕ(η(p)) = max
q∈M

{
ξ i(q)ηi(p)− ψ(ξ(q))

}
, (9)

ψ(ξ(p)) = max
q∈M

{
ηi(q)ξ i(p)− ϕ(η(q))

}
. (10)

This reveals that the orthogonal coordinate pair is always dual in the Legendre sense, or
equivalently, that dual flatness implies that the potentials are convex duals. This property
generalizes the well-known Legendre duality between the natural and expectation parame-
ters of an exponential family [28], showing that the same holds of any coordinate pair as
long as they satisfy local flatness.

3.3. Divergences as a General Tool to Establish Geometries

This subsection explains how divergences, such as the one introduced in Equation (7),
can be used as a convenient tool to establish a geometry on a statistical manifold ([29],
Section 4). Importantly, this approach does not lack generality, as any geometry can be
expressed from an appropriate divergence [30–32].

Divergences are a general class of functions that assess the dissimilarity of their
arguments. More specifically, a divergence is a smooth, distance-like function D[x; x′] that
satisfies D[x; x′] ≥ 0 and vanishes only when x = x′. Divergences are more general—hence
weaker—notions than distances, as they do not need to be symmetric in their arguments
and may not respect the triangle inequality. Of the various types of divergences explored
in the literature [33], two are particularly important: f -divergences (which are monotonic
with respect to coarse-grainings of the domain of events S [34]) and Bregman divergences
(studied in the previous section).

Let us show how divergences can be used to establish metrics and connections over
manifolds. For this, let us use the shorthand notation D[ξ; ξ ′] := D(p||q) when expressing
D in terms of coordinates ξ = ξ(p) and ξ ′ = ξ(q). Then, the Riemannian metric of the
manifold is recovered from the second-order expansion of the divergence as follows:

gij(ξ) =
〈
∂i, ∂j

〉
= −∂i,j′D[ξ; ξ ′]

∣∣
ξ=ξ ′ , (11)

which is positive-definite due to the non-negativity of D. This construction leads to
the Fisher’s metric, which is the unique metric that emerges from a broad class of di-
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vergences ([29], Th. 5), with this being closely related with Chentsov’s theorem [35–38].
Similarly, connections emerge at the third-order expansion of the divergence as follows:

Γijk(ξ) =
〈
∇∂i

∂j, ∂k
〉
= − ∂i,j∂k′D[ξ; ξ ′]

∣∣
ξ=ξ ′

, (12a)

Γ∗ijk(ξ) =
〈
∇∗∂i

∂j, ∂k

〉
= −∂k∂i′ ,j′D[ξ; ξ ′]

∣∣∣
ξ=ξ ′

. (12b)

In summary, Fisher’s metric is insensible the choice of divergence but the resulting connec-
tions are, and therefore the effects of a particular D manifest only at the third order.

Bregman divergences always give rise to flat geometries, as for them, ∂i,j∂k′D[ξ; ξ ′] =
∂k∂i′ ,j′D[ξ; ξ ′] = 0, and therefore other types of divergences are needed in order to establish
curved non-Riemannian geometries. As mentioned in Section 3.1, the deviation of a given
connection ∇ from its corresponding metric-compatible (i.e., Levi–Civita) counterpart can
be measured by αT, where T corresponds to the invariant Amari–Chensov tensor [39,40] and
α ∈ R is a free parameter. The invariance of T implies that the value of α entirely determines
the connection, and the corresponding geometry can be obtained from a divergence of the
form [10]

Dα(p||q) = 4
1− α2

∫
S

(
1− p

1−α
2 (s)q

1+α
2 (s)

)
dµ(s) , (13)

which is known as α-divergence. As important particular cases, if α = 0 then Dα becomes
the square of Hellinger’s distance, and if α = ±1 then it gives the well-known Kullback–
Leibler divergence. Furthermore, it can be shown that the Kullback–Leibler divergence is a
Bregman divergence, which in turn implies that for those cases the resulting geometry is
flat. This illustrates the fact that being Riemannian (i.e., α = 0) and Euclidean (α = ±1) are
independent features of a geometry.

We finish this subsection by noting that multiple divergences can give rise to the same
geometry. A one-to-one relationship between divergence and geometries is obtained when
considering conformal-projective equivalent classes of divergences, which are related both
via conformal and projective transformations. For a more detailed explanation, we refer
the interested reader to Ref. [10], Sec. 2-D.

3.4. Generalized Legendre Transforms as a Natural Way to Describe Curved Manifolds

Sections 3.2 and 3.3 clarified the intimate relationship that exists between dually flat
manifolds, Bregman divergences, and the Legendre transform. Here we explain how these
relationships are altered in more complex geometries.

In curved geometries it is impossible to construct dual potentials that satisfy Equation (6)
on the whole manifold. This impossibility is a symptom of the fact that the divergence
that gives rise to this geometry, e.g., the α-divergence given in Equation (13), is not a
Bregman divergence, but only an f -divergence [34]. To better understand the nature of the
α-divergence, let us consider in detail its relationship with Bregman divergences. Bregman
divergences, as given in Equation (7), can also be expressed as

DΦ[ξ; ξ ′] = Φ(ξ ′)−Φ(ξ)−DΦ(ξ) · (ξ ′ − ξ). (14)

Hence, DΦ[ξ; ξ ′] measures how convex the function Φ is at ξ in the direction of ξ ′ − ξ (this
also explains the asymmetry that exists in the arguments of a Bregman divergence) and
exploits the fact that a first-order approximation of a convex function always underestimates
its value (i.e., that Φ(ξ ′) ≥ Φ(ξ) + D(ξ) · (ξ ′ − ξ), where D is the Euclidean gradient).
Interestingly, such a first-order approximation can also be built on an intermediate point
between ξ and ξ ′, which leads to

1− α

2
Φ(ξ) +

1 + α

2
Φ(ξ ′) ≥ Φ(ξα), (15)

where ξα = 1−α
2 ξ + 1+α

2 ξ ′, with α ∈ (−1, 1) being a one-dimensional parameter that
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regulates how close xα is to ξ and ξ ′. This inequality leads to a family of divergences [41]
indexed by α, given by

D(α)
Φ [ξ; ξ ′] :=

4
1− α2

[
1− α

2
Φ(ξ) +

1 + α

2
Φ(ξ ′)−Φ(ξα)

]
, (16)

where the factor 4/(1 − α2) is introduced so that the limit limα→1D(α)

Φ = DΦ gives a
Bregman divergence. In particular, if Φ(ξ) = ∑i eξi then D(α)

Φ becomes the α-divergence.
Importantly, divergences of the form of Equation (16) with α 6= ±1 are not Bregman
divergences (as they cannot be expressed in terms of convex conjugates as in Equation (7)),
and hence they do not lead to flat geometries (see Section 3.3).

Fortunately, recent results suggest a way to express non-Bregman divergences in terms
of generalized Legendre transforms [9]. The generalized Legendre transform is based on
a link function (Link functions are typically used as cost functions driving optimization
problems in the literature focused on optimal transport [24]) corresponds to a smooth
function C : M ×M → R, that connects generalized potentials ϕ and ψ via the following
relationship:

ψ(ξ) + ϕ(η)− C(ξ, η) = 0, (17)

which holds for all (ξ, η) pairs belonging to the C-superdifferential of ψ. In this manner,
η can be interpreted as the C-supergradient of ψ at ξ [42]. Put differently, for a given
link function C, a pair of generalized potentials are functions ϕ, ψ, which are related via a
generalized Fenchel–Lengendre C-transform as follows:

ϕ
(
ξ(p)

)
= inf

q∈M

{
ψ
(
η(q)

)
− C

(
ξ(p), η(q)

)}
, (18a)

ψ
(
η(q)

)
= inf

p∈M

{
ϕ
(
ξ(p)

)
− C

(
ξ(p), η(q)

)}
. (18b)

Note that these equations use a different sign than Equation (2), which leads to the con-
sideration of concave instead of convex functions. Arguments for adopting this choice are
discussed in Ref. [9].

Following the rationale that led to Equation (7), for a given function C and C-conjugate
potentials ϕ, ψ, one can define a generalized Bregman divergence (This divergence is known as
a C-divergence, recently introduced in the context of optimal transport [42]), where C refers
to the corresponding cost function. Here we use another term to stress its relationship with
key geometric notions, given by

D(p||q) = C
(
ξ(p), η(q)

)
− ϕ

(
ξ(p)

)
− ψ

(
η(q)

)
. (19)

Equations (18a) and (18b) imply that D(p||q) ≥ 0, with equality if and only if p = q.
Interestingly, while the metric induced by generalized Bregman divergences is the Fisher
metric, Equations (12a) and (12b) imply that the connections are given by

Γijk(ξ) = − ∂i,j∂k′C
(
ξ; η(ξ ′)

)∣∣
ξ=ξ ′

, (20a)

Γ∗ijk(ξ) = −∂k∂i′ ,j′C
(
ξ; η(ξ ′)

)∣∣∣
ξ=ξ ′

. (20b)

If C(ξ, η) = ξ · η then Γijk(ξ) = Γ∗ijk(ξ) = 0, and hence curved geometries in this
construction only arise from non-trivial link functions, i.e., from deformations of the
Legendre transform.

For the dual geometries that arise from the α-divergence, one can identify the corre-
sponding link function following a two-step procedure. First, one applies a monotonous
transformation that turns the α-divergence into the Rényi divergence [43] of order γ (Note
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that we follow Ref. [44] in adopting a shifted indexing, thereby referring to γ = n− 1 as the
order of Rényi’s entropy, with n ≥ 0 corresponding to the order in the standard definition):

Dγ(p||q) = 1
γ

log
∫

S
pγ+1(s)q−γ(s)dµ(s), (21)

related to the α parameter of divergence (13) as α = −1 + 2γ and leveraging the fact that
both divergences generate the same geometry, being part of the same conformal-projective
equivalent class ([10], Sec. 2-D). Note that when γ → 0, C tends to ξ · η, and the Rényi
divergence tends to the Kullback–Leibler divergence. As a second step, one uses the fact
that the Rényi divergence can be expressed in terms of generalized convex conjugates ([9],
Th. 13), and hence it can be recovered as a generalized Bregman divergence as Equation (19),
where the link function is given by

C(ξ, η) =
1
γ

log(1 + γξkηk), (22)

and the corresponding generalized potential is

ϕγ(ξ) = log
∫

S
(1 + γξ · h(s))−

1
γ dµ(s). (23)

Furthermore, it has been shown that this non-trivial logarithmic link function—or, equiv-
alently, the Rényi divergence—gives rise to dual geometries of constant curvature [9].
Therefore, this divergence constitutes a natural first step in the exploration of statistical
manifolds of more complex geometry.

To conclude, let us introduce the notion of Legendre derivative (This corresponds to the
C-gradient in optimal transport theory (see, e.g., [9])). For given generalized potentials ϕ
and ψ, the corresponding Legendre derivative is the operator DL that satisfies

DL ϕ(ξ) = η and DLψ(η) = ξ. (24)

The functional form for DL is determined by the corresponding link function. For example,
for the case of C(ξ, η) = ξ · η, Equations (4) and (5) show that DL is given by the Euclidean
gradient. In contrast, for a logarithmic link function as in Equation (22), one can find that
the corresponding (non-Euclidean) Legendre derivative acting on a smooth function ϕ is
given by

D(γ)
L ϕ =

1
1− γξ ·Dϕ

Dϕ, (25)

with D denoting the Euclidean gradient.

4. Symplectic and Kähler Structures in Information Geometry

This section studies the realization of symplectic structures in statistical manifolds.
This naturally leads towards considering the complexification of statistical manifolds,
which enables a new avenue to develop insights about the Legendre transform. Complex
manifolds are ‘bigger’ bundles that possess a richer structure benefited by greater symmetry.
These complex structures are quintessential to physics, being related to the quantization
of the spin and coherent states [45], entanglement [46], string theory [47], and Kähler
oscillators [48].

The reasoning pursued here is that by recasting manifolds as complex structures with a
higher degree of symmetry, one can obtain a more detailed understanding of their geometry
and their relationship with the deformed Legendre transform. To develop this idea, we
first establish a parallel between statistical manifolds and phase spaces. In doing this, it is
important to note that while in statistical manifolds the dual coordinates ξ and η usually
refer to the same point, in phase spaces they typically refer to canonical pairs (e.g., position
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and momentum) and hence correspond to different dimensions. This naturally leads to the
consideration of product manifolds of two times the dimensionality of the original one.

4.1. Establishing Dynamics on Phase Space

In analytical mechanics, the Legendre transform enables the derivation of the Hamil-
tonian formalism from the Lagrangian, a smooth function of n generalized coordinates q,
velocity q̇, and time t. By doing this, one trades n second-order equations of motion for 2n
first-order differential equations of the form

∂H
∂pj

= q̇j ,
∂H
∂qk = − ṗk . (26)

Notice that the transformation (q, p) 7→ (p,−q) preserves the form of the above equations.
This symmetry is a reflection of a rich mathematical structure that provides the foundations
of classical mechanics, which we introduce in the rest of this subsection.

We start by reviewing the standard method to establish dynamics over a manifold
based on the Hamiltonian formulation of classical mechanics, as described, for instance,
in Refs. [2,49,50]. For this, let us consider a phase space M that describes the possible
configurations of a system of interest. More specifically, each point in M has the form
z = (q1, ..., qn, p1, ..., pn), with (q1, ..., qn) ∈ Rn corresponding to a configuration manifold
Q, and (p1, ..., pn) ∈ Rn corresponding to its generalized conjugate momenta. Dynamics
over the phase space M are established by a Hamiltonian H : M → R via the following
equations of motion:

ż = XH , (27)

where the Hamiltonian vector field is given by

XH = JD(0)H(z) , with J :=
(

0 1

−1 0

)
(28)

and D denotes the standard gradient (see Equation (25)). In this way, dynamics are estab-
lished flowing the integral curves of XH . At any point z ∈M there is a trajectory governed
by the dynamics induced by the Hamiltonian, which is unique due to the linearity of the
equations involved.

Above, the role of Equation (28)—which turns the Hamiltonian into a vector field—can
be re-framed in a more principled manner via symplectic geometry [51] as follows. A
symplectic form ω is a 2-form on M that is closed (dω = 0) and non-degenerate (∀v 6=
0 ∃u : ω(v, u) 6= 0). On a symplectic manifold (i.e., a manifold equipped with a symplectic
form), the flow of the Hamiltonian H can be defined as the vector field XH that satisfies the
following relationship:

−dH = ιXH ω , (29)

where ιXω = ω(X, ·) is the 1-form that results from the interior contraction of ω. Above,
dH is the differential of H and the sign corresponds to a convention in the definition of
the symplectic form. The fact that ω is non-degenerate guarantees that one can always
find a unique XH that satisfies Equation (29). Additionally, the closure of the symplectic
form locally implies—by the Poincare Lemma—the existence of a tautological 1-form θ
(also known as the canonical 1-form or symplectic potential), which satisfies the condition
ω = dθ. This coordinate-invariant expression for ω emphasizes its topological nature.

Symplectic manifolds belong to equivalent classes established via symplectomorphism
(i.e., diffeomorphism, which preserves the symplectic form), which are equivalent to
canonical transformation in the context of analytical mechanics. The symplectic form
allows us to determine a vector field from a smooth function up to diffeomorphisms that
preserve the symplectic form, i.e., LXH ω = 0. Furthermore, the geometry of the phase
space gives an account of important properties of the underlying system. Indeed, while
an unconstrained system may be described by a phase space of the form M = R2n, more
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complicated systems are usually reflected by more convoluted geometries. As a simple
example, a pendulum is described as a phase space of the form of a cylinder, which has a flat
internal geometry but a non-trivial topology. The next subsections explore the implications
of phase spaces with non-zero curvature.

4.2. Symplectic Structure under the Deformed Legendre Transform

Section 3.3 shows that, from an information-geometric perspective, divergences can
be used to determine the metric and connections of a manifold. In this subsection, we
show how divergences also generate a symplectic 2-form, from which much of the insights
from Hamiltonian mechanics can be inherited. This, in turn, allows us to study probability
distributions in phase space and discuss the flow induced by divergences. Our results
will show that the symplectic 2-form induced by the divergence on the phase space and
the induced Hamiltonian dynamics are different from the ones induced on the product
manifold when the geometry is curved—or equivalently, when the Legendre transform has
been deformed.

To start, let us introduce some terminology. We will contrast structures on the cotan-
gent bundle of statistical manifolds with structures in the product manifold M ×M
made of pairs of the form (p, q). The product manifold is often parameterized using dual
coordinates as (ξ, η) :=

(
ξ(p), η(q)

)
(as a consequence, in this section ξ and η refer to

different points in the manifold, unless it is explicitly specified to be otherwise). In ad-
dition, let us use the projection operators over the left and right elements, πl(p, q) = p
and πr(p, q) = q, to define the sub-manifolds Mq := π−1

l (p, q) = M × {q} ' M and
Mp := π−1

r (p, q) = {p} ×M 'M . The diagonal of the product manifold will be denoted
as ∆ ⊂M ×M , being made by pairs of the form (p, p).

Divergences are smooth functions mapping M ×M into R, and we are interested in
the geometrical structure that such mappings induce. To investigate this, let us consider the
canonical symplectic form ωp on T∗Mp, which can be expressed in terms of a local chart
(U, ξk, νk) as

ωp := dξ j ∧ dνj , (30)

with νk being the conjugate coordinate to ξk. Note that, thanks to Darboux’s theorem [2],
such canonical pairs are guaranteed to always exist locally. Let us then recast the map
presented in Equation (8) as the symplectomorphism LD : M ×M → T∗Mp given by

LD : (ξ, η) 7→ (ξ, ν) = (ξ, ∂iD(ξ, η)dξ i) . (31)

As shown in [52,53], this map induces—via the pull-back L∗Dωp = ωD—the following
symplectic form on M ×M :

L∗Dωp = L∗D [dξ i ∧ dνi] (32a)

= dξ i ∧ d{∂iD(ξ, η)} (32b)

= dξ i ∧ (∂i,kD(ξ, η)dξ + ∂ k′
i D(ξ, η)dηk) (32c)

= ∂k′
iD(ξ, η)dξ i ∧ dηk , (32d)

where the vanishing of the first expression (32c) is a result of the commutativity of the
second derivatives of the divergence. Note that ∂k′

iD(ξ, η) reduces to the Fisher metric
when evaluated on ∆ (i.e., when ξ and η are evaluated at the same element p), but is different
otherwise. Importantly, the same symplectic form on M ×M is obtained by pulling back
the canonical symplectic form ωq := dηk ∧ dλk on T∗Mq (where (η, λ) form a canonical
pair) in an analogous fashion, using here the symplectomorphism RD : M ×M → T∗Mq
given by

RD : (ξ, η) 7→ (η, λ) = (η, ∂kD(ξ, η)dηk) . (33)

Now that the symplectic form given by Equation (32d) has been identified as the
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natural one on M ×M , our next step is to investigate how is it influenced by the manifold’s
curvature. For this, note first that if the divergence D is a generalized Bregman divergence,
then its associated symplectic form depends solely on the link function. In effect, a direct
calculation shows that for this case

ωD = ∂k
iC(ξ, η)dξ i ∧ dηk . (34)

This clarifies how, although identical on the cotangent bundle T∗M , the symplectic struc-
ture induced by different divergences may differ on M ×M .

Rényi’s Symplectic 2-Form and Flow

While the dually flat geometry established by Bregman divergences leads to a sym-
plectic form given by ωD = dξ i ∧ dηi, for γ-curved geometry the Rényi divergence induces
the following symplectic form:

ωD =
1

1 + γξ iηi

(
δ k

l −
γξkηl

1 + γξ iηi

)
dηk ∧ dξ l . (35)

The coefficients of this symplectic form coincide with the metric tensor in Ref. [9] (Proposition 4),
this time on the product manifold M ×M .

The symplectic form exhibited in Equation (35) is closed, as can be confirmed by
a direct calculation leading to dωD = 0. This, in turn, implies the local existence of
a corresponding tautological 1-form via Poincare Lemma, as explained in the previous
section. Similar to the derivation that led to Equation (35), we define the canonical 1-form
θp = νidξ i on T∗Mp and evaluate its pull-back onto M ×M , yielding

θ =
1
2

ηi dξ i − ξ i dηi

1 + γξkηk
. (36)

This expression, hence, characterizes the 1-form emerging from connections that describe
the projective-flat geometry induced by Rényi’s divergence.

As a last step, let us leverage the symplectic form ωD to evaluate the action of the
smooth functionDγ on the product manifold M ×M . This function is of particular interest
as it generates integral curves of constant D, and hence the induced flow is closed within
the diagonal ∆ ' M . For this purpose, let us denote as Xγ = Xi

γ∂ξ i + Xγj∂ηj the vector
field generated by the observable Dγ and the corresponding symplectic form. We are
interested in the vector fields that preserve the symplectic form ωD , i.e., the vector field Xγ

that satisfies LXγ ωD = 0, where LXγ ωD denotes the Lie derivative of ωD in the direction
of Xγ. Then, using Cartan’s magic formula one can find that

LXγ ωD = ιXγ dωD + d(ιXγ ωD) = d(ιXγ ωD), (37)

where the last equality is a consequence of the fact that ωD is closed. Therefore, LXγ ωD
vanishes only if Xγ is Hamiltonian (29), i.e., if XH satisfies ιXγ ωD + dDγ = 0. One can then
determine the Rényi vector field via explicit evaluation of the interior product as follows:

−dDγ = (ιXγ g l
k dηl) ∧ dξk − g l

k dηl ∧ (ιXγ dξk) (38a)

= g l
k (Xγldξk − Xk

γdηl), (38b)

which results in a Hamiltonian flow generated by Rényi’s divergences of the form

Xγk = −g a
k ∂ξaDγ , X k

γ = gk
a∂ηaDγ . (39)
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Then, the corresponding Rényi vector field can be found to be equal to

Xγ = gk
a∂ηaDγ∂ξk − g a

k ∂ξaDγ∂ηk (40a)

= [η(p)−D(γ)
L ψ(q)]k∂ξk

− [ξ(p)−D(γ)
L ϕ(q)]k∂ηk , (40b)

where D(γ)
L is the Legendre derivative operator introduced in Section 3.4.

As mentioned above, this Rényi flow is closed within the diagonal ∆. Moreover, the
above result implies that the flows on the diagonal follow the geodesic with respect to
the primal and dual connections, which naturally satisfy Equation (24). In this way, we
gain a new understanding of what deforming the exponential family implies. The squared
brackets in Equation (40) imply that the set of points flowing along the integral curves at Xγ

correspond to enforcing the dual coordinate pair as the Legendre derivative of the potential
at the diagonal. Hence, the Bregman limit (i.e., γ→ 0) leads to the dual parameterization
of exponential families from regular Legendre transformation, whereas finite γ 6= 1 leads
to the deformed family of distributions obtained from Rényi’s divergence ([9], Section 4),
which would describe the sets of points flowing along the integral curves at Xγ and external
points diverging away from it.

4.3. Complexification of Statistical Manifolds

This section discusses some fundamental aspects of complex geometry, followed by
the complexification of statistical manifolds. Then, the next section focuses on the complex
structure induced by the Rényi divergence. For a more extensive treatment of the properties
of complex manifolds, we refer the reader to Refs. [54–56].

A complex manifold can be depicted as a topological space that locally looks like
Cn. One way to try building a complex manifold would be to consider a 2n-dimensional
real manifold, and then arrange a set of coordinates {xk

c} into complex combinations such
as x2k−1

c + ix2k
c . Unfortunately, such an arrangement is not only arbitrary, but also, more

importantly, it is coordinate-dependent. In effect, additional structure on the manifold is
required for it to be ‘complexifiable’.

One way to build a complex manifold is via a tensor field J b
a of real components

satisfying J2 = −1, which provides a linear endomorphism J : TpM → TpM . Notably, the
diagonalization of such a tensor cannot be accomplished in a vector space of real values;
hence, the coefficients of vectors in TpM must be allowed to be complex-valued (i.e.,
TC

p M = TpM ⊗C). By arranging 2n-local coordinates into complex coordinates xk + iyk,
e.g., via xk = x2k−1

c , yk = x2k
c , one can express J in complex coordinates as

J = idza ⊗ ∂

∂za − idzā ⊗ ∂

∂zā . (41)

Hereon, a and ā are indices within {1, . . . , n}, with the bar being used to distinguish between
holomorphic and anti-holomorphic components. The manifold M together with the tensor
J are known as an “almost complex structure”. With the aid of J, such complexified TpM
can now be decomposed into holomorphic and anti-holomorphic parts via projection
operators given by [P(±)] b

a = 1
2 (δ

b
a ± J b

a ). These projection operators can be used to
decompose any k-form into (p, q)-forms with p + q = k.

As suggested above, every complex manifold is also a real manifold but the converse
does not always hold. A necessary and sufficient condition on J to allow a real manifold to
be a complex one is given by Nab

c = 0, where Nab
c stands for the Nijenhuis tensor given

by (note that the connections appearing from the covariant derivatives cancel out, which is
why it is often found written in terms of partial derivatives in spite of being a tensor)

Nab
c := 2

(
Ja

d∇[d Jb]
c − Jc

d∇[d Ja]
c
)

, (42)
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with squared brackets denoting the antisymmetrization of indices.
Up to this point, the complex manifold (M , J) has not been equipped with a metric;

in fact, a J-compatible metric may not exist (e.g., in Hopf manifolds). When such a metric
does exist, this imposes the following compatibility conditions:

gµν J µ
ρ J ν

σ = gρσ and ∇µ J ν
σ = 0. (43)

The first condition above implies that the pure holomorphic and anti-holomorphic com-
ponents of the metric vanish; hence, ds2 = gµνdxµ ⊗ dxν = gab̄dza ⊗ dz̄ā is hermitian. The
second condition enforces the vanishing of Nijenhuis tensor (42), not only guaranteeing
complexification, but also implying that the Kähler 2-form given by

k =
1
2

gµν J µ
ρ dxρ ∧ dxν = igab̄dza ∧ dz̄b̄ (44)

is closed, which serves as the manifold’s symplectic form. In components, Equation (44)
means that ∂agbc̄ = ∂bgac̄ and ∂b̄gac̄ = ∂c̄gab̄. Analogously as in (5), these expressions can
be locally integrated revealing the metric

gab̄ = ∂a∂b̄K(z, z̄), (45)

with K being a real-valued smooth function known as the Kähler potential. This potential
is not unique, as it is only determined up to the addition of a holomorphic and an anti-
holomorphic function:

K(z, z̄)→ K(z, z̄) + U(z) + Ū(z̄) . (46)

Furthermore,Kmay not be globally defined (if it were, the ω form would be exact and so its
manifold’s volume form implies the vanishing of its integral, violating the non-degeneracy
condition for the metric). In this way, a Riemannian metric as well as the symplectic form
are determined by K, as ω = k = i

2 ∂∂̄K with {∂, ∂̄} denoting the Dolbeault operators
∂ = dz ∧ ∂a and ∂̄ = dz̄ ∧ ∂ā. The similarities between these expressions and the ones in
Section 3.4 and Kähler’s are no coincidence, as K itself must convex. These similarities
have been, in fact, the catalyst for the investigation of more intimate relations between
the space of Kähler metrics and convexity [57] and various applications in the context of
optimal transport [58].

In statistical manifolds the fundamental object is its divergence D, and therefore the
constraints on the metric are ultimately enforced on D. Hence, the conditions for complexi-
fication of a manifold translate into two conditions over the corresponding divergence [59]:

1. ∂i,j′D = ∂j′ ,iD on M ×M ;
2. ∂i,jD + ∂i′ ,j′D = κ ∂i,j′D for some κ ∈ R.

Above, the primed indices denote differentiation with respect to y ∈Mq (as opposed to
regular derivatives with respect to x ∈Mp). Although the first condition above is trivially
satisfied when evaluated at the diagonal (as shown in Equation (11)), it is not automatic for
it to hold on the whole M ×M manifold. Both conditions arise from the construction of
an invariant arc element ds2 from the symmetric and antisymmetric parts, given by

ds2 = gD − iωD (47)

= ∂i,j′D[x; y](dxi ⊗ dxj + dyi ⊗ dyj)

+ i∂i,j′D[x; y](dxi ⊗ dyj − dyi ⊗ dxj), (48)

where gD and ωD denote the metric and symplectic form induced by the divergence D
on M ×M . Note that ωD is equivalent to the one derived in (36), while the components
of gD are expressed in Equation (45). The second condition for the complexification of a
statistical manifold is motivated by the fact that, if one is interested in expressing ds2 as
∂∂̄D, then the condition (2) should be satisfied on M ×M for κ ∈ R.
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Importantly, divergences that can be expressed as in Equation (16) for a given convex
function Φ satisfy the conditions discussed above, and hence the geometries they induce
are compatible with a complex structure [58,59]. These divergences induce a geometry of
constant scalar curvature given by κ = α−α+ with α+ = −γ and α− = 1 + γ. Furthermore,
Φ(α+x + α−y) serves as the local Kähler potential of the manifold. It is worth noting
that γ → 0 results in a vanishing K and thus cannot be defined. Indeed, γ = 0 is an
excluded value for these expressions, and its limit should be previously worked out prior
to complexification, as discussed in Ref. [59].

4.4. Complex Rényi Geometry under the Deformed Legendre Transform

Let us now exploit the general results presented in the previous section to deepen our
understanding of the geometry induced by the Rényi divergence on statistical manifolds.
The Rényi divergence Dγ belongs to the family of divergences that can be expressed as in
Equation (16) using Φ(x) as given by

Φ(x) = log ∑
s∈S

ex(s), with x(s) =: log p(s). (49)

This means that the geometry that arises from the Rényi divergence is susceptible to being
complexified. Furthermore, when evaluated on arguments that correspond to probability
distributions (i.e., xa = log pa and ya = log qa) then the first two terms in Equation (16)
vanish, and therefore the Rényi divergence itself serves as the Kähler potential.

Let us now show that the two conditions for complexification discussed in the previous
subsection are satisfied by product manifolds M ×M endowed by a geometry induced
by Rényi’s divergence. For this, we adopt complex coordinates wa = xa + iya ∈ C with
xa = log pa and ya = log qa for p, q ∈M . Using these coordinates, one finds that

−1
κ
Dγ(x, y) = log

n

∑
a=1

exp(Γ̄wa + Γw̄a) (50a)

= log za z̄a, (50b)

where we are using the shorthand notations Γ = 1
2 (α− + iα+) and za = exp(wΓ̄a). In this

manner, Φ(α+x + α−y) (or, equivalently, Dγ(x, y)) can be identified as the Kähler potential
for the product manifold.

The resemblance between the induced symplectic form in Equation (35) and the
connections (36) at the previous section to the well-known Fubini–Study metric and its
connection are suggestive of the complex-projective spaces CPn (for an overview on CPn

spaces, please refer to Refs. [54–56]). Unfortunately, complexification of the local charts
does not preserve the functional form of the symplectic form given by Equation (35), nor
the canonical 1-form given by Equation (36). Nevertheless, special circumstances—such
as γ = 1 and a restriction to the diagonal ∆—do lead to CPn upon complexification.
Disregarding the pure holomorphic and anti-holomorphic functions of the divergence,
the link function of the deformed Legendre transform can be directly read as the Kähler
potential as follows:

K(z, z̄) = C(z, z̄) = log(1 + za z̄a) , (51)

hence generating the Fubini–Study metric given by

gab̄ =
1

1 + za z̄a

(
δab̄ −

za z̄b

(1 + za z̄a)

)
. (52)

The case of complex dimension n = dimC M = 1 (two real dimensions), that is,
M = CP1 ⊂ C2, is of particular interest to physical systems. Indeed, from a group-theoretic
perspective, this manifold corresponding to the coset group SU(2)/U(1) (isomorphic to
the Riemann sphere S2 ' CP1) is crucial for the formulation of spin coherent states [45,60]
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and the geometric quantization of the spin [49]. In addition, CP1 describes pure quantum
states whose direct product enables a nice geometric formulation of many phenomena of
interest, including entangled systems [46].

The connection on this manifold corresponds to the canonical 1-form, which is now
determined by its Kähler potential

A =
i
2
(∂− ∂̄)K =

i
2

zadz̄a − z̄adza

1 + za z̄a (53)

via the Dolbeault operators (here the index takes only one entry a = 1, with trivial general-
ization to CPn). Note that this gauge-field is consistent with the expression obtained for the
connection 1-form found in Equation (35).

Let us now show how a quantization of the 2-sphere restricts the allowed values for
the Rényi parameter γ. As Poincare’s Lemma tells us, every closed form is locally exact,
and hence the existence of closed forms failing to be exact reflects some non-trivial aspect
of the topology of the manifold. This feature is captured by cohomology classesHk(M ,R),
whose members are closed yet globally not exact k-forms. In this sense, the Kähler form
belongs to H2(M ,R). The single-valuedness of points on the manifold would require
the ωD to belong to a cohomology class H2(M ,R). Therefore, its symplectic two-form
must be an integer multiple of ωD . Hence, the covariant derivative is ∇a = ∂a − ikAz with
k ∈ Z (not to be confused with the manifold’s complex dimension n), and the same holds
for its anti-holomorphic counterpart. The holomorphic polarization (see Appendix A)
imposes the condition ∇āψ = 0 for ψ wave function, a function whose squared module
gives the probability density, closely resembling wave functions in quantum mechanics.
This results in (

∂z̄ +
k
2

za

1 + za z̄a

)
ψ = 0 . (54)

This implicit equation is solved by physical solutions ψphys of the form

ψphys = exp
(
− k

2
log(1 + za z̄a)

)
f (z) , (55)

with f (z) being a holomorphic function. The resulting probability density |ψphys|2 is
given by

P(z) = | f (z)|2
(1 + za z̄a)k . (56)

The holomorphic function f (z) can be expanded on the basis {1, z, z2, ..., zk}, as higher
powers would imply P(z) to diverge; hence, a Hilbert space of finite dimension as ψphys is
defined over the 2-sphere.

Just as holomorphic polarization for γ = 0 results in exponential family distributions
(Appendix A), one recovers the Rényi maximum entropy distributions as a polarization of
the manifold for other values of γ. Moreover, by identifying γ = 1

k , one realizes (keeping
the sign of γ) that k ∈ Z+ introduces the restriction γ ∈ (0, 1], which corresponds to
α ∈ (−1, 1] and reflects a positive curvature, as discussed in Ref. [10]. Although ruled
out by the polarization, it is interesting to note that considering γ 6∈ (0, 1] would result
in the manifold having hyperbolic topology and becoming non-compact, hence not being
susceptible to complexification. These results establish γ ∈ (0, 1] as values of special
physical significance: γ = 1 for spin coherent states [45], worldline formalism [61], Kähler
oscillators [48], and entanglement [46], and other values in γ ∈ (0, 1] for systems described
through the geometric quantization framework. Notably, this range does not include γ = 0,
which corresponds to conventional dually flat geometry and the Shannon entropy.
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5. Conclusions

The Legendre transform, a fundamental piece of classic and contemporary physics,
has a direct but non-trivial correspondence with the dually flat geometry of statistical
manifolds induced by Shannon’s entropy and the Kullback–Leibler divergence. This
paper explores how deformations of the Legendre transform induce a departure from
this regime and has multiple consequences on symplectic geometry and complexification.
Taken together, these results provide some first steps towards a novel, rigorous, and
encompassing understanding of physical systems that are not well-described by classic
information-theoretic quantities.

The role of the Legendre transform on analytical mechanics differs from that in in-
formation geometry; in the latter, dual coordinates refer to different descriptions of the
same point, whereas in the former, they refer to an isomorphism between the tangent
and cotangent bundles. In flat geometry the symplectic form of the cotangent bundle
is equivalent to a canonical area form at the product manifold. In contrast, our results
show that this equivalence is broken if the manifold is curved. Interestingly, this implies
that a deformation of the regular Legendre transform results in the failure of the natural
coordinates to form a canonical pair. Furthermore, an analysis of the deformed symplectic
form and flow that arises in curved manifolds reveals a new understanding of the family
of maximum Rényi entropy distributions, which are found to form sets of points flowing
along the integral curves of the flow.

The departure of the symplectic form of the product manifold from the cotangent
bundle provides a promising lead to study coupled physical systems, with non-canonical
coordinates—like the pair induced by the Rényi geometry—being subjects of special interest.
For instance, there have been studies on the consequences of deformations in the symplectic
form in field theory [62] and in CPn Kähler oscillators, where deformations to the symplectic
structure via magnetic field are explored [48]. Other related phenomena have been studied
in Fermi liquids under an external magnetic field, where the the magnetic field couples to
Berry’s curvature, deforming the symplectic form. Such deformations have been shown to
have strong consequences for observables, as the invariant phase volume is modified via a
topological invariant [63,64]. An interesting avenue for future research is to investigate if
there are divergences that can recapitulate these deformations, providing a mathematical
scaffolding for the study of such systems.

In this work we have established a broad range of nonzero γ values relevant from
more than just a mathematical perspective. Both symplectic topology and Kähler manifolds
are sensitive to the topology rather than local changes in geometry. Furthermore, they
are sensitive to the physical systems to which they now connect. In particular, our results
show that γ = 1 corresponds to a special case that is associated with the CP1 manifolds
relevant across various fields such as coherent states [45], worldline formalism [61], Kähler
oscillators [48] and entanglement [46], to name a few. Via geometric quantization meth-
ods, our results show that holomorphic polarization leads to γ ∈ (0, 1]. This reveals a
further array of values of interest outside of the conventional γ = 0 that characterizes the
conventional dually flat Shannon systems.

The results presented here establish a first step in uncovering the consequences that
the relationship between generalized Legendre transforms and curved statistical manifolds
have for physical systems. We hope that this investigation may foster future work on
these important implications, which may reveal other hidden threads connecting seemingly
dissimilar approaches, such as the one revealed here relating non-Shannon entropies and
non-canonical coordinates. Such investigations may lead towards a principled and unified
understanding of physical systems that are not well-described by traditional approaches,
providing solid foundations to support and guide some of today’s effective but ad hoc
procedures of analysis.
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Appendix A. Complex Polarizations

This appendix illustrates the method of holomorphic polarization, which establishes an
intimate relation between link functions and natural families. For a given Kähler manifold
one can choose a polarization. A holomorphic polarization has the consequence that
physical states are represented as holomorphic functions, thereby generalizing Bargmann–
Segal’s (Fock) spaces that are relevant to coherent states. The complex polarization is a
condition determined by

∇āψ =
(

∂ā +
1
2 ∂āK(z, z̄)

)
ψ = 0 , (A1)

where the connection is determined by the Kähler potential over the manifold. This
polarization implies that the commutator [∇ā,∇b̄] = 0, and hence the system described
at (A1) is integrable. Its general solution is given by

ψphys = exp[− 1
2K(z, z̄)]φ(z) . (A2)

In the context of statistical manifolds, K(z, z̄) corresponds to a link function C(z, z̄). There-
fore, Equation (A2) corresponds to a natural family of distributions, e.g., the flat geometry
Cn is described by C(z, z̄) = za z̄ā, which leads to the exponential family, whereas a link
function of the form of Equation (51) yields Rényi’s natural family. The resulting physical
Hilbert space is

Hphys =

{
φ(z)

∣∣∣∣∫
M
|φ|2e−C(z,z̄)ωn < ∞

}
, (A3)

where ωn denotes the manifold’s volume form. In other words, one considers square-
integrable global sections that are covariantly constant along ∇ā.
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