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Abstract: Batched Sparse (BATS) codes are a type of network coding scheme that use a combination of
random linear network coding (RLNC) and fountain coding to enhance the reliability and efficiency
of data transmission. In order to achieve unequal error protection for different data, researchers
have proposed unequal error protection BATS (UEP-BATS) codes. However, current UEP-BATS
codes suffer from high error floors in their decoding performance, which restricts their practical
applications. To address this issue, we propose a novel UEP-BATS code scheme that employs a
precoding stage prior to the weighted BATS code. The proposed precoding stage utilizes a partially
regular low-density parity-check (PR-LDPC) code, which helps to mitigate the high error floors
in the weighted BATS code We derive the asymptotic performance of the proposed scheme based
on density evolution (DE). Additionally, we propose a searching algorithm to optimize precoding
degree distribution within the complexity range of the precoding stage. Simulation results show
that compared to the conventional weighted BATS codes, our proposed scheme offers superior UEP
performance and lower error floor, which verifies the effectiveness of our scheme.

Keywords: network coding; BATS codes; LDPC codes; unequal error protection; density evolution

1. Introduction

Data packets may be lost during transmission in wireless network communication
due to path fading and interference. Network coding [1], which allows relay nodes to
encode packets, is an effective forward error correction (FEC) code in wireless erasure
networks. Random linear network coding (RLNC) [2] is a typical network coding scheme,
whose coding coefficients are randomly selected over a finite field. RLNC can improve
throughput effectively. However, conventional RLNC has high decoding complexity and
needs big cache capacity, which restrict its application. As a new network coding scheme,
the BATS code [3] has been extensively studied in recent years due to its low complexity
and rateless characteristic.

Input packets are encoded in batches by the BATS code, which is composed of the outer
code and the inner code. The outer code adopts the matrix form of the Luby Transform
(LT) code, which is a kind of fountain codes. The BATS code is rateless because the outer
code can produce any number of batches. The inner code adopts RLNC in the same batch.
Designing the degree distribution function for BATS codes can effectively enhance their
decoding performance when employing the belief propagation (BP) algorithm. In [3,4],
the design methods of degree distribution of the BATS code are given in the case of infinite
code length and finite code length, respectively. The benefit of the BATS code is that only a
fixed number of packets need to be buffered and processed by the relay node for the fixed
batch size of the BATS code.

In order to improve the performance of BATS codes, Zhou et al. [5] investigated the
design of the inner code to maximize the expected batch transfer matrix rank normalized
by the total number of packets transmitted by both the source and intermediate nodes. Juan
Yang et al. [6] proposed an improved algorithm which iteratively performs BP decoding
and incremental Gaussian elimination for decoding finite-length BATS codes for improving
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the decoding performance. To achieve lower latency, a sliding window framework was
analyzed in [7], which divides the information blocks into smaller sub-blocks and jointly
optimizes the degree distribution and window selection probability of each sub-window.
Wang et al. [8] proposed cascading LDPC codes before BATS codes.

BATS code has great application prospects in many scenarios. Gao et al. [9] proposes a
joint infrastructure-to-vehicle and vehicle-to-vehicle communication scheme using batched
sparse coding to efficiently distribute content to vehicles passing by roadside units, reducing
transmission delay and traffic overhead. Yeung et al. [10] discussed the potential and
prospects of using BATS codes for space communication. Wang et al. [11] investigated the
use of batched sparse (BATS) codes in a butterfly network for multicast communication.

Conventional BATS codes can only provide equal error protection (EEP) for all data.
However, in the scenarios of image and video data transmission, some data require higher
reliability than others. So unequal error protection (UEP) technology is needed. Xu et al.
proposed the weighted BATS code [12] and the expanding window BATS (EW-BATS)
code [13] with UEP characteristics. Xiang et al. [14] proposed the feedback expanding
window BATS (FEW-BATS) code, which decreases average overhead of successful decoding
in the less important packets (LIP) and has no effect on the decoding performance of
the more important packets (MIP) by adding a single feedback on the basis of the EW-
BATS code.

The conventional UEP-BATS codes have a high error floor. This is because BATS
codes randomly select input packets during encoding, which leads a small number of input
packets participating in encoding only a few times or even never participating in encoding.
To solve this problem, we propose a new UEP-BATS code scheme which performs LDPC
precoding before the weighted BATS code. In order to obtain better UEP, we adopt partially
regular LDPC (PR-LDPC) [15] as the precoding scheme. We derive the density evolution
(DE) analysis when the code proposed in this paper is decoded by BP algorithm on binary
erasure channel (BEC) and optimize the relevant parameters according to the DE analysis.
Finally, we verify the performance of the proposed code through simulations.

2. BATS Codes and Weighted BATS Codes
2.1. BATS Code

The BATS code consists of the outer code and the inner code. We assume that there
are K input packets, and the set of input packets is denoted by S = {s1, s2, . . . , sK} where
sk is the kth input packet and each packet consists of L bits. The outer code encodes the
input packets into batches. We assume that the batch size is M and the degree distribution
is denoted by Ω(x) = ∑D

d=1 Ωdxd, where Ωd is the probability of generating a degree value
of d and D is the maximum degree. The encoding process in ith batch of the BATS code is
given as follows:

(1) A degree value di is generated according to Ω(x).
(2) di input packets in S are randomly selected to generate Si.
(3) Batch Ci = SiGi is generated, where Gi is a random matrix with its elements on a

finite field Fq with size q and dimension di ×M.
(4) The inner code of the BATS code is RLNC in the batch.

Then the encoded packets are sent to the downstream node. Assuming that the
transmission matrix of the ith batch is Ai, the packets of the ith batch received by the
destination node are

Yi = CiAi = SiGiAi, (1)

where Ai has dimension M×Mi
′, and Mi

′ denotes the number of packets received in the
ith batch.
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The number of batches generated is n = (1+γ)K
M where γ is the encoding redundancy.

We let µ = Ω′(1) and θ = 1+γ
M µ denote the average degree of output batches and input

packets, respectively. Λ(x) = ∑i Λixi is the degree distribution of the input packets, where

Λi = (n
i )(

µ

K
)i(1− µ

K
)n−i ≈ e−θθi

i!
. (2)

BATS codes can be decoded using the BP algorithm. In [16], the AND-OR tree analysis
of BATS codes using the BP algorithm is introduced in detail. In the AND-OR tree, the OR-
nodes denote the input data packets, and the AND-nodes denote the output batches.
The root node of AND-OR tree is an OR-node. The children of OR-nodes are AND-nodes
and the children of AND-nodes are OR-nodes. Suppose h = [h1, h2, . . . , hM] denotes the
channel rank distribution and hr denotes the probability that the rank of the batch received
by the destination node is r. There are the following conclusions about AND-OR tree:

• The probability that an OR-node has i children is δi =
(i+1)Λi+1

θ , i = 0, 1, . . . , n− 1.

• The probability that an AND-node has i children is ωi =
(i+1)Ωi+1

µ , i = 0, 1, . . . , D− 1.

• An OR-node is decodable only when any of its children are decodable.
• An AND-node is associated with rank r with probability hr where r = 1, 2, . . . , M and

it is decodable if less than r− 1 children are undecodable.

The probability that the root node is undecodable in the lth iteration is{
y0 = 1,
yl = δ(1−ω(1− yl−1)),

(3)

where

δ(x) =
n−1

∑
i=0

δixi = eθ(x−1), (4)

and

ω(1− x) = µ
D

∑
d=1

ωd−1

M

∑
r=1

hr

r−1

∑
j=1

(d−1
j )(1− x)d−1−jxj. (5)

2.2. Weighted BATS Codes

Weighted BATS codes change the probability of being selected for encoding by setting
different weight factors for input packets of different importance. We assume that there
are K input packets and they are divided into m important levels. The jth level of input
packets is denoted by IPj. The number of packets with the jth important level is αjK and
∑m

j=1 αj = 1. The probability of jth level packets being selected is pj = Tj/K where Tj is
the weight factor of the jth important packets. The value of Tj has to satisfy ∑m

j=1 αjTj = 1
and pi > pj(i < j). Figure 1 illustrates the encoding process of weighted BATS codes at the
source node.

... ... ......

... ... ......

input packets

batches

1p
2p

rp

2IP rIP
1IP

Figure 1. The encoding process of weighted BATS codes.
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According to the analysis of weighted BATS codes in [12], the probability of a jth
important packet undecodable after l iterations of BP is

y0,j = 1,

yl,j = δ(j)(1−ω(1−
m

∑
u=1

αuTuyl−1,u))

= exp[−θjω(1−
m

∑
u=1

αuTuyl−1,u)],

(6)

where θj =
(1+γ)µTj

M is the average degree of the input packets with jth-level importance.

3. Weighted BATS Code with LDPC Precoding
3.1. Encoding Scheme

In the conventional weighted BATS coding scheme, the input packets are randomly
selected with different probabilities when encoding. Therefore, some input packets are
rarely selected or even never selected, which would lead to high error floor at the receiving
side. In order to lower the packet error rate, we propose a novel UEP-BATS code, which
performs PR-LDPC codes precoding before the weighted BATS code, and precoding phase
can be utilized to mitigate errors and recover input packets that cannot be restored by
weighted BATS codes. In our scheme, the encoding process of the source node is divided
into a precoding phase and a weighted BATS code encoding phase. The encoding process
of these two phases is as follows:

Precoding phase: The PR-LDPC code [15] with UEP characteristics is used for precod-
ing in our coding scheme. We assume that the number of the input packets is K, and N
intermediate packets are generated by precoding. Therefore, the number of parity packets
(PP) is N − K, and the code rate of precoding is R = K/N. Let the precoding check matrix
be H =

[
H1 H2 · · · Hm|HP

]
, where Hj (1 ≤ j ≤ m) is the sub-matrix corresponding

to the IPj, HP is the sub-matrix corresponding to PP and HP is a non-singular matrix. Let
dj be the degree of the IPj, dP be the degree of PP, and dC be the degree of check nodes. So
the column weight of Hj is dj, the column weight of HP is dP, and the row weight of H
is dC. According to the analysis in [15], the decoding error probability of the IPi is lower
than that of the IPj when di > dj. Since PP are not included in the packets to be recovered,
d1 > d2 > · · · > dm > dP should be satisfied when dC is determined. The input packets are
denoted by B =

[
B1 B2 · · · Bm

]
, where Bj denotes the sub-matrix formed by the IPj,

so the dimension of Bj is L× αjK. The intermediate packets are denoted by B′ =
[
B|BP

]
,

where BP is the sub-matrix formed by PP, so the dimension of BP is L× (N−K). According
to H · (B′)T = 0, we can obtain

H1 · BT
1 + H2 · BT

2 + · · ·+ Hm · BT
m + HP · BT

P = 0. (7)

The precoding process is performed on the finite field GF(2), so the PP generated by
precoding is

BP = (B1 ·HT
1 + B2 ·HT

2 + · · ·+ Bm ·HT
m) · (HT

P)
−1 (8)

Weighted BATS phase: Weighted BATS coding is performed on the intermediate
packets in this phase. The intermediate packets are divided into m levels, where the ith
level of intermediate packets are consistent with the ith level of input packets, 1 ≤ i ≤ m− 1,
and the mth level of intermediate packets includes the mth level of input packets and the
PP. Therefore, the proportion of intermediate packets of ith level is α′i = αiK/N = αiR,
and the proportion of intermediate packets of mth level is α′m = (αmK + N − K)/N =
αmR + (1− R). The weight factor set for the jth level of intermediate packets is Tj where
1 ≤ j ≤ m. Therefore, when weighted BATS coding is performed on the intermediate
packet, the probability that the jth level of the intermediate packet is selected is pj = Tj/N.



Entropy 2023, 25, 686 5 of 13

Figure 2 illustrates the encoding procedure of weighted BATS codes based on PR-
LDPC precoding at the source node with m = 2 as an example. Input packets can be
classified as MIP and LIP. Intermediate packets can be classified as MIP, LIP, and PP, or can
be further classified as IMIP (Intermediate more important packets) and ILIP (Intermediate
less important packets).

...

... ...

... ... ......

...

...

input packets

intermediate packets

batches

precoding

Weighted BATS

MIP LIP

PP

ILIP
IMIP

1p
2p

Figure 2. The encoding process of weighted BATS code with precoding.

3.2. Decoding Scheme

At the destination node, The receiver uses the BP algorithm for decoding and the
bipartite graph of the BP algorithm is shown in Figure 3. The decoder of receiver consists of
a weighted BATS code decoder and a precoding decoder. The specific decoding processes
of these two decoders are as follows:

...

... ... ...

... ... ......

Cd

1d

MIP LIP PP

2d
Pd

IMIP

( )x

precoding check nodes

intermidiate nodes

output nodes

Figure 3. Bipartite graph of the weighted BATS code with PR-LDPC precoding.

Weighted BATS decoder: Similar with the BP algorithm in the conventional BATS
codes, each output node in Figure 3 corresponds to a batch of weighted BATS codes. Due
to the packet loss in the transmission, the number of receiving packets in the ith batch
M′i ≤ M. The rank of the ith batch is ri = rank(GiAi). Let di and Si denote the degree and
the input packets set of ith batch, respectively. If ri = di, Si can be decoded by Gaussian
elimination and delete all edges connected to the intermediate nodes corresponding to
Si in the bipartite graph. If the kth(k 6= i) batch contains intermediate node si(si ∈ Si),
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remove the row corresponding to si in Gk. Repeat the process until no batch satisfies that
the degree is equal to the rank.

Precoding decoder: In each iteration, the precoding check nodes with degree of 1 are
decodable. If the degree of jth check node is 1 and it is connected only to intermediate node
sj, the input packet corresponding to sj is decodable. Then all edges connected to sj in the
graph are deleted. If sj is selected to encode the kth batch, the row corresponding to sj in
Gk is removed. The process is repeated until there is no check node with degree of 1.

The decoding process is shown in Figure 4, where U and V represent the index of
the received packets and recovered packets, respectively. The receiver side performs the
weighted BATS decoder and the precoding decoder in a cyclic manner. At the beginning of
each cycle, the sets IB and IP are initialized as empty sets. Subsequently, the weighted BATS
code decoding and the precoding decoding are executed. The index of the intermediate
data packets decoded by weighted BATS decoder and precoding decoder are added to
the sets IB and IP, respectively. The intermediate packet indexes in sets IB and IP, but not
belonging to PP, are inserted into set V. The receiver side restarts weighted BATS decoding
because there may still exists some decodable batches after parts of the intermediate data
packets are decoded by precoding decoder. The decoding process is stopped when set IB
is empty.

Weighted BATS 

decoder
Precoding decoder

𝐼𝑃

𝐼𝐵

VU

Figure 4. The decoding process of the of the weighted BATS code with LDPC precoding.

4. Performance Analysis and Parameter Optimization
4.1. Decoding Error Probability

In this subsection, we use the AND-OR tree analysis to derive the DE formulas of
the weighted BATS code with LDPC precoding under BP decoding on BEC according
to the conclusions in [15,17]. During the BP decoding process, erasure information is
repeatedly passed between precoding check nodes, intermediate nodes, and output nodes.
Each node updates its information upon receiving information from other nodes and

passes the updated information to other nodes. Let Λ(j)
(x) = ∑i Λ(j)

i xi denotes the input

degree distributions of jth intermediate nodes, and δ
(j)
(x) = ∑i δ

(j)
i xi represents the degree

distribution of edges connected to jth intermediate nodes. So we can obtain δ
(j)
(x) =

Λ(j) ′
(x)/Λ(j) ′

(1). Let E be the set of edges between the intermediate nodes and the
precoding check nodes. Let λj and λP respectively denote the probability of selecting
an edge from E at random, which corresponds to the jth level input packets and PP. So
we have

λj =
αjKdj

|E| , (9a)

λP =
(1− R)NdP
|E| , (9b)

where |E| = ∑m
j=1 αjKdj + (1− R)NdP, indicating the number of edges between the inter-

mediate nodes and the precoding check nodes.
At ith BP iteration, let Pj,i and PP,i respectively denote the probability of passing era-

sure information to the precoding check nodes from the intermediate nodes corresponding
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to IPj and PP; Qj,i and QP,i respectively denote the probability of passing erasure infor-
mation to the output nodes from the corresponding intermediate nodes to IPj and PP; Ui
denotes the probability of passing erasure information to the intermediate nodes from the
precoding check nodes; Vi denotes the probability of transmitting erasure information to
the intermediate nodes from the output nodes. Subsequently, the respective mathematical
expressions for the aforementioned probabilities will be presented.

When i = 0, all intermediate nodes are initialized to 1, which means that Pj,0 = PP,0 = 1.
When i ≥ 1, Pj,i is equivalent to the probability that the intermediate nodes corresponding
to IPj receive erasure messages from the other dj − 1 edges connected to the precoding
check nodes and all edges connected to the output nodes. The former probability is

(Ui−1)
dj−1, and the latter probability is ∑i Λ(j)

i (Vi−1)
i = Λ(j)

(Vi−1). Therefore, the formula
for calculating Pj,i is

Pj,i = (Ui−1)
dj−1Λ(j)

(Vi−1). (10)

Similarly, the formula for calculating PP,i is

PP,i = (Ui−1)
dP−1Λ(m)

(Vi−1). (11)

When i = 0, all intermediate nodes are initialized to 1, which means that Qj,0 = QP,0 = 1.
When i ≥ 1, Qj,i is equivalent to the probability that the intermediate nodes corresponding
to IPj receives the erasure messages from other output nodes and all precoding check nodes.
The former probability is (Ui−1)

dj , and the latter probability is equivalent to the probability
that all children of the intermediate node in the AND-OR tree pass the erasure messages to
it. So we have

Qj,i = (Ui−1)
dj δ

(j)
(Vi−1). (12)

Similarly, we can calculate QP,i by

QP,i = (Ui−1)
dP δ

(m)
(Vi−1). (13)

The probability that the precoding check node passes on the erasure message to the
intermediate node is denoted as Ui, which is equivalent to the probability that the check
node receives the erasure messages from other dC − 1 intermediate nodes, so

Ui = 1− (1−
m

∑
j=1

λjPj,i − λPPP,i)
dC−1. (14)

The probability that the output node passes on the erasure message to the intermediate
node is denoted as Vi

Vi = 1−ω(1− y), (15)

where y denotes the probability that a child node of the AND node in the AND-OR tree
transmits an erasure message, ω(1− y) denotes the probability that less than r− 1 child
nodes transmit erasure messages to the AND node, and r is the rank of the coding coefficient
matrix corresponding to the AND node, so

y =
m

∑
j=1

αjRTjQj,i + (1− R)TmQP,i, (16)

and

ω(1− y) = µ
D

∑
d=1

ωd−1

M

∑
r=1

hr

r−1

∑
j=1

(d−1
j )(1− y)d−1−jyj. (17)
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The above is the calculation process for the probability of erasure message transmitted
between nodes. Based on these probabilities, we can make an asymptotic estimate of the
decoding error probabilities of IPj which is given by:

P(j)
i =

djPj,i + θ jQj,i

dj + θ j
, (18)

where θ j = nµpj is the average degree of the intermediate packets with jth level importance.

4.2. Complexity

In the conventional weighted BATS code, the M encoded packets in the batch is
generated by linearly combining µ input packets on average. Therefore, the encoding
complexity of generating n batches in the conventional weighted BATS code is O(nµLM).
The encoding complexity is slightly elevated in our scheme due to the addition of the
precoding phase. During the precoding phase, the encoding complexity is related to the
row weight dC of the parity matrix and the number of parity packets. A packet XOR
operation must be performed during encoding for each element in the parity matrix with a
value of “1”. Therefore, the encoding complexity in the precoding phase is O(LdC(N− K)).
The additional complexity introduced in the precoding phase is constant and independent
of the number of batches generated.

At the destination node, the decoding process is divided into two stages, where the
average complexity of the weighted BATS decoder is O(nM3 + nµLM), and the complexity
of the precoding decoder is O(LdC(N − K)). Therefore, the decoding complexity of this
scheme is O(nM3 + nµLM + LdC(N − K)).

In summary, compared to conventional weighted BATS codes, our scheme only add a
marginal and fixed increase in the complexity of the encoding process and decoding process.

4.3. Optimization of Precoding Degree Distribution

This subsection proposes an optimization algorithm for the precoding degree distribu-
tion under the constraint of limited precoding complexity. Based on the complexity analysis
presented in the previous subsection, it can be concluded that, under the assumption of
data packet length L and precoding rate R, the complexity of the precoding phase is solely
determined by the row weight dC of the parity check matrix H. Therefore, the limitation
of complexity in the precoding phase refers to its complexity being constrained by the
maximum value of dC. In other words, the maximum allowable value of dC restricts the
complexity of this phase. So we need to find the optimal values of dj and dP in the case
where dC is fixed.

According to the fact that the sum of the number of “1” elements in all columns of the
parity check matrix H is equal to the sum of the number of “1” elements in all rows, we
can obtain

m

∑
j=1

αjRdj + (1− R)dP = (1− R)dC. (19)

Suppose that dj and dP have lower bounds of 1, and Dj and DP denote the maximal
values of dj and dP, respectively. Due to d1 > d2 > · · · > dm > dP, we sequentially
determine d1, d2, · · · , dm and dP. According to (19), Dj and DP can be calculated using the
following methodology.

(1) When j = 1, it can be inferred that the variable d1 reaches its maximum value under
the circumstance of d2 = d3 = · · · = dm = dP = 1, so

D1 =
(1− R)dC −∑r

i=2 αiR− (1− R)
αjR

. (20)

(2) When 2 ≤ j ≤ m, it can be inferred that the variable dj reaches its maximum value
under the circumstance of dj+1 = dj+2 = · · · = dm = dP = 1, so
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Dj = min

dj−1 − 1,
(1− R)dC −∑

j−1
i=1 αiRdi −∑m

i=j+1 αiR− (1− R)

αjR

. (21)

(3) When dj is completely determined, the maximum possible value of dP is

DP = min
{

dm − 1,
(1− R)dC −∑m

i=1 αiRdi − (1− R)
1− R

}
. (22)

Given the aforementioned expression, upon specifying the value of dC, one can deter-
mine the values of D1, D2, · · · , Dm and DP in a sequential manner. Thereafter, the search
process can be employed to obtain the optimal precoding degree distribution, as presented
in Algorithm 1, where the symbol “←” signifies assignment.

Algorithm 1 Precoding degree distribution optimization algorithm

Input: K, α1, · · · , αm, R, Ω(x), dC
Output: d1, · · · , dm, dP

1: P1 ← 1, P2 ← 1, · · · , Pm ← 1;
2: Calculate D1 based on (20);
3: for d(1) = 1 to D1 do
4: Calculate D2 based on (21);
5: for d(2) = 1 to D2 do

6:
...

7: Calculate Dm based on (21);
8: for d(m) = 1 to Dm do
9: Calculate DP based on (22);

10: for dp = 1 to DP do
11: Calculate the decoding error probability P(j) for the IPj based on (18);
12: if P(1) < P1 && · · · && P(m) < Pm && P(P) < PP then
13: P1 ← P(1), · · · , Pm ← P(m);
14: d1 ← d(1), · · · , dm ← d(m), dP ← dp;
15: end if
16: end for
17: end for

18:
...

19: end for
20: end for
21: return d1, · · · , dm, dP

5. Numerical Results

In this section, we present some simulation results to illustrate the performance of our
proposed coding scheme. As is shown in Figure 5, we consider the two-hop line-erasure
network with one relay node r between the source s and destination t where the channel
erasure probability of each hop is 0.2.

s r tchannel channel

Figure 5. A two-hop line-erasure network with packet erasure probability 0.2 on each link.

Unless explicitly stated, we use the following parameters: the number of source
packets is K = 10, 000 where MIP occupies 0.1, the weight factor of MIP is T1 = 2, and the
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size of a batch is M = 16. The channel rank distribution and degree distribution of the
BATS code are shown in Table 1 and Table 2 [3], respectively.

Table 1. The rank distribution of the two-hop erasure network when channel erasure probability
is 0.2.

r 1 2 3 4 5 6 7 8

hr 0 0 0 0 0.0001 0.0004 0.0025 0.0110

r 9 10 11 12 13 14 15 16

hr 0.0387 0.1040 0.2062 0.2797 0.2338 0.1038 0.0190 0.0008

Table 2. The BATS codes degree distribution when M = 16.

d 14 15 20 21 28 38 39

Ωd 0.0478 0.2665 0.1012 0.0977 0.1411 0.0899 0.0122

d 51 52 73 74 111 113 199

Ωd 0.0034 0.0734 0.0579 0.0061 0.0251 0.0286 0.0491

We set γ = 0.45 and R = 0.95. Using Algorithm 1, we find that when dC = 100,
the optimal degree distributions of precoding are d1 = 23, d2 = 3, dP = 2, while for
dC = 80, they are d1 = 13, d2 = 3, dP = 2. We randomly generate the precoding
check matrix H =

[
H1 H2|HP

]
according to the degree distribution, where HP is a

non-singular matrix.
Figure 6 shows the packet error rate of the weighted BATS code based on PR-LDPC

precoding at different precoding rates. From the simulation results, it can be observed that
when the coding redundancy γ is small (γ < 0.45), the packet error rate of using precoding
at different rates is very close. Because with a high-rate precoding, the receiver mainly
relies on the weighted BATS decoder to recover the input packets, while the precoding
decoder almost does not recover input packets. Therefore, the performance of using differ-
ent precoding rates is similar to that of the conventional weighted BATS code in this case.
When the coding redundancy is small, the packet error rate slightly increases as the pre-
coding rate decreases. Because under the condition of constant coding redundancy, lower
precoding rates introduce more redundancy in the precoding stage and less redundancy
in the weighted BATS code stage. Since the decoding error probability mainly depends
on the performance of the weighted BATS code when the coding redundancy is small,
the lower precoding rates result in higher overall packet error rate. However, as the coding
redundancy γ increases and the receiver recovers enough input packets, the number of
input packets recovered in the precoding decoding stage increases. Moreover, the lower
the precoding rate, the more input packets are recovered in the precoding decoder. Thus,
the packet error rate decreases faster, and the error floor is lower.

Figure 7 demonstrates the performance of weighted BATS codes with PR-LDPC
precoding using various degree distributions in terms of packet error rate. The simulation
results indicate that when the encoding redundancy is small, the packet error rate is nearly
identical across different precoding degree distributions. This can be attributed to the fact
that, at this stage, the decoding of the weighted BATS codes is primarily responsible for
recovering input packets. However, as the encoding redundancy increases, the packet error
rate is highest when utilizing regular LDPC codes as precoding. This is due to the higher
degree of LIP in regular LDPC codes with the same check node degree, and the higher
error rate of LIP. As a result, in BP decoding, the probability of deleting edges connected
to check nodes with LIP is lower, resulting in a lower probability of check nodes with
degree 1. Consequently, the packet error rate is higher when employing regular LDPC
codes as precoding.
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Figure 6. The packet error probability of weighted BATS codes based on PR-LDPC precoding at
different precoding code rates.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

-8

10
-6

10
-4

10
-2

10
0

P
a

c
k
e

t 
e

rr
o

r 
ra

te

MIP d
1
=5 d

2
=5 d

P
=5

LIP  d
1
=5 d

2
=5 d

P
=5

MIP d
1
=23 d

2
=3 d

P
=2

LI  d
1
=23 d

2
=3 d

P
=2

Figure 7. The packet error rate of weighted BATS codes based on PR-LDPC precoding with different
precoding degree distributions.

Given the precoding degree distribution and γ, we can optimize TM with the DE
analysis in Sec. III B. Figure 8 shows the performance of MIP and LIP with different T1
when γ = 0.48 and precoding degree distribution is d1 = 23, d2 = 3, dP = 2. According
to the asymptotic results, the error probability of MIP is minimized when T1 = 1.9. The
simulation result in Figure 9 shows the packet error rate of weighted BATS codes and our
proposed scheme when T1 = 1.9 and T1 = 2. As is shown in Figure 9, when the coding
redundancy is small, the error rate of our proposed scheme is slightly higher than that of
the weighted BATS codes. That is because precoding can hardly lower the packet error
rate but increases the overall encoding redundancy. As the coding redundancy increases,
the conventional weighted BATS codes have high error floor. The packet error rate of our
proposed scheme drops sharply, which is significantly lower than that of the conventional
weighted BATS codes. Meanwhile, in our scheme, the packet error rate when T1 = 1.9 is
lower than that when T1 = 2, which verifies the optimization results above.
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Figure 8. The packet error rate of proposed scheme with different TM when γ = 0.48.
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Figure 9. The packet error rate comparison of the proposed coding scheme and conventional weighted
BATS codes with different encoding redundancy γ when R = 0.95.

6. Conclusions

In this paper, we propose a novel UEP-BATS coding scheme which performs UEP-
LDPC precoding before the weighted BATS code. Compared with conventional weighted
BATS codes, our proposed coding scheme has lower packet error rate. We analyze the
situation where the input packets have two important levels in detail and derive the DE
formulas of the proposed coding scheme decoded using the BP algorithm on BEC. We
also optimize precoding degree distribution and weight factor of weighted BATS with the
help of DE analysis. Finally, simulation results show that compared with the conventional
weighted BATS code, our coding scheme has lower packet error rate with the increase of
encoding redundancy.
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