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Abstract: We study selection bias in meta-analyses by assuming the presence of researchers (meta-
analysts) who intentionally or unintentionally cherry-pick a subset of studies by defining arbitrary
inclusion and/or exclusion criteria that will lead to their desired results. When the number of studies is
sufficiently large, we theoretically show that a meta-analysts might falsely obtain (non)significant overall
treatment effects, regardless of the actual effectiveness of a treatment. We analyze all theoretical findings
based on extensive simulation experiments and practical clinical examples. Numerical evaluations
demonstrate that the standard method for meta-analyses has the potential to be cherry-picked.

Keywords: meta-analysis; cherry-picking studies; selection bias; adversarial meta-analysis; inclu-
sion/exclusion criteria

1. Introduction

Meta-analysis is a methodology for evaluating the overall treatment effect by inte-
grating the results of past clinical trials and is widely recognized as one of the research
methods that underlie “Evidence Based Medicine” [1,2]. Generally, the methodology in-
volves the integration of summary statistics, such as odds ratios or hazard ratios reported
in published papers, by using appropriate statistical methods to estimate the average
treatment effect [1–3]. In a meta-analysis, various biases that could affect the validity of the
synthesized results have been widely studied, for example, (1) publication bias, whereby
positive results are more likely than negative or null results to be published [4]; (2) language
bias, whereby non-English studies tend to be excluded from meta-analyses [5]; (3) time-lag
bias, whereby positive results tend to have longer time differences from trial completion to
publication than negative or null results [6]; (4) reporting bias, whereby studies selectively
report outcomes favoring their hypothesis [1]; (5) outlier bias, whereby a single or a few
studies disproportionately influence the overall results of a meta-analysis [7]; (6) categoriza-
tion bias, whereby studies use different categorization or stratification schemes to achieve
the same outcome [8]; and (7) covariate set bias, whereby studies use different covariate sets
in the regression model that share the same regression task across the studies [9]. In this
study, we aim to focus on a new source of bias, the “cherry-picking” bias, in meta-analyses.

The simplest setup of a meta-analysis is to assume that there are K independent studies,
each yielding an estimate yi (i = 1, . . . , K) of an underlying treatment effect parameter θ.
The standard fixed-effect model is defined as

yi ∼ N(θ, σ2
i ), (1)

where σ2
i is the reported (known) within-study variance of the ith study. Under this fixed-

effect model, the maximum likelihood estimate of θ is defined by the weighted average

θ̂ =
∑K

i=1 wiyi

∑K
i=1 wi

, (2)

Entropy 2023, 25, 691. https://doi.org/10.3390/e25040691 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25040691
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-3525-5092
https://orcid.org/0000-0003-4335-0302
https://doi.org/10.3390/e25040691
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25040691?type=check_update&version=2


Entropy 2023, 25, 691 2 of 13

where the ith study is assigned the weight wi = 1/σ2
i . The corresponding standard normal

test statistic is

T(θ) =

√√√√ K

∑
i=1

wi(θ̂ − θ),

and the resulting confidence interval (CI) is

{θ : |T(θ)| ≤ zα} =
[
θ̂ − zα

(
∑ wi

)−1/2, θ̂ + zα

(
∑ wi

)−1/2
]
,

where zα = Φ−1(1− α/2) is the standard normal percentage point for the coverage of 1− α,
and Φ is the cumulative distribution function of the standard normal distribution [10–13].
In practice, researchers are often interested in a hypothesis regarding whether a given
treatment has no effect (H0 : θ = 0) or is beneficial (H1 : θ > 0). The one-sided p-value of
the ith study is defined as

pi = Φ(−
√

wiyi). (3)

Similarly, the p-value of Equation (2) is defined as

pmeta = Φ

−θ̂

√√√√ K

∑
i=1

wi

. (4)

Equation (1) is based on the fixed-effect assumption that each study shares the same under-
lying effect θ. When heterogeneity between included studies is suspected, the random-effect
model is fitted as

yi ∼ N(θ, σ2
i + τ2), (5)

where τ2 is the between-study variance, which can be estimated from the data using
standard methods, such as the method proposed in DerSimonian and Laird [3]. The same
reasoning can be applied by replacing the weights wi in Equation (2) with

wi =
1

σ2
i + τ2

. (6)

Refer to the studies by [10–12] and Cooper et al. [13] for a detailed discussion of the various
methods used for meta-analysis.

One of the most important stages of a meta-analysis is the specification of the inclusion
and/or exclusion criteria, because the selection of studies for a literature review is known to
influence the conclusions. One must carefully consider which studies to include or exclude
from the review to obtain unbiased and fair conclusions. However, in reality, a significant
number of meta-analyses are published without a protocol to define the inclusion and
exclusion criteria before conducting the meta-analysis and systematic review. Furthermore,
it is not common for papers to follow procedures such as stating inclusion and exclusion
criteria in advance and adhering to them. For example, Page et al., (2016) examined the
reporting completeness of Biomedical Research meta-analyses and found that only 16% of
the included reviews had a publicly accessible protocol published before the review was
conducted [14]. In addition, Tawfic et al., (2020) found that only 37.4% of researchers who
are trying to conduct a meta-analysis agree that protocol registration prior to the main
analysis should be mandatory [15].

Given a set of included studies, the conclusions obtained from the results of meta-
analyses are frequently based on statistical tests and their associated p-values in practice.
Ideally, a statistical test with a type 1 error rate of α should be used to control the ratio of
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false findings at a ratio of (less than) α. However, inclusion and/or exclusion criteria can
be misused by (sometimes malicious) meta-analysts (i.e., the authors of a meta-analysis
who intentionally or unintentionally report false (non)significant overall effects, regardless
of the actual treatment effect) to pick a subset of all studies that changes the result and
sometimes leads to their desired conclusion. This practice is also known as cherry-picking,
and it means that the resulting p-value no longer controls the ratio of false findings. Figures
in Section 4 show practical examples. Reviewer selection bias is also known in the field
of meta-analysis as the situation where reviewers (un)intentionally seek only a subset of
existing studies that satisfy certain criteria, so the chosen subset does not reflect all available
evidence [16]. The degree of bias in a synthesized result can depend on a selector’s prior
knowledge, research field, existing collaborators, and opinion regarding the research
question of interest [17]. Other similar biases related to inclusion and/or exclusion criteria
include the English language bias (whereby non-English studies are more likely to be
excluded), the data availability bias (whereby only studies with individual patient data are
included), and the database bias (whereby only studies published in journals indexed in
popular databases such as Embase or Medline are included); see [17–19] for an overview
of this topic. For instance, Ahmed et al. [17] investigated 31 meta-analyses and found
that 29% of them suffered from a significant selection bias based on the use of selective
or nonsystematic approaches for the identification of relevant studies. They concluded
that biased synthesized results can lead to incorrect decisions by medical practitioners,
which can harm patients because inefficient or ineffective treatments may be chosen. Such
results can also mislead future research efforts [20]. However, although the selection bias
has a similar impact on synthesized results to the publication bias, which has been widely
studied in the field of meta-analysis, no attempts have been made to examine the selection
bias from a statistical perspective. In this study, we demonstrate that it is possible to modify
the results of a meta-analysis by changing the inclusion and/or exclusion criteria to select
an arbitrary subset of studies, so that they support a biased conclusion, such as (i) the
treatment of interest having a significant effect, despite there being no actual effect or (ii)
the treatment having a nonsignificant effect, despite the presence of an actual effect. The
reliability of a meta-analysis is decreased in the presence of such a selection bias. The goal
of this study is to identify the possibility of cherry-picking.

The remainder of the article is organized as follows: In Section 2, we show theoretical
guarantees on the chance of cherry-picking by meta-analysts who intentionally or unin-
tentionally select the subset of studies. To demonstrate that conventional meta-analysis
procedures have a significant cherry-picking effect, the results of extensive simulation
studies are presented in Section 3, and two clinical datasets are examined in Section 4.
Lastly, Section 5 presents a discussion and our conclusions.

2. Methods

We consider the simple fixed-effect meta-analysis settings defined in Equation (1). An
extension for a random-effect model is described in Section 2.2 and later in the discussion
section. We assume that there are K studies DK = {1, 2, . . . , K} collected via data extraction
from several databases such as PubMed, Medline, and Embase. Each study is supposed to
report an estimate yi and corresponding variance σ2

i (or wi, equivalently). Meta-analysts
determine the inclusion and/or exclusion criteria to select a subset of S studies from all
K studies found in the databases. This subset is denoted as DS = {1, 2, . . . , S} ⊆ DK.
Therefore, DS may suffer from a selection bias. In this study, we assume that meta-analysts
(intentionally or unintentionally) select studies DS to (i) overstate the effect of the treatment
of interest (Case 1), despite the treatment having no actual effect (i.e., θ = 0), or (ii)
understate the effect of the treatment (Case 2), despite the treatment having an actual
effect (i.e., θ > 0). Furthermore, we assume that meta-analysts use a statistical testing
framework by defining the null and alternative hypotheses as H0 : θ = 0 and H1 : θ > 0,
respectively. The null hypothesis H0 states that the treatment has no effect, while the
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alternative hypothesis H1 states that the treatment has a significant effect. Statistical
significance at a level of α ∈ (0, 1) for the dataset DS is defined as

pmeta(DS) = Φ

−√ ∑
i∈DS

wi θ̂

 ≤ α, (7)

where Φ(x) =
∫ x
−∞ φ(t)dt, φ(x) = (1/

√
2π) exp(−x2/2), and wi = 1/σ2

i or Equation (6) is
used in the fixed- and random-effect models, respectively. The extension to two-sided tests
is easy and is discussed later in Section 5.

2.1. Chance of Cherry-Picking in a Meta-Analysis

This section describes how the standard hypothesis testing procedure is no longer
robust against selection bias due to the cherry-picking of studies using biased inclusion
and/or exclusion criteria. We used similar techniques to those employed by Komiyama
and Maehara [21] in the following derivation.

Theorem 1 guarantees that, under certain mild conditions, it is possible for meta-
analysts to have sufficient statistical power to falsely conclude that a significant effect of
the treatment of interest (Case 1) exists, even if the treatment has no actual effect. This is
achieved by cherry-picking the subset DS that provides the top-S smallest p-values.

Theorem 1. For any α ∈ (0, 1/2), δ ∈ (0, 1), and ε ∈ (0, 1/3), if S/K ≤ ε and

S ≥ max

η

 Φ−1(α)

Φ−1
(

1
2 −

ε
2

)


2

, ε


log
(

1
δ

)
2
(

1
2 −

3ε
2

)2 − 2


,

with η =
wmax

wmin
, wmax = maxi∈DS wi and wmin = mini∈DS wi, then meta-analysts can select DS

such that pmeta(DS) ≤ α with a probability of at least 1− δ.

Similarly, Theorem 2 guarantees that under certain conditions, it is also possible to
falsely conclude that the treatment has an insignificant effect (Case 2), even if the treatment
has an actual effect. This is achieved by cherry-picking the subset DS that provides the
top-S largest p-values.

Theorem 2. For any α ∈ (0, 1/2), δ ∈ (0, 1), and ε ∈ (0, 1), if 1− ε ≤ S/K ≤ 1 and

η

{
Φ−1(α)

Φ−1
(
1− ε

2
)}2

≤ S < (1− ε)

 log
(

1
δ

)
2(1− ε/2)2 − 2

,

the meta-analysts can select DS such that pmeta(DS) ≥ α with a probability of at least δ.

Together, these theorems imply that meta-analysts have a chance to change the results
of meta-analysis, regardless of real treatment effects, by cherry-picking an appropriate value
for S. When S satisfies the conditions outlined in the theorems, readers or inspectors of the
meta-analysis results can claim that the possibility of cherry-picking exists. In addition, now,
we have assumed that meta-analysts cherry-pick the subset of studies DS yielding the “top-S”
(largest/smallest) p-values, which sometimes seems an unrealistic assumption because the
actual meta-analysts might try to cherry-pick the subset of studies in a more arbitrary manner.
However, it is noteworthy that even if meta-analysts cherry-pick an arbitrary subset of all
studies such as the subset of studies with moderate p-values, these theorems are still valid
because the current assumption ofDS is the most aggressive and worst setting, i.e., we assume
that DS provides the minimum/maximum p-value in the proof. Thus, the theorem still holds
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even under the more relaxed assumption of cherry-picking moderate p-values. The proofs for
the theorems can be found in Appendices A–C.

2.2. Extension to a Random-Effect Model

In the above section, we tentatively assumed that wi was known, which corresponds
to a fixed-effect model in a meta-analysis. However, we can also consider cases in which τ2

in Equation (6) is estimated. In other words, we can estimate the between-study variance
using the random-effect model. In practice, τ2 is estimated from the data, frequently by
using the method proposed by [3]. Given DS, the DerSimonian–Laird estimate of τ2 is
defined as

max

[
0,

∑i∈DS
wi(yi − y0)

2 − S + 1

∑i∈DS
wi −∑i∈DS

w2
i / ∑i∈DS

wi

]
, (8)

where y0 = ∑i∈DS
wi0yi/ ∑i∈DS

wi0 and wi0 = 1/σ2
i . Theorems 1 and 2 are nontrivial

because this estimate depends on the choice of DS, and the selection of the top-S largest
test statistics of

√
wiyi depends on the estimate. These factors eliminate the simplicity of

Theorems 1 and 2 and require a more sophisticated analysis. One possible approach is
that, instead of using Equation (8), we replace DS and S in Equation (8) with DK and K,
respectively. This corresponds to the situation where once τ2 is estimated, it is regarded as
a fixed constant in the model and the same discussion is applied with Theorems 1 and 2.
The results of the random-effect models are examined in the simulation and application
sections. In addition, in our future work, we plan to extend our results to cover cases in
which τ2 depends on the choice of DS.

3. Simulation Experiments
3.1. Simulation Settings

In this section, we describe Monte Carlo simulations that were implemented to demon-
strate how sensitive the standard hypothesis test for meta-analyses is to the cherry-picking
of studies, allowing meta-analysts to derive biased conclusions.

We considered both Case 1, where meta-analysts try to overstate the effectiveness
of a treatment, despite there being no actual effect and Case 2, where meta-analysts
try to understate the effectiveness of a treatment, despite there being an actual effect.
The tunable parameters for the simulation scenarios were the number of cherry-picked
studies S = 2, . . . , 30, the proportion of cherry-picked studies among all studies S/K ∈
{1/3, 1/5, 1/10}, the true treatment effect θ ∈ {0, 0.5, 1.0}, and the between-study variance
τ2 ∈ {0, 0.01, 0.10, 0.50, 0.70}, where τ2 = 0 corresponds to the fixed-effect model and
τ2 > 0 corresponds to the random-effect model. Additionally, θ = 0 corresponds to Case 1
and θ > 0 corresponds to Case 2. Following the approach described by Brockwell et al.,
(2001) [22], we simulated K independent studies. Each study has yi and σ2

i , where yi and
σ2

i are assumed to follow

yi|σi ∼ N(θ, σ2
i + τ2), σ2

i ∼ 0.25χ2
1.

The variances σ2
i were assumed to follow a χ2

1 distribution, multiplied by 0.25 and truncated
to an interval of (0.009, 0.600), resulting in a mean within-study variance estimate of
0.17 [22]. Because τ2 was varied from 0 to 0.70, the heterogeneity measure I2 moved from
0% (no heterogeneity) to 80% (considerable heterogeneity). Throughout our simulations,
we used α = 0.05 as the type 1 error rate. Using these settings, we performed 1000 Monte
Carlo simulations. In addition, values of S > 30, were examined, but they did not yield
any notably different results. Therefore, we excluded the results for these settings.

3.2. Simulation Results

The simulation results revealed that when meta-analysts try to cherry-pick studies
to change (or manipulate) pooled estimates and obtain their preferred conclusions, they
have a chance of making it work in practice. Figures 1 and 2 present the simulation results
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for Cases 1 and 2, respectively. They present the proportions of false conclusions (i.e., the
proportion of 1000 iterations that succeeded in “flipping” the conclusion from significant to
nonsignificant).
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Figure 1. Simulation results for the standard hypotheses for Case 1, where meta-analysts overstate
the effect of the treatment, regardless of there being no actual effect: Proportion of False Conclusions
(i.e., type 1 error). (a, b) indicates θ = a and τ = b.
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Figure 2. Simulation results for the standard hypotheses for Case 2, where meta-analysts understate
the effect of the treatment, regardless of the actual effect: Proportion of False Conclusions (i.e., type 2
error). (a, b) indicates θ = a and τ = b.

Figure 1 presents the results for Case 1, where the true treatment effect is θ = 0. This
indicates that, when using the random-effect model (τ2 = 0.1, 0.5), the proportion of false
conclusions increases as S increases or S/K decreases in the standard hypothesis testing
framework. In particular, when τ2 is large, it is possible for meta-analysts to almost always
cherry-pick studies to falsely conclude a significant treatment effect, despite there being no
actual effect. When using the fixed-effect model (τ2 = 0), a similar tendency was observed:
the proportion of false conclusions increased as S increased or S/K decreased. Figure 2
also presents the results for Case 2 where the true treatment effects are θ = 0.5 and 1.0,
respectively. This shows that meta-analysts still have a chance of cherry-picking studies to
falsely conclude treatment insignificance, despite there being an actual effect. However,
it shows different trends from Case 1: the proportion of false conclusions sometimes
decreases as S increases. Especially when τ is small (τ = 0 or 0.01) and θ is large, the
standard hypothesis testing works well as S increases.
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4. Medical Application Studies

This section shows how we can cherry-pick studies from two medical datasets. We
emphasize that the original and subsequent analyses in the referenced articles were not
cherry-picked. However, since cherry-picking is not reported in practice by definition, it is
impossible to obtain real cherry-picked examples. Therefore, we made artificially cherry-
picked situations from these real-world datasets, which are described in the following
subsections.

4.1. Case 1 Example: Clinical Trials on the Effectiveness of Magnesium for Reducing the Mortality
of Acute Myocardial Infarction Patients

We considered the results of randomized clinical trials (RCTs) that tested the effec-
tiveness of intravenous magnesium for reducing the mortality following acute myocardial
infarction (AMI). Because magnesium has been shown to protect ischemic myocytes from
calcium overload, it is of significant interest to examine how magnesium can affect the
mortality of ischemic heart disease patients. Teo et al. [23] conducted a meta-analysis using
a fixed-effect approach based on seven studies (studies 1–7 in Figure 3), suggesting that
magnesium has a significant effect on reducing the mortality of AMI patients. However,
the results of a large trial (ISIS-4) indicated contradicting results, namely, that magnesium
has no significant effect on reducing mortality [24]. We considered 16 studies that reported
their summary statistics and the estimated odds ratio. They were extracted from Eggar
and Smith [25], including ISIS-4 and the seven studies in Teo et al. [23]. Figure 3 presents
the synthesized results when using the fixed-effect model presented by Teo et al. [23]. It is
shown that magnesium has no significant effect on reducing mortality when considering
all 16 studies; we obtained an estimated odds ratio (OR) (95% CI) of 0.994 (0.937, 1.055) and
a p-value of 0.579 based on the one-sided test defined in Equation (3). Therefore, when
using the 16 studies, there is a chance for meta-analysts to cherry-pick studies to obtain a
biased treatment effect of magnesium (corresponds to Case 1). For example, when using
the same set of studies as those used in Teo et al. [23], it appears that magnesium has a
significant effect on mortality reduction with an estimated OR (95% CI) is 2.224 (1.401,
3.531) and p-value < 0.001. Therefore, relying on the results of Teo et al. [23] to conclude
the effectiveness of magnesium (hypothetically) corresponds to Case 1.
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Figure 3. Meta-analysis of the results of 16 RCTs on the effectiveness of magnesium for reducing
mortality following AMI.
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4.2. Case 2 Example: Clinical Trials on the Effectiveness of St. John’s Wort for Treating Depression

We considered the results of nine RCTs on the effectiveness of extracts of Hypericum
perforatum (St. John’s wort) for treating depression. Originally considered to be an effec-
tive treatment for depression, there have been mixed findings from several clinical trials
comparing St. John’s wort to a placebo. Linde et al. [26], from which we borrowed data,
assessed a number of patients categorized as “responders” based on the Hamilton Rating
Scale for Depression (HRSD). Notably, 17 studies were dropped from the group of studies
used by Linde et al. [26] because they used a different version of the HRSD for assessing
the degree of depression.

Figure 4 presents the results for the random-effect model. It simulates how meta-
analysts can cherry-pick studies by selecting another definition of the treatment response
(Def. 1: HRSD score reduction of at least 50% compared to baseline or HRSD score after
therapy <10; Def. 2: HRSD reduction of at least 50% compared to baseline) to conclude
the insignificant effectiveness of St. John’s wort for depression, regardless of the actual
effect (i.e., this case study corresponds to Case 2): St. John’s wort provides a reduction in
depression when considering all nine studies with an estimated OR (95% CI) of 1.467 (1.067,
2.016) and a p-value of 0.009. In contrast, when restricting our analysis to the subset of
studies that applied only Def. 1 for the definition of a treatment response, we concluded
that St. John’s wort has a nonsignificant effect in reducing depression with an estimated
OR (95% CI) of 1.458 (0.753, 2.822) and a p-value of 0.132.
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Figure 4. Meta-analysis of the results from nine RCTs on the effectiveness of St. John’s wort for
treating depression.

5. Discussion

The conclusions of any meta-analysis can be biased if meta-analysts intentionally or
unintentionally cherry-pick a subset of all studies that lead to a desired favorable result.
This is achieved by choosing beneficial inclusion and/or exclusion criteria. We theoretically
assessed the conditions under which such cherry-picking is possible. To prevent cherry-
picking in a meta-analysis, one solution is to mandate stricter adherence to Cochrane and
other guidelines. This would require meta-analysts to register and publish their protocol
before carrying out the primary meta-analysis. In addition, a more advanced mechanism
would be necessary to verify the inclusion/exclusion criteria that were not initially included
in the protocol but were subsequently added. The R code is provided in a GitHub repository
(https://github.com/kingqwert/R/tree/master/metaCherry/, accessed on 2 March 2023)

https://github.com/kingqwert/R/tree/master/metaCherry/
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and will be hosted on the R CRAN repository (https://www.r-project.org/, accessed on 2
March 2023) in the near future, allowing others to apply our method easily.

Extensive Monte Carlo simulations were conducted to illustrate that the standard
meta-analysis method could be subject to cherry-picking, leading to biased results. The
chance of cherry-picking is remarkably high, especially when S is small. Furthermore,
two real data analysis problems were simulated to provide new insights into the results of
RCTs on the effectiveness of magnesium on AMI and St. John’s wort on depression. We
demonstrated that it is easy to obtain favorable, i.e., biased, conclusions by cherry-picking
studies based on biased inclusion and/or exclusion criteria. We encourage the re-evaluation
of our approach using other datasets.

We demonstrated that meta-analysts can cherry-pick a subset of studies by modifying
inclusion and/or exclusion criteria. However, this type of cherry-picking should not be
taken too literally: the theorems presented in this study can be applied to any type of cherry-
picking if information regarding K, S, and wi is available. In addition, we analyzed the case
of cherry-picking from a ‘subset’ of studies (i.e., the case of S < K). It is trivial to extend
this analysis to the case of K < S, where meta-analysts use unsuitable inclusion and/or
exclusion criteria to increase the total number of studies to obtain a favorable conclusion.
Similarly, although we focused on the case of one-sided right-tailed hypothesis testing in
this study, it is simple to extend our results to (i) the one-sided left-tailed hypothesis case
(H0 = 0 and H0 < 0) by using pmeta = Φ(θ̂

√
∑i∈DS

wi), and (ii) the two-sided hypothesis

case (H0 = 0 and H0 6= 0) by using pmeta = 2Φ(−θ̂
√

∑i∈DS
wi) instead of Equation (7).

In addition, the assumption of cherry-picking the top-S results is sometimes unrealistic,
and actual meta-analysts might try to cherry-pick the subset of studies in a more arbitrary
manner. However, we note again that, as discussed in Section 2.1, the theorems are still
valid, even if meta-analysts cherry-pick an arbitrary subset of all studies.

Similar to most published studies on meta-analyses, the within-study variance σ2
i

in Equation (1) was assumed to be known, ignoring the fact that it must be estimated in
practice. If the estimated σ2

i and τ2 values are used to define the p-value, it no longer follows
a standard normal distribution under the null hypothesis [27–29], eliminating the simplicity
of our theorems. In such cases, a more complicated asymptotic analysis would be required.
Furthermore, there have been many previous attempts to formulate a “publication bias”
using p-values [30,31]. It would be worthwhile to consider both selection and publication
biases simultaneously by using the proposed framework for hypothesis testing and its
associated p-value. However, further discussion about the conceptual difference between
the publication bias and selection bias due to cherry-picking is required.
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Appendix A

Lemma A1. Let t > 0 and X ∼ Beta(α, β), where Beta(α, β) is a beta distribution with shape
parameters α and β. Then,

P
[

X− α

α + β
> t
]
≤ exp(−2(α + β + 1)t2).

Proof. Marchal and Arbel [32] demonstrated that the beta distribution Beta(α, β) is σ2-sub-
Gaussian with a mean α/(α + β) and σ2 = 1/(4(α + β + 1)). It is well known that for a
σ2-sub-Gaussian random variable X with a mean µ and variance factor σ2, P[X− µ > t] ≤
exp(−t2/(2σ2)) holds for any t > 0.

Appendix B. Proof of Theorem 1

Proof. We will follow the techniques presented in Komiyama and Maehara [21] for our
proofs. An adversarial meta-analyst is assumed to cherry-pick studies that provide the
top-S smallest test statistics of −√wiyi (this is equivalent to the top-S smallest p-values).
Assume Φ−1(α) = x such that Φ(x) = α and {−√wiyi}i∈DS are sorted as

√
w1y1 ≥√

w2y2 ≥ · · · ≥
√

wSyS, which is equivalent to p1 ≤ p2 ≤ · · · ≤ pS.
From Equations (3) and (7), we have

wiyi

∑i∈DS
wi

= −
√

wi

∑i∈DS
wi

Φ−1(pi), θ̂ ≥ − Φ−1(α)√
∑i∈DS

wi

. (A1)

Note that, from Equations (2) and the assumption, we have

θ̂ =
∑i∈DS

wiyi

∑i∈DS
wi

= −
∑i∈DS

√
wiΦ−1(pi)

∑i∈DS
wi

≥ −
∑i∈DS

√
wi

∑i∈DS
wi

Φ−1(pS). (A2)

Therefore, for Equations (A1) and (A2), the sufficient condition can be written as

−
∑i∈DS

√
wi

∑i∈DS
wi

Φ−1(pS) ≥ −
Φ−1(α)√
∑i∈DS

wi

, (A3)

which is equivalent to

pS ≤ Φ


√

∑i∈DS
wi

∑i∈DS

√
wi

Φ−1(α)

. (A4)

Additionally, we have

Φ


√

∑i∈DS
wi

∑i∈DS

√
wi

Φ−1(α)

 ≥ Φ
(√

Swmax

S
√

wmin
Φ−1(α)

)
(Φ−1(α) < 0 since α ∈ (0, 1/2))

≥ 1
2
(1− ε), (the assumption)

where wmax = maxi∈DS wi and wmin = mini∈DS wi. Therefore, the sufficient condition can
be written as

pS ≤
1
2
(1− ε). (A5)
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In contrast, it is assumed that each pi (i = 1, . . . , K) is an i.i.d random sample from the
uniform distribution U(0, 1). Then, because meta-analysts are supposed to pick the top-S
smallest pi (i = 1, . . . , S) values and {pi}S

i=1 is ordered as p1 ≤ p2 ≤ · · · ≤ pS, we have

pS ∼ Beta(S, K− S + 1),

where Beta(α, β) is a beta distribution with the shape parameters α and β. Therefore, based
on Lemma 1 and the assumption above, the following statement holds with a probability
of 1− δ:

pS ≤
S

K + 1
+

√
log(1/δ)

2(K + 2)
<

S
K
+

√
log(1/δ)

2(S/ε + 2)
≤ 1

2
(1− ε). (A6)

By rearranging Equations (A5) and (A6), we obtain the claim of the theorem.

Appendix C. Proof of Theorem 2

Proof. Because the two cases discussed in Theorems 1 and 2 are somewhat complementary,
this proof is similar to the proof of Theorem 1 and follows similar reasoning. An adversarial
meta-analyst is assumed to cherry-pick studies that provide the top-S largest test statistics of
−√wiyi (which is equivalent to the top-S largest p-values). It is assumed that Φ−1(α) = x,
such that Φ(x) = α and {−√wiyi}i∈DS are sorted as

√
w1y1 ≤

√
w2y2 ≤ · · · ≤

√
wSyS,

which is equivalent to p1 ≥ p2 ≥ · · · ≥ pS. Now, we wish to show that

pmeta(DS) = Φ

−√ ∑
i∈DS

wi θ̂

 ≥ α. (A7)

From Equations (3) and (7), we have

wiyi

∑i∈DS
wi

= −
√

wi

∑i∈DS
wi

Φ−1(pi), θ̂ ≤ − Φ−1(α)√
∑i∈DS

wi

. (A8)

Note that from Equation (2) and the assumption, we have

θ̂ =
∑i∈DS

wiyi

∑i∈DS
wi

= −
∑i∈DS

√
wiΦ−1(pi)

∑i∈DS
wi

≤ −
∑i∈DS

√
wi

∑i∈DS
wi

Φ−1(pS). (A9)

Therefore, for Equations (A8) and (A9), the sufficient condition can be written as

−
∑i∈DS

√
wi

∑i∈DS
wi

Φ−1(pS) ≤ −
Φ−1(α)√
∑i∈DS

wi

, (A10)

which is equivalent to

pS ≥ Φ


√

∑i∈DS
wi

∑i∈DS

√
wi

Φ−1(α)

. (A11)
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Additionally, we have

Φ


√

∑i∈DS
wi

∑i∈DS

√
wi

Φ−1(α)

 ≤ Φ
(√

Swmin
S
√

wmax
Φ−1(α)

)
(Φ−1(α) < 0 since α ∈ (0, 1/2))

= Φ
(√

wmin
Swmax

Φ−1(α)

)
≤ 1− ε

2
, (the assumption)

where wmax = maxi∈DS wi and wmin = mini∈DS wi. Therefore, the sufficient condition
for (A11) can be written as

pS ≥ 1− ε

2
. (A12)

By contrast, it is assumed that each pi (i = 1, . . . , K) is an i.i.d random sample from the
uniform distribution U(0, 1). Then, as meta-analysts are supposed to pick the top-S largest
pi (i = 1, . . . , S) and {pi}S

i=1 is ordered as p1 ≥ p2 ≥ · · · ≥ pS, the following statement
holds:

pS ∼ Beta(K− S + 1, S).

Therefore, based on Lemma 1 and the assumption above, the following statement holds
with a probability of δ:

pS ≥ K− S + 1
K + 1

+

√
log(1/δ)

2(K + 2)

>

√
log(1/δ)

2(K + 2)

>

√√√√√ log(1/δ)

2
(

S
1− ε

+ 2
)

≥ 1− ε

2
. (A13)

By rearranging Equations (A12) and (A13), we obtain the claim of the theorem.
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