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Abstract: An optimized Schwarz domain decomposition method (DDM) for solving the local optical
response model (LORM) is proposed in this paper. We introduce a hybridizable discontinuous
Galerkin (HDG) scheme for the discretization of such a model problem based on a triangular mesh of
the computational domain. The discretized linear system of the HDG method on each subdomain is
solved by a sparse direct solver. The solution of the interface linear system in the domain decompo-
sition framework is accelerated by a Krylov subspace method. We study the spectral radius of the
iteration matrix of the Schwarz method for the LORM problems, and thus propose an optimized
parameter for the transmission condition, which is different from that for the classical electromagnetic
problems. The numerical results show that the proposed method is effective.

Keywords: local optical response model; hybridizable discontinuous Galerkin method; optimized
Schwarz method; Krylov subspace method; domain decomposition method

1. Introduction

Nanophotonics or nano-optics [1] is the study of the behavior of light on the nanome-
ter scale, and of the interaction of nanometer-scale objects with light. Moreover, such a
discipline is reshaping our worldview in many ways with fascinating (potential) appli-
cations such as novel biological detection and new storage media [2]. These applications
require fine control of the propagation of light waves. So, it is important to use appropriate
mathematical models to describe the behavior of the light–matter interactions [3]. Light
waves are regarded as electromagnetic (EM) waves and modeled by Maxwell’s equations.
Classical or semi-classical models can be employed to model the light–matter interactions,
such as the Drude model, the hydrodynamic Drude model [4], and the nonlocal optical
response model [5]. In this paper, we consider the classical local Drude model which is a
fairly simple yet efficient oscillator model for free electrons in metals that performs well
when the size of the considered nanostructure increases beyond ≥50 nm [6–9].

For a frequency–domain simulation with the Drude model, we are indeed required
to solve the time-harmonic Maxwell’s equations whose closed-form solutions are not
available. Thus, various numerical methods, such as the finite element (FE) method,
discontinuous Galerkin (DG) method [10–12], and hybridizable discontinuous Galerkin
(HDG) method, have been developed to solve Maxwell’s equations. Discretization by either
an FE method [13] or an HDG method [14–16] can yield a large sparse discretized linear
system. It is still difficult to solve the resulting system of linear algebraic equations by
either a direct solver or a standard preconditioned iterative method. On the other hand,
the domain decomposition method (DDM) of Schwarz-type is considered to be one of the
most efficient solving strategies for Helmholtz-type problems and then has been extended
for the time-harmonic Maxwell’s equations in [17–19]. Moreover, DDMs should be very
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suitable for implementing the high-performance parallel computations, because they can
decompose the large-scale and complex boundary value problems (BVPs) into a series of
small-scale and simple BVPs that can be solved separately. In short, DDMs are usually
employed to deal with such large-scale problems [20]. In [17], where the permittivity is a
real number, an optimized Schwarz method combined with an HDG method discretization
was used for EM problems, and the coupling between the Schwarz method and the HDG
method was shown to be natural.

In this paper, the permittivity is a complex number in the Drude model, which adds
the complexity to the optimized Schwarz method. We derive an optimized transmission
condition and a formulation of the spectral radius of the iteration matrix of the Schwarz
method. Furthermore, the parameters for an optimized transmission condition are dis-
cussed and tested. The subdomain problems are discretized by an HDG method [16] and
the resulting linear systems can be solved by a sparse direct solver. The popular Krylov
subspace method, namely GMRES [21], is considered to accelerate the solution of the
interface linear system.

There are five sections in the rest of this paper. First of all, the Drude model and some
notations are briefly introduced in Section 2. The discretization of Drude model by an
HDG formulation are described in Section 3. In Section 4, we present the formulations of a
Schwarz algorithm and study the parameters of an optimized transmission condition in a
two subdomains setting. Numerical tests are presented in Section 5 to show the effectiveness
of the proposed method. Finally, we draw some concluding remarks in Section 6.

2. Problem and Notations

In this section, we will introduce several concepts and notations which are essential
for our present study.

2.1. Maxwell’s Equations with Drude Model

We consider the 2D Maxwell’s equations in the frequency domain with a first-order
Silver–Müller absorbing boundary condition (i.e., an artificial absorbing boundary condi-
tion) [22] 

CurlH = −iωε0εE, in Ω,
curlE = iωµ0H, in Ω,
n× E− H = n× Einc − Hinc = ginc, on Γa,

(1)

where i =
√
−1 stands for the imaginary unit, ω refers to the angular frequency of the light

wave, ε, ε0, and µ0 represent the relative permittivity, the permittivity of free space, and
the permeability of free space, respectively, E =

(
Ex, Ey

)
and H = Hz denote the electric

and magnetic fields, the superscript “·inc” means the incident field, and n is the outward
unit normal vector. The differential operators in this 2D setting are CurlH = (∂y H,−∂x H)
and curlE = ∂xEy − ∂yEx. The computational domain is denoted by Ω, and the artificial
absorbing boundary is denoted by Γa [22].

Note that ε = 1 in the free space. According to the Drude model, ε accounts for the
interactions between the time-varying electric field and the electron gas [2]. It varies with
the angular frequency of the incoming light, i.e.,

ε(ω) = 1−
ω2

p

ω(ω + iγ)
, (2)

where ωp denotes the bulk plasma frequency of the material and γ is a damping constant.
In [23], the authors consider the time-domain Maxwell–Drude model with a DG time-
domain method.
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2.2. Notations

We write here a triangulation Th of Ω with K denoting an element of discrete mesh.
Fh, F I

h , and FB
h represent the set of all edges of Th, the set of all the edges of Th associated

with the nanostructure, and the union of all the boundary edges of Th, respectively. For an
element K1 ∈ Th and its adjacent element K2, F = K1 ⋂K2 is the common edge of K1

and K2. Let (v1, v1) be the traces of (v, v) on F from the interior of K1 and (v2, v2) be the
traces of (v, v) on F from the interior of K2. n1,2 and t1,2 stand for the outward unit normal
vectors to K1,2 and the unit tangent vectors to the boundaries ∂K1,2, respectively, so we
have t1 × n1 = 1 and t2 × n2 = 1. On the face F, {·} and J·K can be defined as

{v}F = 1
2 (v

1 + v2),
{v}F = 1

2 (v
1 + v2),

Jn× vKF = n1 × v1 + n2 × v2,
JvtKF = v1t1 + v2t2.

For each K ∈ Th (F ∈ Fh), p ≥ 0 refers to the local interpolation order, and Pp(K)
(Pp(F)) refers to the space of polynomial functions of degree at most p. We define the
discontinuous FE spaces Vp

h , Vp
h , and a traced FE space Mp

h as follows

Vp
h = {v ∈ L2(Ω)|v|K ∈ Pp(K), ∀K ∈ Th},

Vp
h = {v ∈ (L2(Ω))2|v|K ∈ (Pp(K))2, ∀K ∈ Th},

Mp
h = {η ∈ L2(Fh)|η|F ∈ Pp(F), ∀F ∈ Fh and η|Γm = 0}.

Note that L2(Ω) represents the space of a squared integrable functions over Ω, where Γm
satisfies Γm ∪ Γa = ∂Ω, Γm ∩ Γa = ∅. Note that ∂Ω denotes the boundary. Mp

h consists of
the functions which are not continuous at its ends, but continuous on an edge. For a domain
D in R2, u, v in (L2(D))2 and u, v in L2(D), (u, v)D refers to

∫
D u · v̄dx where · denotes the

complex conjugation and (u, v)D stands for the inner product
∫

D uv̄dx. On an interface F,
〈u, v〉F stands for the inner product

∫
F uv̄ ds. So on the whole domain Ω, we have

(·, ·)Th = ∑
K∈Th

(·, ·)K, 〈·, ·〉∂Th
= ∑

K∈Th

〈·, ·〉∂K,

〈·, ·〉Fh = ∑
F∈Fh

〈·, ·〉F, 〈·, ·〉Γa = ∑
F∈Fh

⋂
Γa

〈·, ·〉F.

3. HDG Formulations

We consider an approximate solution (Eh, Hh) of 2D Maxwell’s equations in the space
Vp

h ×Vp
h that satisfies for each element K{

(iωε0εEh, v)K + (CurlHh, v)K = 0, ∀v ∈ Vp(K),
(curlEh, v)K − (iωµ0Hh, v)K = 0, ∀v ∈ Vp(K).

Use the Green’s formula for the above equations and replace the boundary terms with the
numerical traces Êh, Ĥh. One can have{

(iωε0εEh, v)K + (Hh, curlv)K − 〈Ĥh, n× v〉∂K = 0, ∀v ∈ Vp(K),
(Eh, Curlv)K + 〈n× Êh, v〉∂K − (iωµ0Hh, v)K = 0, ∀v ∈ Vp(K).

(3)
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A proper choice of numerical trace Êh, Ĥh affects the correctness and the convergence of the
discrete problem (3). According to the ideas in [16], we choose a hybrid variable λh ∈ Mp

h ,
and set Êh and Ĥh as follows {

Ĥh = λh,
Êh = Eh + τ(Hh − λh)t,

(4)

where τ > 0 is the local stabilization parameter. Considering the contributions of Equation (3)
over all elements, the artificial absorbing boundary condition in the formulation of this
conservativity condition and enforcing the continuity of the tangential component of Êh,
we have

(iωε0εEh, v)Th + (Hh, curlv)Th − 〈λh, n× v〉∂Th
= 0, ∀v ∈ Vp(K),

(curlEh, v)Th − 〈τ(Hh − λh), v〉∂Th
− (iωµ0Hh, v)Th = 0, ∀v ∈ Vp(K),

〈n× Eh, η〉∂Th
− 〈τ(Hh − λh), η〉∂Th

− 〈λh, η〉Γa = 〈ginc, η〉Γa , ∀η ∈ Mp
h .

(5)

Using the variable λh to express Eh and Hh, then we can obtain a global problem with only
the unknown λh

ah(λh, η) = bh(η), (6)

since all the interior faces satisfy the conservativity condition, we have

〈Jn× ÊhK, η〉F I
h
= 0, (7)

and inserting Êh = Eh + τ(Hh − λh)t into Equation (7), we can obtain

Jn× ÊhK = Jn× (Eh + τ(Hh − λh)t)K
= Jn× EhK− Jτ(Hh − λh)K

= Jn× EhK− τ1H1
h − τ2H2

h + (τ1 + τ2)λh = 0,

(8)

where the superscript and the subscript 1 and 2 denote the values from the two elements
coupled by edge. Therefore, the numerical traces can be expressed as

Ĥh = λh =
1

τ1 + τ2
(τ1H1

h + τ2H2
h)−

1
τ1 + τ2

Jn× EhK, (9)

and using a similar method we also can obtain

Êh =
1

τ1 + τ2
(τ2E1

h + τ1E2
h) +

τ1τ2

τ1 + τ2
JHhtK. (10)

4. An Optimized Schwarz Method

To introduce the Schwarz method, we divide the domain Ω into Ω1 and Ω2, and note
that Ω1 and Ω2 are two non-overlapping subdomains. One can easily obtain the case that
the domain Ω is divided into many subdomains, because the transmission condition only
involves the adjacent subdomains. For the given initial guesses (El,0, Hl,0), l = 1, 2, on the
interface between the subdomains, we can compute (El,n+1, Hl,n+1) from (El,n, Hl,n) with
the following Schwarz method [17].
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
iωε0εE1,n+1 + CurlH1,n+1 = 0, in Ω1,
curlE1,n+1 − iωµ0H1,n+1 = 0, in Ω1,
n× E1,n+1 − H1,n+1 = n× Einc − Hinc = ginc, on Γ1a,
Bn1(E

1,n+1, H1,n+1) = Bn1(E
2,n, H2,n), on Γ1.

iωε0εE2,n+1 + CurlH2,n+1 = 0, in Ω2,
curlE2,n+1 − iωµ0H2,n+1 = 0, in Ω2,
n× E2,n+1 − H2,n+1 = n× Einc − Hinc = ginc, on Γ2a,
Bn2(E

2,n+1, H2,n+1) = Bn2(E
1,n, H1,n), on Γ2.

(11)

The computational domain Ω is displayed in Figure 1, where Γ1,2 denotes the interface
between the two adjacent subdomains. Γ1a and Γ2a denote the artificial absorbing boundary
in each subdomain. The transmission condition is defined as Bnl (E, H) = Sl H + n× E,
τi = Sl , i, l = 1, 2, i 6= l. In the following, we will show that the coupling between the
Schwarz method and the HDG method is natural.

We set K1 ∈ Ω1, K2 ∈ Ω2 to be two elements sharing a common face F between two
adjacent subdomains. We denote n1,2 as the outward unit normal vectors to K1,2 and impose

Dirichlet data H1,n+1
h = Ĥ1

h(H1,n+1
h , E1,n+1

h , H2,n
h , E2,n

h ) on F with K1, then from Equation (9)
we have

τ2H1,n+1
h = τ2H2,n

h − Jn× EhK,

and using Jn× EhK = n1 × E1,n+1
h − n1 × E2,n

h , so we have

τ2H1,n+1
h = τ2H2,n

h − (n1 × E1,n+1
h − n1 × E2,n

h ),

that is
τ2H1,n+1

h + n1 × E1,n+1
h = τ2H2,n

h + n1 × E2,n
h ,

we can reach similar conclusions with K2

τ1H2,n+1
h + n2 × E2,n+1

h = τ1H1,n
h + n2 × E1,n

h .

Then one can set
S1 = τ2, S2 = τ1,

and we have the transmission condition

Bn(E, H) = Sl H + n× E. (12)
 

Γ! Γ"# 

Γ!# Γ" 

Ω" Ω! 

Figure 1. Some parameters on computational domain.

Remark 1. Notice when Sl =
1√

Re(ε)
, l = 1, 2, the transmission condition will be the Silver–

Müller condition, where Re(·) takes the real part of a complex number. We call it the classical
transmission condition [17].

4.1. Optimized Parameters for Optimized Schwarz Method

In the following, we try to give an analysis of the theoretical spectral radius of the
iteration matrix of the Schwarz iteration, which is similar to that in [24]. Suppose that Ω1 is
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the left half plane (−∞, 0]× (−∞,+∞) and Ω2 is the right half plane (0,+∞)× (−∞,+∞).
Taking a Fourier transform in the y direction with Equation (1), we obtain

iωε0εEx − ikH = 0,
iωε0εEy − ∂x H = 0,
∂xEy + ikEx − iωµ0H = 0,

(13)

where k is the Fourier coefficient. According to the first equation of Equation (13), replacing
Ex with H, we obtain

∂x

[
H
Ey

]
+

[
0 −iωε0ε

ik2

ωε0ε − iωµ0 0

][
H
Ey

]
= 0. (14)

Because of the radiation condition, the solution of Equation (14) in Ωl (l = 1, 2) is given by[
H1

E1
y

]
= a1v1eλ1x = a1

[
iωε0ε

λ1
1

]
eλ1x, (15)

[
H2

E2
y

]
= a2v2eλ2x = a2

[
iωε0ε

λ2
1

]
eλ2x, (16)

where λ1 =
√

k2 −ω2ε0µ0ε, λ2 = −
√

k2 −ω2ε0µ0ε are the eigenvalues of the coefficient
matrix in Equation (14), v1, v2 are their corresponding eigenvectors, and the coefficients
a1, a2 are uniquely determined by the transmission conditions. Set λ = λ1 = −λ2 =√

k2 −ω2ε0µ0ε. Inserting Equations (15) and (16) into the last equation of Equation (11),
we have {

S1an+1
1

iωε0ε
λ eλx + an+1

1 eλx = −S1an
2

iωε0ε
λ e−λx + an

2 e−λx,
−S2an+1

2
iωε0ε

λ e−λx − an+1
2 e−λx = S2an

1
iωε0ε

λ eλx − an
1 eλx.

At the n-th step of the Schwarz algorithm with x = 0, the coefficients a1, a2 satisfy the system

an+1
1 =

−S1iωε0ε + λ

S1iωε0ε + λ

S2iωε0ε− λ

−S2iωε0ε− λ
an−1

1 ,

then we have the spectral radius ρ in the form

ρ =
−S1iωε0ε +

√
k2 −ω2ε0µ0ε

S1iωε0ε +
√

k2 −ω2ε0µ0ε

S2iωε0ε−
√

k2 −ω2ε0µ0ε

−S2iωε0ε−
√

k2 −ω2ε0µ0ε
. (17)

In order to derive an optimized transmission condition, one can set the second-order
approximation of the operator Sl = αl + βl∂

2
τ , l = 1, 2, see Reference [25], where ∂2

τ denotes
the second-order derivative along with the interface and αl , βl are the parameters to be
determined [17]. With the zeroth order approximation of the operator Sl , i.e., S1 = α1,
S2 = α2, where αl (l = 1, 2) are two complex numbers, then

ρ =
−α1iωε0ε +

√
k2 −ω2ε0µ0ε

α1iωε0ε +
√

k2 −ω2ε0µ0ε

α2iωε0ε−
√

k2 −ω2ε0µ0ε

−α2iωε0ε−
√

k2 −ω2ε0µ0ε
. (18)

Therefore one can consider the optimization problem [24,25] as follows to determine the
optimized parameters αl (l = 1, 2)

α∗l = arg min
α1,α2

(max(|ρ|)), l = 1, 2. (19)
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Unfortunately, it is difficult to solve this optimization problem explicitly because this
problem is an open problem. For classic Maxwell’s equations with real permittivity, αl =
(iω)(−1)(pl + ipl) is often used [17,19,24], where

pl =

√
πC

1
4
w√

2
√

h
, and Cw = min

(
k2

1 −ω2, ω2 − k2
2

)
, (20)

where k1 and k2 are the highest and lowest possible frequency allowed [24]. However, this
choice does not work well for the Drude model. We present four possible guesses of αl in
Table 1 which lead to different optimized transmission conditions. The term “classical” in
Table 1 represents classical transmission condition mentioned in Remark 1. Case3 is the
above common choice.

Table 1. Spectral radius ρ and parameter α.

Cases αl ρ

classical 1 1

case1 (iω)(−1)(−pl + ipl) 0.6711

case2 (iω)(−1)(−pl − ipl) 0.9942

case3 (iω)(−1)(pl + ipl) 1.0059

case4 (iω)(−1)(pl − ipl) 1.4900

As seen from Table 1, we find that the Schwarz methods with the last two cases do not
converge at all. Case1 is theoretically the best choice which can be seen from the spectral
radius ρ. In the next sections, numerical results will confirm this theoretical observation.

4.2. HDG Discretization

Let Γi
a = Γa

⋂
∂Ωi and Γi,j = ∂Ωi

⋂
Ωj, i, j = 1, 2. Using the optimized transmission

conditions on the interface Γi,j, one can make discrete Equation (11) using the HDG formula-
tion Equation (5) which yields a problem as Equation (21). By finding (Ei,n+1

h , Hi,n+1, λi,n+1
h )

(n = 1, 2, . . .) until convergence, and satisfying for all v ∈ Vi
h, v ∈ Vi

h and η ∈ Mi
h, we can

obtain the solution

(iωε0(1−
ω2

p
ω(ω+iγ) )E

i,n+1
h , v)T i

h
+ (Hi,n+1

h , curlv)T i
h
− 〈λi,n+1

h , n× v〉∂T i
h
= 0,

(curlEi,n+1
h , v)T i

h
− 〈τ(Hi,n+1

h − λi,n+1
h ), v〉∂T i

h
− (iωµ0Hi,n+1

h , v)T i
h
= 0,

〈Siλ
i,n+1
h , η〉Γi,j + 〈n× Ei,n+1

h , η〉∂T i
h
− 〈τHi,n+1

h , η〉∂T i
h
+ 〈τλi,n+1

h , η〉∂T i
h

−〈λi,n+1
h , η〉Γi

a
= 〈Siλ

j,n
h , η〉Γi,j + 〈n× Ej,n

h , η〉
∂T j

h
− 〈τH j,n

h , η〉
∂T j

h

+〈τλ
j,n
h , η〉

∂T j
h
+ 〈ginc, η〉Γi

a
,

(21)

where the quantity 1− ω2
p

ω(ω+iγ) is just equal to ε(ω) mentioned in Equation (2). For an
element Ke, we rewrite the local solution (Eh, Hh) and hybrid variable λh like the form
in Equation (17) of [17], i.e., at this moment, the discretized system is transformed to solve
the following problemK1

ii 0 K1
ig

0 K2
ii K2

ig
K1

gi K2
gi K1

gg + K2
gg


Λ1

h,i
Λ2

h,i
Λh,g

 =

 b1
h,i

b2
h,i

b1
h,g + b2

h,g

, (22)

where g represents the according degrees of freedom (DOFs) on Γ1,2 and i indicates the
according DOFs in Ω1 or Ω2. Moreover, this resulting linear system (22) is large, sparse



Entropy 2023, 25, 693 8 of 14

but complex non-Hermitian, so the sparse direct solvers are always very expensive and
prohibitive [26,27]. Thus, in the next section we use the Krylov subspace methods [21],
which only depend on the information of the coefficient matrix-vector products.

Now we summarize the main steps of solving the Drude model with an optimized
Schwarz method discretized by HDG method as follows:

• The model problem is split into some sub-problems with the corresponding subdo-
mains which are discretized using an HDG method;

• Then we solve the resulting system of linear algebraic Equations (6) in each subdomain
by a sparse direct solver;

• Finally, for the interface system between the two subdomains, solving the resulting
linear systems (22) in the domain is accelerated using a Krylov subspace method.

5. Numerical Tests

In this section, we present two numerical results to show that the optimized Schwarz
method is effective. All the numerical simulations are implemented in MATLAB R2012a
and performed on a desktop with an AMD A6-6310 APU with AMD Radeon R4 Graphics
CPU of 1.80 GHZ and 4.0 GB memory. We only employ the zeroth order approximation of
Sl in our tests. We use Gmsh (see https://gmsh.info/ (accessed on 15 September 2022))
to decompose the domains. In the following, “HDG-P1” denotes the HDG discretization
method relying on a nodal Lagrange basis interpolation of order p = 1. For the numerical
solution, we set the stopping criterion of the iteration process as 10−6; that is, when the
relative residual

‖rk‖2

‖r0‖2
< 10−6,

then we stop the iteration of the Krylov subspace method, namely GMRES (DD-Gmres).

5.1. Cylindrical Nanowire Problem

In this test, we set the radius of the cylinder to 20 nm. The interband transitions are
ignored here. The computational domain Ω = [−L, L]2 is a square with L = 200 nm. We
impose the artificial absorbing boundary condition on the boundary of Ω. In our test, we
set ωp = 8.65× 1015, γ = 0.01ωp [28]. A typical subdomain decomposition is shown in
Figure 2a. Meshes for the cylindrical nanowire problem are shown in Figure 2b.

(a) (b)

Figure 2. Cylindrical nanowire problem. (a) A subdomain decomposition and (b) meshes for
the problem.

In Table 2, we divide the domain into 3288 elements with 1645 nodes. In Table 3,
we divide the domain into 13,024 elements with 6513 nodes. We chose ω = 1.4 ωp
and ω = 0.4 ωp since they are closest to the resonance frequency of the material. In fact,
the Maxwell’s equations are often considered to be more difficult to solve around the reso-

https://gmsh.info/
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nance frequency than other frequencies [5]. The results of different optimized parameters
with different subdomains at ω = 1.4 ωp and ω = 0.4 ωp are presented in Tables 2 and 3.
The results show that the parameters with case3 do not work well for the Drude model
problem. With the same number of subdomains, case1 and case2 converge much faster
than the classical Schwarz method, and case3 which is consistent with Tables 2 and 3.
Furthermore, case1 outperforms case2 under the same number of subdomains. For each
case, the number of iterations increases with the increasing of number of subdomains.

Table 2. The number of GMRES iterations for the cylindrical nanowire problem with HDG-P1

(medium size discretization).

Nodes Elements
Number of Subdomains 2 4 8

Krylov Subspace Method DD-Gmres DD-Gmres DD-Gmres

1645 3288

ω = 0.4ωp

case1 46 51 59
case2 50 60 74
case3 82 123 182

classical 88 113 140

ω = 1.4ωp

case1 39 43 50
case2 53 67 86
case3 100 169 267

classical 65 83 100

Table 3. The number of GMRES iterations for the cylindrical nanowire problem with HDG-P1

(large-scale discretization).

Nodes Elements
Number of Subdomains 2 4 8

Krylov Subspace Method DD-Gmres DD-Gmres DD-Gmres

6513 13,024

ω = 0.4ωp

case1 69 95 117
case2 73 104 131
case3 111 189 293

classical 122 184 232

ω = 1.4ωp

case1 46 52 65
case2 60 80 105
case3 125 217 366

classical 73 103 126

The domain in the following tests contains 13,024 elements with 6513 nodes. We show
how the number of iterations required by the GMRES method varies with the number of
subdomains at ω = 1.4ωp and ω = 0.4ωp in Figure 3. As seen from Figure 3, we can find
that the number of iterations for GMRES increases with the number of subdomains. Addi-
tionally, case1 increases more slowly than that of the classical Schwarz method. For two
subdomains, how the interpolation order p in the HDG formulation affects the convergence
at the frequency ω = 1.4ωp is shown in Table 4. We observe that the number of iterations
increases with the increasing of p for each case. Furthermore, case1 outperforms the classi-
cal Schwarz method under the same p. Field distributions at the frequency ω = 0.4ωp are
presented in Figure 4. Note that in the above tests we set the value of the local stabilization
parameter τ = 1. The local stabilization parameter τ varies how it affects the number of
iterations at ω = 1.4ωp; this is shown in Table 5.
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(a) (b)

Figure 3. Number of GMRES iterations vs. number of subdomains. (a) ω = 0.4ωp and (b) ω = 1.4ωp.

Table 4. The influence of interpolation order p in the HDG method on the number of
GMRES iterations.

Interpolation Order 1 2 3

case1 46 56 65
case2 60 70 78
case3 125 137 149

classical 73 84 94

Table 5. The influence of the local stabilization parameter τ in the HDG method on the number of
DD-gmres iterations.

Number of Subdomains 2 4

Value of τ τ = 1 τ = −1 τ = i τ = −i τ = 1 τ = −1 τ = i τ = −i

case1 46 48 45 49 52 55 52 56
case2 60 58 57 61 80 81 79 83
case3 125 131 127 127 217 229 221 224

classical 73 85 78 84 103 119 107 120

(a) (b) (c)

Figure 4. Field distributions of the cylindrical nanowire problem. (a) Ex, (b) Ey, and (c) Hz.

5.2. Dimer of Cylindrical Nanowires

The computational domain is a rectangle with length and width of 300 nm and 200 nm,
respectively. We divide the computational domain into 2226 elements with 1114 nodes.
Then we consider the plasmonic dimer structures with small gaps [3,29]. We use the
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parameters in [3]: ωp = 1.34× 1016, γ = 1.14× 1014. The radius of the cylinder is 30 nm.
We present a typical subdomain decomposition in Figure 5.

Figure 5. Dimer of cylindrical nanowires: a typical subdomain decomposition.

Table 6 shows how the number of iterations varies with the number of subdomains
at ω = 0.4 ωp. As we can see from Table 6, case1 converges much faster than the classical
Schwarz method with the same number of subdomains. For each case, the number of
iterations increases as we increase the number of subdomains; how the number of iterations
varies with the number of subdomains is shown in Figure 6. For two subdomains, how the
interpolation order p in the HDG formulation affects the convergence is shown in Table 7.
As seen from Table 7, we can find that the number of iterations increases as we increase
the interpolation order. The field distributions at this particular frequency are displayed in
Figure 7.

Table 6. The number of GMRES iterations for the dimer of cylindrical nanowires with HDG-P1.

Nodes Elements
Number of Subdomains 16 32 64

Krylov Subspace Method DD-Gmres DD-Gmres DD-Gmres

1114 2226 ω = 0.4ωp

case1 269 306 350
case2 278 317 397
case3 400 508 632

classical 353 434 571

Figure 6. Number of GMRES iterations vs. number of subdomains.
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Table 7. The influence of interpolation order p in the HDG method on the number of
GMRES iterations.

Interpolation Order 1 2 3

case1 79 104 119
case2 82 108 120
case3 123 170 203

classical 102 137 157

(a) (b)

Figure 7. Field distributions of the dimer of cylindrical nanowires problem. (a) Ex and (b) Ey.

6. Conclusions

In the previous study [17], where the permittivity is a real number, the authors have
solved the Maxwell’s equations with an optimized Schwarz method discretized by an HDG
method, which performs well. In the current paper, the permittivity is a complex number in
the Drude model, which adds the complexity to the optimized Schwarz method. We employ
an optimized Schwarz method combined with an HDG discretization to solve the local
optical response model. The domain is arbitrarily divided into several subdomains. New
transmission parameters are proposed and tested. Numerical tests show that the optimized
Schwarz method with a proposed parameter works quite well for Drude model problems.

For future work, it is noted that the coefficient matrix of the resulting linear system (22)
is complex symmetric, which means that some particular Krylov subspace solvers [30,31]
with suitable preconditioners for such linear systems can be employed to reduce the
computational cost. In addition, it will be meaningful to extend the proposed method for
solving three-dimensional model problems.
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