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Abstract: Noisy Intermediate-Scale Quantum (NISQ) systems and associated programming interfaces
make it possible to explore and investigate the design and development of quantum computing
techniques for Machine Learning (ML) applications. Among the most recent quantum ML approaches,
Quantum Neural Networks (QNN) emerged as an important tool for data analysis. With the QNN
advent, higher-level programming interfaces for QNN have been developed. In this paper, we survey
the current state-of-the-art high-level programming approaches for QNN development. We discuss
target architectures, critical QNN algorithmic components, such as the hybrid workflow of Quantum
Annealers and Parametrized Quantum Circuits, QNN architectures, optimizers, gradient calculations,
and applications. Finally, we overview the existing programming QNN frameworks, their software
architecture, and associated quantum simulators.

Keywords: Quantum Neural Networks; QNN programming frameworks; Amazon Braket; D-Wave
Ocean; Intel HQCL; Microsoft QDK; Nvidia CUDA Quantum; OriginQ QPanda; Qiskit Machine
Leaning; PennyLane; Rigetti Grove; Strawberry Fields; TensorFlow Quantum; Torch Quantum;
Zapata Orquestra

1. Introduction

Quantum computing is emerging as a disruptive and promising approach to attacking
computational and data analysis problems. Quantum computing relies on three essential
quantum effects inaccessible directly by classical computing systems [1,2]: (i) calculation
on a superposition of quantum states somehow reminiscent of parallel computing, (ii) en-
tanglement to correlate different quantum states, and (iii) quantum tunneling. These three
effects can be used to seek the so-called quantum advantage [3] over classical algorithms by,
for instance, computing in a superposition or hopping between optimization landscapes
via quantum tunneling. The first critical quantum computing applications with quantum
advantage are in the area of cryptology and search algorithms with the most famous Shor’s
and Grover’s algorithms. Today, researchers’ attention started focusing on the possibility
of developing quantum Machine Learning (ML) applications [4,5] for classical and quantum
data, e.g., data encoded as a superposition of quantum states, resulting from quantum
simulations or sensing.

The early quantum ML approaches rely on the so-called quantum Basic Linear Algebra
Subprograms (qBLAS) primitives [4]. Examples of qBLAS routines are the Quantum
Fourier Transform (QFT), Quantum Phase Estimation (QPE) for obtaining eigenstates
and eigenphases, and the Harrow–Hassidim–Lloyd (HHL) algorithm for solving linear
systems [6]. These qBLAS-based ML methods consist of classical ML approaches, such
as the quantum Principal Component Analysis (PCA) [7], quantum regression with least-
square fitting [8], quantum topological analysis [9], quantum Bayesian inference [10], and
quantum Support Vector Machine (SVD) [11]. While these quantum ML methods exhibit a
clear quantum advantage concerning corresponding classical algorithms, severe constraints,
such as embedding classical data into quantum states, the need for quantum memory,
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qRAM [12], and output analysis and post-processing, limit their immediate applicability
on Noisy Intermediate-Scale Quantum (NISQ) computers [13].

Conversely, a second family of quantum ML methods, based on heuristics and hybrid
classical-quantum computing instead of purely quantum BLAS primitives, can readily
exploit the NISQ systems, albeit not demonstrating a crystal clear quantum advantage
yet [14,15]. These methods target the development of the so-called Quantum Neural
Networks (QNN). Similarly to classical Neural Networks (NN), in QNNs, an optimization
process provides the weights and biases of a neural network by minimizing a loss function
measured (or sampled) on the quantum computers. This survey focuses on this second
family of quantum ML methods that can readily use NISQ systems.

With quantum computers hardware becoming widely available on several cloud ser-
vices (e.g., via IBM, Google, Rigetti, Amazon Braket, and Microsoft Quantum Azure clouds,
to mention a few examples), there is an increased interest on the software quantum com-
puting side, specifically in designing and developing programming abstractions, patterns,
and templates to assist application developers and data scientists in implementing QNNs
in a productive and high-performance manner.

Regarding software development for quantum computing, there is already an ecosys-
tem of programming approaches to express quantum algorithms in terms of the quantum
gate and circuit abstractions. Examples of established programming systems [16] for the
quantum computing models are the QASM [17], akin to the assembly language for classical
CPUs, IBM’s Qiskit [18], Google’s Cirq and Rigetti’s PyQuil [19], to mention a few. These
programming models use an offloading paradigm, similar to the one used for Graphical
Processing Units (GPU) programming languages: the quantum language provides means
to define quantum circuits on a CPU, offload or launch the quantum circuit on the QPU from
the CPU (via a connection to the cloud), execute the circuit, measure an observable several
times, and finally return the measurements to the CPU.

While these programming systems enable the development and implementation of
quantum computing primitives, such as QFT and QPE, data scientists and application
developers require higher-level programming models that allow them to express their algo-
rithms in terms of quantum neural units, layers, loss functions, optimizers, and automatic
differentiation (to cite a few of the technologies critical to QNN development). Higher-level
programming frameworks, such as TensorFlow [20] or PyTorch [21] for quantum comput-
ers, are needed to increase the programmer’s productivity in developing applications on
quantum computers. In addition, together with means to express neural network concepts
and abstractions for training QNNs, quantum programming frameworks must integrate
with classical deep-learning frameworks to leverage existing software infrastructure.

In the last years, the number of QNN software has bloomed, leading to the transition
of classical NN software to quantum-enabled versions (examples are TensorFlow Quantum
and Torch Quantum), development of QNN abstractions and templates on top of existing
quantum computing frameworks (for instance, the Qiskit machine learning library built
on the top of IBM Qiskit) and creation of new programming frameworks, such as the
Xanadu’s PennyLane, targeting specifically differentiable programming and QNNs.

This article aims to provide an outlook on the different technologies and methodolo-
gies used for developing QNNs, and an overview of existing higher-level QNN program-
ming frameworks. Section 2 reviews the current target quantum computer architectures,
approaches for implementing QNNs, and methodologies, including QNN approaches,
optimizers, differentiation techniques, and applications. In Section 3, we overview different
and emerging software frameworks for developing QNNs, emphasizing characteristic fea-
tures, software organization, and associated computer simulators. Finally, we summarize
the review and outline future challenges for QNN frameworks in Section 4.

2. Quantum Neural Network Technologies and Methodologies

This section provides an overview of the target quantum architectures on which
QNNs can be deployed, the methods and algorithms for implementing QNN, and essential
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technologies in use, such as QNN building blocks, optimizers, and automatic differentia-
tion techniques.

2.1. Target NISQ Architectures for QNN

At a high level, we can divide the QNN target quantum computer architectures into
two broad categories:

1. Quantum Annealers (QA). In this quantum computing approach, the loss function
is expressed as the cost function of a QUBO (Quadratic Unconstrained Binary Opti-
mization) problem, equivalent to the Hamiltonian of an Ising system [22]. Currently,
the most established QA machines are from the Canadian D-Wave. Additional com-
panies working on and researching the development of QA platforms are Fujitsu,
with its Digital Annealer [23,24], Toshiba, with its Simulated Bifurcation Machine
(SBM) [25], NEC (developing a QA processor using the so-called Lechner-Hauke-
Zoller architecture [26]), and Qilimanjaro Quantum Tech, a spinoff of the Barcelona
Supercomputing Center.

2. Universal Gate Quantum Computers. In this quantum computing model, the QNN
loss function is expressed in terms of a measurement associated with a parametrized
quantum circuit using universal quantum gates. Differently from QAs, universal
quantum computers can solve problems beyond optimization tasks, formulated as the
minimization of an Ising Hamiltonian.
There are two formulations for the universal quantum gates that can be used to express
the QNN loss function:

(a) Discrete Qubit-Based Quantum Computing. Qubit-based architectures are the
most established general-purpose quantum computing approach. They use the
discrete formulation of a quantum state equivalent to a bit [27]. The qubit |φ〉
is expressed as the combination (or a superposition) of the states |0〉 and |1〉 as
|φ〉 = φ0 |0〉+ φ1 |1〉. We use a set of discrete complex-valued coefficients, such as
φ0 and φ1, whose modulus squared corresponds to the probability of measuring
|0〉 and |1〉 in the qubit system measurement.
Discrete-qubit QNNs rely on parametrizing discrete quantum gates, such as
rotation and Pauli gates. Discrete qubit-based QNNs are generally considered a
good match for classification tasks because of the discrete nature of the problem.
Among the most famous hardware implementations (and associated software)
in this category, there are IBM (Qiskit), Google (Cirq), Rigetti (Forest), and
OriginQ (Qpanda) quantum computers. All these implementations use supercon-
ducting/transmon qubit technologies. Another prominent company is Pasqal,
with a neutral atom quantum computer that can be used in analog and digital
versions [28].

(b) Continuous Variable (CV) Quantum Computing. The CV quantum computing
approach is the analog version of quantum computing [29], still using a QC gate
formulation [30]. CV is based on the concept of qumode, the continuous analogous
of the qubit.
The qumode |ψ〉 is expressed in the basis expansion of quantum states, as |ψ〉 =∫

ψ(x) |x〉, where x are the real-valued eigenvalues and |x〉 are the eigenstates
of the x̂ quadrature, x̂ |x〉 = x |x〉. CV quantum computing and CV QNN use
continuous quantum gates, such as displacement, squeeze, rotation, and Kerr
gates, to express the quantum circuit operations. Because of the continuous
approach, CV QPC is regarded as an excellent fit for QNN regression-like tasks.
In addition, CV QNNs are a critical building block for developing quantum
Physics Informed Neural Networks (PINN) using CV gates [31].
The most established technology to implement CV quantum gates is photonics.
The Canadian Xanadu is among the most active and established companies
developing photonics quantum chips. Among others, Xanadu is one of the
leading companies for the development of QNN programming frameworks:
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Strawberry Fields (and, most importantly, its integration with a TensorFlow
backend) and PennyLane are important examples of programming frameworks
that allow for CV QNNs.

2.2. Quantum Neural Network Input Data

QNNs can operate on two kinds of data:

1. Classical Data. In this case, the training datasets consist of classical data, such as the
pixel values of an image. When QNN uses classical data, then an encoding of the
classical data into quantum states is required. The most used encoding techniques
are amplitude, angle, basis, and Hamiltonian encodings [5,32]. The encoding often
requires the usage of an additional QNN layer.

2. Quantum Data and Integration with Quantum Simulators. Quantum data are en-
coded as a superposition of quantum states, where each quantum state has an associ-
ated amplitude and a phase. Quantum data cannot be generated classically but might
result from quantum sensing or quantum circuit running a quantum algorithm or
quantum simulations. An example of code using quantum data is the TensorFlow
Quantum Hello Many-Worlds code [33] (https://github.com/tensorflow/quantum/
blob/research/binary_classifier/binary_classifier.ipynb, accessed on 3 April 2023)
that classifies two classes of quantum data points distributed in the Bloch sphere [27].
Classical NN cannot operate on quantum data, and QNN provides the only mean
to process quantum data directly. If the QNN uses quantum data, then a special
data loader or integration with quantum simulations programming frameworks, such
as OpenFermion [34], and PySCF [35] are required. All the main QNN frameworks
provide integration of quantum simulations as part of the same package or integration
with OpenFermion and PySCF.

2.3. Quantum Neural Network Approaches

This section discusses the two main algorithmic strategies for developing QNN on
QAs and universal gate-based quantum computers.

2.3.1. QNN with Quantum Annealers

Historically, the first approach to tackling QNN development relies on using QAs,
specialized quantum computers, on solving optimization problems [36,37]. In essence,
QAs provide the ground state of a Hamiltonian of an Ising system (used, for instance,
in magnetism problems and energy-based ML methods). If we formulate the QNN loss
function as an Ising model, then finding the quantum system ground state corresponds to
finding the loss function minimum. In the case of QA-based QNNs, the loss function can
be expressed as:

L = Σihisi + Σi,j Ji,jsisj, (1)

where Ji,j are the QNN weights, hi, the QNN biases, and si the spins (encoded in the
qubit) that can take only the values +1 and −1. The QAs minimize the loss function
of Equation (1), returning the weights and biases. To run on the quantum computer,
Equation (1) must be first formulated in an equivalent QUBO matrix format: L = XTQX
with xi = (1− si)/2 (the so-called spin to binary relation). Then, the loss function must
be mapped to the underlying QA hardware and network topology through a process
called graph embedding [38,39]. In the case of D-Wave systems, the embedding is into a
Chimera graph.

The workflow to run a QNN on QAs is represented in Figure 1. The QNN loss
function is first formulated as a QUBO problem and then embedded into the underlying
quantum computer topology graph. These steps are performed on the classical computer.
The QAs calculate the loss function minimum (equivalent to the ground energy state
of Ising Hamiltonian) and associated QNN weights and biases. A resampling phase
allows for loss function minimum sampling several times. Because QA-based QNNs use
Ising Hamiltonian in their formulation, they can straightforwardly represent energy-based

https://github.com/tensorflow/quantum/blob/research/binary_classifier/binary_classifier.ipynb
https://github.com/tensorflow/quantum/blob/research/binary_classifier/binary_classifier.ipynb
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NNs [40], such as Hopfield networks [41], Boltzmann machines [42], Restricted Boltzmann
Machines (RBM) [43], and used as a part of the Deep Belief Network (DBN) model [44].

Ising Model / QUBO

Formulate the Loss Function with 
the Ising Model / QUBO Matrix.

Embedding

Embed the loss function into the
Chimera Graph.

Quantum Annealer

Transition to the ground state

Resample

Sample the solution (the minimum of the loss function and corresponding 
weights and biases) several times and obtain a distribution.

Figure 1. Diagram of the basic workflow for training a QA-based QNN.

2.3.2. QNN with Parametrized Quantum Circuits

The second QNN class can use universal quantum computers instead of QAs and goes
under the name of Parametrized Quantum Circuit (PQC) [45], or Variational Quantum
Circuits (VQC) [46,47]. The basic fundamental PQC idea is to express the weights and
biases of the neural network as parameters of an exemplar quantum circuit (also called
the Ansatz) and adapt the parameters to minimize a loss or cost function using a classical
optimizer, such as Stochastic Gradient Descent (SGD) [48] or Adam [49] optimizers.

Figure 2 shows the typical workflow when running a PQC. The first step randomly
initializes the QNN weights w and biases b. These are parameters characterizing a gate
in the PQC. For instance, the angle of a rotation gate can be a QNN parameter, e.g., a
QNN weight. Then for each training sample, we first encode the input data (an image, for
instance) into a quantum state using an encoding layer; we then execute the measure of the
PQC results with current w and b (this corresponds to apply a unitary circuit U(w, b) to the
encoded sample |0〉 as in U(w, b) |0〉 = |ψ(w, b)〉 ). The norm of the difference between the
measurement and training sample label will provide the loss function. For instance, a loss
function is calculated using the PQC measurement and label data (y|0〉):

L = ‖ 〈y|U(w, b) |0〉 − y|0〉‖. (2)

Finally, similarly to NN, we can use the back-propagation step to update the QNN
parameters. The loss function value drives an optimization step to determine new updated
parameter values (w and b) to minimize the loss function. We repeat this process for each
training sample. An essential point about PQC loss functions is that they are not limited
to QUBO problems such as QA but are more general. In fact, it is possible to solve Ising
problems using PQC.

QNNs, implemented with QPC, are a very active and fast-growing research area.
Several QNNs architectures, often mimicking the classical counterparts, have developed, in-
cluding quantum fully connected, convolutional [30,50]/quanvolutional [51], recurrent [30],
GAN [52], and tensor networks [53].

A significant research effort is made to address the so-called barren plateau problem [54]
for the QPC optimization landscape: in several PQCs, the average value of the gradient
tends to zero, and as the Hilbert dimension increases, the more states will lead to a flat
optimization landscape. For this reason, the optimizer cannot converge to the minimum
of the loss function. To address this issue, a few techniques are proposed, including an
initialization technique to initialize randomly only a subset of the parameters [55], using a
local instead of a global loss function [56], and data re-uploading [57].



Entropy 2023, 25, 694 6 of 19

Quantum Device Classical DeviceEncoding

⎸0 >

⎸0 >

⎸0 >

⎸0 >

…

U(w, b))
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(t+1)

L(w(t), b(t))

Update

Re-execute

PQC

Figure 2. Diagram of the basic workflow for training a PQC-based QNN.

2.4. Quantum Neural Network Architectures

In the case of PQC, it is possible to build QNNs by combining different layers in a
similar way to the classical NN. The most common kinds of QNN layers are:

• Encoding/Embedding Layers. These layers are used to encode classical data into
quantum Hilbert space. Basically, the encoding process is equivalent to a feature map
that assigns data to quantum states [58,59]. Inner products of such data-encoding
quantum states give rise to quantum kernels. These feature maps are used in QNNs
as a way to perform nonlinear transformations, akin to activation functions in NN, on
the input data.
Common feature maps used in the QNNs are amplitude, angle, basis, and Hamiltonian
encodings. Amplitude and angle encodings map classical data to the amplitudes and
phases of a quantum state, respectively. Basis embedding encodes the binary feature
vector into a basis state. Hamiltonian encoding associates a system’s Hamiltonian with
a matrix representing the data transformation. An example of Hamiltonian encoding
is using a quantum circuit with single-qubit rotations to encode the input data. This
encoding using multiple quantum rotation gates, for instance, allows us to express
quantum models as Fourier-type sums [60]. In CV QNNs, the most used encoding is
displacement embedding, which encodes features into the displacement of qumodes
amplitudes or phases.
Encoding layers are critical for developing QNN as the data-encoding strategy largely
defines the QNN expressivity, e.g., the features QNN can represent [59,61]. Feature
maps are critical building blocks for developing scientific quantum machine learning
and Differentiable Quantum Circuit (DQC) [62–64].

• Variational Layers. These layers are the PQC building block and include trainable
parameters (w and b) in the quantum circuit. These parameters are optimized during
the QNN training. They typically consist of a series of single- and two-qubit gates,
with associated gate parameters optimized during training.

• Entangling Layers. An important subclass of variational layers is the entangling lay-
ers class that creates entangled quantum states. These layers comprise one-parameter
single-qubit rotations on each qubit, followed by a CNOT gate chain. Basic entangling
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layers have a CNOT gate chain connecting every qubit with its neighbor. Strongly
entangling layers feature a CNOT gate chain also connecting non-neighbor qubits [65].
Random entangling layers have single qubit rotations and CNOT gates, acting on ran-
domly chosen qubits. Another entangling layer is the so-called 2-design, consisting of
qubit rotations and Controlled-Z (CZ gate) entangling layers [56].

• Pooling Layers. Pooling layers reduce the quantum circuit size by typically grouping
together several qubits and performing operations that reduce the quantum state
dimensionality. The way to implement pooling layers is to measure a qubit subset of
the qubits and then use the measurement to control the following operations. Pooling
layers are an important component of quantum convolutional networks [66].

• Measurement Layers. Measurement layers are used to measure classical information
(bit) from the superposition of quantum states in the QNN. Measurements layers
typically are single-qubit measurements of the output qubits that provide classical
values for the QNN output.

In addition, the basic CV QNN layer consists of displacement, squeezing gates, in-
terferometers to mimic the linear transformation of a neural network, and a Kerr gate to
introduce nonlinearity to mimic the neural network activation function [30]. Figure 3 shows
a few simple QNN examples used to construct the full PQC.

Entangling Layer Pooling Layer Measurement LayerEncoding/Embedding
Layer

S(x)

R(!1) ●

●

●

●

●

●

R(!2)

R(!3)

R(!4)U(!4)

U(!3)

U(!2)

U(!1)

Variational Layer

Figure 3. Examples of common quantum layers used for constructing QNNs: an encod-
ing/embedding layer using a circuit block S(x) as Hamiltonian encoding, a variational layer with
a unitary gate U with four parameters (θ1, θ2, θ3 and θ4), a simple entangling layer with rotation
operation (R) and CNOT gates operating on neighbor qubits, a pooling layer used for quantum
convolutional networks, and finally a measurement layer.

How to compose QNN layers automatically into PQC for solving a specific problem
and minimizing the noise impact on real quantum machines is an active research area and
led to the development of the SuperCircuit [67] and Supernet [68].

2.5. Optimizers for Parametrized Quantum Circuits

A key technology for training the PQC is the optimizer that allows us to find the
minimum or maximum of a multi-variable function, e.g., the loss function in our case. The
optimizers can be divided into two broad categories:

• Gradient-free Optimizers. Gradient-free optimization methods are techniques that
do not require the calculation of the gradient for the back-propagation step [69],
reducing the complexity of performing differentiation on a quantum circuit. For this
reason, they were widely used in developing the first QNNs. This optimizer class
includes the Nelder–Mead [70] and COBYLA algorithms [71]. These gradient-free
optimizer methods are often provided within the QNN frameworks (e.g., they are
readily available in Qiskit) or available via external packages, such as SciPy [72].

• Gradient-based Optimizers. Gradient-based optimizers require gradient calcula-
tion on the QNN. Compared to gradient-free optimizers, gradient-based optimiz-
ers provide advantages from convergence guarantees [73] and are the method of
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choice in modern QNNs. Examples of gradient-based optimizers are the deep-
learning workhorse algorithms, such as the Stochastic Gradient Descent (SGD) and
Adam. These optimizers are readily available in many QNN frameworks or are ob-
tained from integrating QNN programming frameworks with TensorFlow/Keras and
PyTorch. For instance, Quantum TensorFlow and Strawberry Fields can readily use
TensorFlow 2 and Keras optimizers.
Together with traditional ML optimizers, additional optimizers are used to reduce
evaluation costs and address the problem of the barren plateau. For instance, a popular
optimizer, robust to noise, is the Simultaneous Perturbation Stochastic Approximation
(SPSA) [74], which is a stochastic method to approximate the loss function gradient. In
this optimizer, the loss function is evaluated using perturbed parameter vectors: each
component of the parameter vector is shifted by a random value. Another example is
the doubly stochastic gradient descent method [73] that reduces the cost of evaluating
the gradient at each iteration by evaluating only a random subset of the gradient
components. Additionally, the Quantum Natural Gradient (QNGOptimizer) [75,76]
improves the quality of our optimization landscape (affected by the barren plateau
problem) by moving along the steepest direction in the Hilbert space instead of the
parameter space.

2.6. Differentiation for Parametrized Quantum Circuits

When using classical gradient-based optimizers, the optimization step relies on cal-
culating the gradients of the loss function in the optimization landscape. In classical
NN, derivatives on the neural network are calculated using the automatic differentiation
technique [77]. The fact that the loss function is defined as a quantum circuit constitutes
a challenge for this formulation. Some differentiation approaches [78,79] for PQC on
quantum hardware and simulators are possible:

• Parameter Shift Rule/Quantum Automatic Differentiation. This differentiation tech-
nique allows calculating derivatives using the same PQC with a difference only in
a shift of the argument [80,81]. The basic idea of this technique is to consider these
quantum functions as Fourier series. The partial derivative of a function can then
be formulated as a linear combination of them. An intuitive example of the parame-
ter shift rule workings (https://pennylane.ai/qml/glossary/parameter_shift.html,
accessed on 3 April 2023) is the calculation of sin(x) that is equivalent to a shifted
formulation: 1/2 sin(x + π/2)− 1/2 sin(x− π/2). The same underlying algorithm
can be reused to compute both sin(x) and its derivative at±π/2. This works for many
PQCs of interest, and the same PQC can be used to evaluate both the loss function and
its gradient on a quantum computer.

• Numerical Derivative. Numerical derivative methods are based on finite-different
discretization. This differentiation calculation can run on a quantum computer as
a black box as it requires PQC evaluations common at two separated points in the
parameter w at a distance ∆: f ′(w) = ( f (w + ∆) − f (w))/∆ in a simple case of
forward finite-difference. The challenge with this technique is the number of PQC
evaluations that this method requires and the accuracy (given the dependency on ∆).

• Adjoint Derivative (for quantum simulators). This differentiation method applies
only to quantum computer simulators, as the method requires examining and modi-
fying the full quantum state vector. This method works iteratively by applying the
inverse (adjoint) gate [82] and has significantly lower memory usage and a similar
runtime than the backprop. For this reason, this is the method of choice for HPC
implementation of automatic differentiation on quantum computer simulators.

• Quantum analytic descent (on classical computers). This method constructs a clas-
sical model approximating the optimization landscape in the minimum proximity
by using a sum of multilinear trigonometric terms in each parameter so that the
gradients can be easily calculated on a classical computer that is computationally
convenient [83].

https://pennylane.ai/qml/glossary/parameter_shift.html
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2.7. Applications

QNNs have been used in many applications similarly to classical NN. QAs and D-
Wave machines are among the most successful quantum computing platforms in existing
QML applications. Few examples include image classification (MNIST dataset) [44,84],
computational biology [85], and high-energy physics [86]. The PennyLane QNN framework
has found applications in image classification [87], cyber-security [88], medical [89], and
high-energy physics problems [90,91]. TensorFlow Quantum has been used for image
classification [66], remote sensing [92], and medical applications [93].

3. Quantum Neural Network Software Frameworks

This section briefly reviews existing and emerging QNN programming frameworks.
We note that new programming environments are continuously developed as new ap-
proaches and quantum computer systems arise. The list we present strives to cover the
most used programming approaches, but it is necessarily not exhaustive.

3.1. Amazon Braket SDK

Amazon offers its quantum cloud, called Amazon Braket. Unlike many other vendors,
Amazon does not develop quantum hardware; instead, it provides services over third-party
quantum hardware [94] using superconducting, trapped ion, neutral-atom, and photonics
technologies. Current quantum hardware providers within Amazon Braket include IonQ,
Oxford Quantum Circuits (OQC), QuEra, Rigetti, and Xanadu.

QNNs can be programmed using the Amazon Braket Python SDK that provides
means of connecting quantum computers and simulators and the basic programming
abstractions for PQC programming. While Amazon Braket SDK does not offer a dedicated
library for QNNs, it is possible to develop a PQC from scratch using Braket gates and
measurement features (https://aws.amazon.com/blogs/quantum-computing/aioi-using-
quantum-machine-learning-with-amazon-braket-to-create-a-binary-classifier/, accessed
on 3 April 2023). Braket does not provide optimizers; however, it is possible to use the
SciPy optimizers, such as the second-order L-BFGS [95]. Amazon Braket also provides
a set of local and on-demand quantum computer simulators. The on-demand simulators
can use distributed HPC systems and execute elastic Amazon Web Services (AWS) runs.
Braket SDK simulators include state-vector, density matrix, and tensor-networks simu-
lators. An important aspect of Amazon Braket is that it provides access to several other
QNN programming frameworks, such as PennyLane and Qiskit.

3.2. D-Wave Ocean

D-Wave provides a software framework called Ocean SDK to connect and run quantum
optimization problems on the D-Wave QA machines. As mentioned previously, QAs must
first have the problem cast to a QUBO formulation and then embedded into the underlying
qubit topology (a Chimera graph in the case of the D-Wave machines). To convert the
Ising problem to a QUBO problem, the pyQUBO library [96] is typically used. The method
EmbeddingComposite embeds the QUBO to the Chimera graph of the physical QA in D-
Wave. After the problem is embedded in the QUBO form, it can be run calling the method
sample_qubo(...,num_sample=...) providing the number of samples. Different samplers
are provided in D-wave are provided: quantum, hybrid, and classical solvers, including
simulated annealing, tabu (a heuristic that employs local search), among the others. At
high-level, the D-Wave Ocean framework consists of these different software components:

• Problem Definition. This software layer provides tools for defining optimization
problems that can be solved using quantum annealing. It includes tools for defining
variables, constraints, and objective functions.

• Samplers. The Ocean sampler allows us to access different compute resource
(CPU/GPU/QPU) and different optimization techniques.

• Embedding. This software layer provides tools for mapping high-level problem
definitions onto the hardware constraints defined by the sampler. Using a QA, Ocean

https://aws.amazon.com/blogs/quantum-computing/aioi-using-quantum-machine-learning-with-amazon-braket-to-create-a-binary-classifier/
https://aws.amazon.com/blogs/quantum-computing/aioi-using-quantum-machine-learning-with-amazon-braket-to-create-a-binary-classifier/
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allows us to map the problem defined in the problem definition phase onto the
hardware qubits of the QA.

• Utilities. This component provides a set of utility functions that can be used to
analyze the results of the quantum annealing runs, visualize the embeddings, and
debug the models.

OpenJIJ (https://github.com/OpenJij/OpenJij, accessed on 3 April 2023) is an open-
source library that simulates the QAs and can be used to experiment without the D-
Wave computers.

3.3. Intel HQCL

Intel has developed a Software Development Kit (SDK) called Intel Quantum SDK [97].
Currently, the Intel Quantum SDK supports only PQC simulations; however, it is expected
to support real quantum hardware in the future. In particular, Intel is investing in quantum
dot-based quantum computers. Future Intel Quantum SDK releases will include a quantum
dot qubit simulator and an Intel quantum dot qubit device. The Intel Quantum SDK
allows writing PQC based on C++ and an LLVM-based compiler toolchain that optimizes
the quantum runtime for executing hybrid quantum-classical workloads [98]. The Intel
quantum computer simulator is called IQS, for Intel Quantum Simulator.

Regarding PQC implementations, Intel provides the Hybrid Quantum-Classical Li-
brary (HQCL), a high-level library to express Hybrid Quantum-Classical algorithms exploit-
ing Intel Quantum SDK and run on the quantum computer simulator [99].

3.4. Microsoft Azure QDK

Microsoft Azure Quantum provides access to quantum computers from several ven-
dors, including IonQ (trapped-ion Technology), Honeywell (trapped-ion technology),
Quantum Circuits Inc. (superconducting qubit technology), Rigetti (superconducting qubit
technology), and Pasqal (neutral atom technology). Microsoft Azure Quantum allows for
submitting provider-specific formatted quantum circuits (for instance, in QASM or JSON
format) to supported quantum computing targets via the Azure Quantum services.

Microsoft also provides the Quantum Development Kit (QDK) that replaces the
LIQUi|> programming environment [100] with a new programming language, called
Q#. The QDK offers a library specifically for ML in Q# (https://learn.microsoft.com/en-
us/azure/quantum/user-guide/libraries/, accessed on 3 April 2023).

The QDK includes a back-end circuit simulator and front-end support for the Q#
language, integrated with Microsoft Visual Studio.

3.5. Nvidia CUDA Quantum

Nvidia, one of the leading GPU producers, recently developed a unified programming
model called CUDA Quantum, designed explicitly for running heterogeneous workloads—as
the one for PQC—with CPUs, GPUs, and QPUs working side by side (https://developer.
nvidia.com/cuda-quantum, accessed on 3 April 2023). CUDA Quantum intends to support
quantum hardware backends from different quantum computer partners, including Rigetti,
Xanadu, and Pasqal to name a few. CUDA Quantum provides a C++-based programming
model, and it is specifically designed to enable interoperable workflows with existing
classical parallel programming models and compiler toolchains, such as Nvidia CUDA.
Regarding quantum simulation technologies, Nvidia provides the cuQuantum Appliance
and the cuQuantum SDK to accelerate HPC simulators with Nvidia GPUs.

Early experiments with CUDA Quantum include the development of benchmark-
ing a GPU-accelerated hybrid QGAN [101] with a quantum generator and a classical
discriminator [102].

3.6. OriginQ QPanda

QPanda is a software stack developed by the Chinese Origin Quantum that has
launched a 6-Qubit and 2-Qubit superconducting quantum chip accessible via the cloud.

https://github.com/OpenJij/OpenJij
https://learn.microsoft.com/en-us/azure/quantum/user-guide/libraries/
https://learn.microsoft.com/en-us/azure/quantum/user-guide/libraries/
https://developer.nvidia.com/cuda-quantum
https://developer.nvidia.com/cuda-quantum
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QPanda provides both C++ and Python interfaces. Regarding PQC development, QPanda
exploits the quantum machine learning VQNet library [103,104]. QPanda also provides
several noiseless and adjustable simulation backends.

3.7. PennyLane

PennyLane is a Python library designed explicitly for differentiable computing, focus-
ing on QNNs and quantum simulations. PennyLane is developed by Xanadu and is one of
the best existing tools for prototyping and designing new QNN methods and architectures.
The PennyLane framework can be divided into the following software components:

• Pennylane Templates. The software component provides higher-level building blocks
for constructing QNNs. Templates are a library of ready-to-use templates of widely
used PQC architectures. For instance, templates can be used to encode data into
quantum states or to select pre-made QNN layers.

• Gradients and Training. This software layer provides optimization tools to train the
quantum circuits. It includes automatic differentiation libraries, such as libraries from
NumPy [105], PyTorch [21], JAX [106], and TensorFlow [20], and integrates them into
the quantum computing framework.

• Quantum Operators and Measurements. This software layer provides different quan-
tum operators, including quantum gates, noisy channels, state preparations, and
measurements. As for the measurement, PennyLane supports results from quantum
devices: observable expectation, its variance, single measurement samples, and com-
putational basis state probabilities.

• Quantum Circuit/Device The software component provides the interface between
the software and the hardware. In PennyLane, calculations involving the execution of
one or more quantum circuits are formulated as quantum node objects. The quantum
nodes are used to express the quantum circuit, pin the computation to a specific
device, and execute it. This software layer comprises PennyLane plugins for different
quantum hardware devices and simulators. These plugins enable users to execute
quantum circuits on different devices and return the measurement outcomes.

PennyLane provides several quantum computer simulators, including a state simula-
tor of qubit-based quantum systems, Gaussian states (for operations on CV architectures),
qubit-based quantum circuit architectures written in TensorFlow for automatic differentia-
tion, and qubit-based quantum circuit architectures for automatic differentiation with the
autograd library [107].

3.8. Qiskit Machine Learning

The IBM Qiskit programming framework is one of the most popular and established
approaches for programming quantum computers, as the IBM quantum systems were
among the first to become available to the general public on the cloud. Qiskit provides an
API to connect to and run a quantum code on the IBM quantum computers and a range
of abstractions for gate-based quantum computing. Most importantly, for PQC and QNN
development, Qiskit provides a library called qiskit-machine-learning, specifically
designed to develop QNNs. At a high level, the qiskit-machine-learning framework
can be divided into different software components:

• Data Preparation. This component is responsible for preprocessing the input data
before it is used to train or test a quantum machine learning model.

• Feature Maps. The feature maps layer defines the quantum circuits that map the input
data onto a quantum state. It includes pre-built feature maps for common ML tasks.

• Neural Networks. This component contains a programming interface for the QNNs
(called NeuralNetwork) and two specific implementations (i) EstimatorQNN: this net-
work is based on evaluating quantum mechanical observables, and (ii) SamplerQNN:
a network based on the samples measuring a quantum circuit. These high-level
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classes provide methods for configuring the PQC, its initialization, and performing
the forward and backward passes.

• Classifiers and Regressors. To train and use Quantum Neural Networks, qiskit-
machine-learning provides different learning algorithms such as the NeuralNet-
workClassifier and NeuralNetworkRegressor. These take a QNN as input and then
use it for classification or regression. Two convenience implementations are provided
to allow an easy start: the Variational Quantum Classifier (VQC) and the Variational
Quantum Regressor (VQR).

• Qiskit. At the bottom of the qiskit-machine-learning software stack, there is
Qiskit that provides quantum gate and circuits primitives (including parametrized
gates), gradients, and optimizers.

In addition, qiskit-machine-learning provides a connector to PyTorch for imple-
menting hybrid classical-quantum NNs, e.g., some nodes are classical, and some are
quantum. This hybrid architecture is obtained by embedding a quantum layer in a classi-
cal PyTorch network. Regarding quantum computer simulators, the Qiskit Aer module
provides different quantum computer simulator backends, including ideal and noisy state
vectors, density matrix, and unitary simulation backends.

3.9. Rigetti Grove

The Rigetti Forest programming environment includes a quantum instruction lan-
guage Quil, its Python interface, called pyQuil, and a library of quantum programs called
Grove. Rigetti Grove is a collection of high-level primitives that can be used to develop
QNNs. The Rigetti Forest also provides a quantum simulation environment called QVM
(Quantum Virtual Machine).

3.10. Strawberry Fields

Strawberry Fields is a Python library designed to run quantum CV programs on
quantum photonics hardware [108]. It is based on the language named Blackbird, and
provides three different simulator backends: a simulator of Gaussian states, Fock states,
and a Fock-basis backend written using the TensorFlow (that can provide automatic differ-
entiation and optimizers). Regarding the PQC development, the TensorFlow backend is
critical for optimizers and gradients from TensorFlow 2. Thanks to Strawberry Fields,
it is possible to experiment and design a CV Quantum Neural Network, as discussed in the
seminal paper on CV QNN [30].

3.11. TensorFlow Quantum

TensorFlow Quantum (TQ) is a Python library designed for ML workloads using
quantum-classical QNN models [33]. TQ is developed by Google and leverages and uni-
fies Google’s Cirq within TensorFlow. While integrating quantum computing algorithms
and gates designed in Cirq, TQ delivers additional quantum computing primitives in line
with the TensorFlow API and high-performance quantum circuit simulators. The basic TQ
software layers are:

• Classical and Quantum Data. TFQ allows the processing of classical and quantum
data (in the form of quantum circuits and operators).

• Keras API. TQ integrates with the core TensorFlow and Keras [109], providing NN
models and optimizers.

• Quantum Layers and Differentiators. This part of the software stack provides hy-
brid quantum-classical automatic differentiation in connection with classical Tensor-
Flow layers.

• TensorFlow Ops. This software component instantiates the dataflow graph, and
custom operations regulate the quantum circuit execution.

In addition to Cirq, TQ also provides a high-performance C++ TQ-native (e.g., not
relying on the Cirq simulators) quantum computer simulator for QNN called qsim.
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3.12. Torch Quantum

Torch Quantum [67] is a PyTorch library designed explicitly for quantum machine
learning and simulations at MIT. Torch Quantum leverages the main characteristics that
made PyTorch popular and widespread in the data-science community: easy NN/PQC
construction, dynamic computation graph for easier debugging, and gradient calculations
via autograd. Torch Quantum can be easily deployed on real quantum devices such as IBM
Quantum systems. Torch Quantum provides an HPC state vector simulator (with support
for GPUs), and pulse simulation is planned to be implemented in the future.

3.13. Zapata Orquestra

Zapata offers a quantum computational platform, Orquestra, including a quantum
SDK (for circuit, gate, and noise models) and an algorithm suite that comprises quantum
ML, chemistry, cryptography, and error mitigation methods. Zapata developed a propri-
etary generative AI technique that exploits hybrid classical-quantum systems [110] and uses
Quantum Circuit Born Machine (QCBM). Among the most important Orquestra features,
there are the workflow manager and integration with deployment orchestration tools, such
as Slurm and Ray, that allow for quantum-enabled workflows and execution on quantum
and classical HPC resources. Orquestra supports different quantum computer backends,
including IBM, D-Wave, IonQ systems, and the Qulacs quantum computer simulator.

3.14. Summary

To summarize the feature of the different QNN programming frameworks, we provide
an overview of current QNN programming frameworks in Table 1, providing the target
quantum architectures (possibly, also of future implementations), main programming lan-
guages, availability of quantum simulators, and distinctive features of the
programming frameworks.
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Table 1. Overview of different QNN frameworks for programming QNN on NISQ systems.

QNN Framework Website (accessed on 3 April
2023) Main Target Architecture Language QC Simulators Distinctive Features

Amazon Braket SDK https://github.com/aws/
amazon-braket-sdk-python Support Several QC Systems Braket SDK, Python Braket local and on-demand

HPC simulators Support Several QC Systems.

D-Wave Ocean
https://github.com/

dwavesystems/dwave-
ocean-sdk

D-Wave QAs Python OpenJIJ
QA Platform for Restricted
Boltzmann Machines and

energy-based ML

Intel HQCL, [98]
https://github.com/

IntelLabs/Hybrid-Quantum-
Classical-Library

Intel Quantum Dot-based QC
(simulators/hardware) C++ Intel Quantum Simulator

(IQS)
Integration of compiler

technologies and runtime

MS’s QDK https://github.com/
microsoft/Quantum Support Several QC Systems Q#/Python MS’s QDK Circuit Simulator Support Several QC Systems

Nvidia CUDA Quantum, [102] https://developer.nvidia.
com/cuda-quantum GPU/QPU C++ cuQuantum Appliance

Unified programming for
heterogeneous QPU, GPU,

and CPU systems

OriginQ QPanda, [111] https://github.com/
OriginQ/QPanda-2 Origin Quantum QC Python Several Simulators Integration with VQNet

library for PQC

PennyLane, [78] https://github.com/
PennyLaneAI/pennylane Photonics QC Python

State simulator of qubit-based
quantum systems, Gaussian

states, TensorFlow and
PyTorch autograd

Ideal for prototyping and
designing new methods.

Support for discrete and CV
QC

Qiskit-machine-learning
https://github.com/Qiskit/

qiskit-machine-learning IBM QC Python Qiskit Aer
QNN, Estimator, and
Sampler Abstractions.

Integration with PyTorch

Rigetti Grove https:
//github.com/rigetti/grove Rigetti Quantum Computers PiQuil/Python QVM (Quantum Virtual

Machine) Full software stack

Strawberry Fields, [108] https://github.com/
XanaduAI/strawberryfields

CV Quantum Computing,
Photonic CV Blackbird/Python Simulator with Gaussian

states and Fock states.

Integration with TensorFlow
2 as backend: TF optimizers

and automatic differentiation.

TensorFlow Quantum, [33] https://github.com/
tensorflow/quantum Gate-based Google QC Integration with Keras,

Tensorflow, Python qsim
Tight integration with

TensorFlow, Keras, and Cirq

Torch Quantum, [67] https://github.com/mit-
han-lab/torchquantum IBM Python Simulator Backend, Planned

pulse simulator

Easy PQC construction,
dynamic computation graph,

gradient calculations via
autograd

Zapata Orquestra, [110] https://github.com/
zapatacomputing IBM, D-Wave, Rigetti, IonQ Python Qulacs Quantum-enabled workflows

https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-sdk-python
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/IntelLabs/Hybrid-Quantum-Classical-Library
https://github.com/IntelLabs/Hybrid-Quantum-Classical-Library
https://github.com/IntelLabs/Hybrid-Quantum-Classical-Library
https://github.com/microsoft/Quantum
https://github.com/microsoft/Quantum
https://developer.nvidia.com/cuda-quantum
https://developer.nvidia.com/cuda-quantum
https://github.com/OriginQ/QPanda-2
https://github.com/OriginQ/QPanda-2
https://github.com/PennyLaneAI/pennylane
https://github.com/PennyLaneAI/pennylane
https://github.com/Qiskit/qiskit-machine-learning
https://github.com/Qiskit/qiskit-machine-learning
https://github.com/rigetti/grove
https://github.com/rigetti/grove
https://github.com/XanaduAI/strawberryfields
https://github.com/XanaduAI/strawberryfields
https://github.com/tensorflow/quantum
https://github.com/tensorflow/quantum
https://github.com/mit-han-lab/torchquantum
https://github.com/mit-han-lab/torchquantum
https://github.com/zapatacomputing
https://github.com/zapatacomputing
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4. Conclusions

In this paper, we surveyed the current state-of-the-art high-level programming ap-
proaches for QNN development. We discussed target architectures, quantum data, critical
QNN algorithmic components, such as the hybrid workflow of QA and PQC, optimizers,
and techniques for performing gradient calculations on quantum computer hardware and
simulators. We also presented existing programming QNN frameworks. The field of QNN
methods and programming frameworks quickly evolves, and new techniques and methods
will certainly develop to tackle current QNN limitations. Currently, one of the main QNN
challenges is to address the problem of barren plateau in the optimization landscape.

Additional quantum computer architectures will become available for QNN devel-
opers and users in the future. An example is the PsiQuantum’s photonics fusion-based
quantum chip [112] or the Microsoft topological quantum computers [113]. Despite the
potential Cambrian explosion of different quantum computer architectures, programming
these new quantum systems will likely retain the existing quantum computing abstractions
(gates, circuit, measurements, QNN layer, ...) and reuse existing programming approaches
to ensure portability across different platforms, an important issue already in the HPC field.
An example of a portable quantum programming framework is PennyLane, which allows
for developing specific plugins to support different and possibly new QPU devices.

Following the existing development of machine learning frameworks, such as Tensor-
Flow, it is likely that in the future, QNN frameworks will rely more and more on domain-
specific languages and compiler technologies to provide an Intermediate Representation (IR)
that can be translated to different quantum hardware (and simulator) backends. Compiler
toolchains, such as LLVM and MLIR [114–116], are already in use by the Intel Quantum
SDK [98], and CUDA Quantum. These technologies might have a prominent role in the future
of programming QNN on a quantum computer.

Funding: Funded by the European Union. This work has received funding from the European High
Performance Computing Joint Undertaking (JU) and Sweden, Finland, Germany, Greece, France,
Slovenia, Spain, and the Czech Republic under grant agreement No. 101093261.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AWS Amazon Web Services
CV Continuous Variable
DBN Deep Belief Network
DQC Differentiable Quantum Circuit
GPU Graphical Processing Unit
HHL Harrow–Hassidim–Lloyd
HPC High-Performance Computing
ML Machine Learning
NISQ Noisy Intermediate-Scale Quantum
NN Neural Network
PCA Principal Component Analysis
PINN Physics-Informed Neural Network
PQC Parametrized Quantum Circuit
QA Quantum Annealer
qBLAS Quantum Basic Linear Algebra Subprograms
QCBM Quantum Circuit Born Machine
QFT Quantum Fourier Transform
QML Quantum Machine Learning
QNN Quantum Neural Network
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QPE Quantum Phase Estimation
QUBO Quadratic Unconstrained Binary Optimization
RBM Restricted Boltzmann Machine
SDK Software Development Toolkit
SPSA Simultaneous Perturbation Stochastic Approximation
SVD Singular Value Decomposition
TQ TensorFlow Quantum
VQC Variational Quantum Circuits
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