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Abstract: This study proposes a continuous adaptive finite-time fractional-order sliding mode control
method for fractional-order Buck converters. In order to establish a more accurate model, a fractional-
order model based on the Riemann-Liouville (R-L) definition of the Buck converter is developed,
which takes into account the non-integer order characteristics of electronic components. The R-L
definition is found to be more effective in describing the Buck converter than the Caputo definition. To
deal with parameter uncertainties and external disturbances, the proposed approach combines these
factors as lumped matched disturbances and mismatched disturbances. Unlike previous literature
that assumes a known upper bound of disturbances, adaptive algorithms are developed to estimate
and compensate for unknown bounded disturbances in this paper. A continuous finite-time sliding
mode controller is then developed using a backstepping method to achieve a chattering-free response
and ensure a finite-time convergence. The convergence time for the sliding mode reaching phase
and sliding mode phase is estimated, and the fractional-order Lyapunov theory is utilized to prove
the finite-time stability of the system. Finally, simulation results demonstrate the robustness and
effectiveness of the proposed controller.

Keywords: fractional calculus; Riemann-Liouville; buck converter; adaptive law; continuous sliding
mode control; finite-time stability

1. Introduction

The Buck converter is a crucial energy conversion apparatus that assumes a significant
role in distributed power supply systems and wind power generation systems [1] by en-
abling stabilization of the output voltage at the reference output voltage. Consequently,
enhancing the performance of the controller has the potential to substantially augment
energy conversion efficiency, mitigate energy losses, and improve system stability. How-
ever, most current Buck converter models assume that the capacitance and inductance
are integer-order, despite the fact that in real systems they are typically non-integer-order.
Experimental studies by [2,3] have shown that fractional-order capacitors exist in various di-
electrics and have demonstrated that inductors also possess fractional-order characteristics.
Using an integer-order model to describe a Buck converter may lead to inaccurate results.
Furthermore, the hereditary and memory properties of fractional calculus operators can
improve the modeling accuracy and control quality of systems and increase the flexibility
of power electronic system design. From the point of modern control theory, the accurate
modeling of the controlled object is an important factor in the stability of the control system
and can directly affect the performance of the controller. Therefore, researchers have begun
to apply fractional calculus to the modeling and control of the Buck converter [4].

Several definitions of fractional calculus, such as R-L, Grunwald–Letnikov, and Caputo,
have been proposed in [5,6]. Among them, most studies of the fractional-order model of
the Buck converter are based on the Caputo definition. However, due to the differences
in definitions, the theoretical results obtained may be significantly different. Moreover,
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the lower limit of the integral is often set to zero in the Caputo definition to facilitate
numerical simulation, which can cause errors. Therefore, some researchers have started to
investigate the mathematical model of the Buck converter under the R-L definition. Based
on the R-L definition, [7,8] have proposed an equivalent parameter method to analyze and
model the Buck converter in both continuous and discontinuous conduction mode. Ref. [9]
shows that the overall closed-loop response of the fractional-order Buck converter is more
stable as the inductor order decreases. In [10] the R-L fractional-order model of a Buck
converter is developed in continuous conduction, which shows more accuracy than the
Caputo definition and illustrates the influence of the order of the capacitor/inductor on the
modeling of the system. Ref. [11] have concluded that the Buck converter modeled based
on the R-L definition exhibits better consistency with practical systems and smaller relative
errors in both theoretical and experimental settings, with initial conditions defined with
corresponding physical meanings in the circuit.

Traditional control methods have been ineffective in suppressing mismatched distur-
bances. To address the uncertainties and disturbances in Buck converters and enhance
controller performance, researchers have proposed various control strategies, including
adaptive control [12], model predictive control [13], robust control [14], and sliding mode
control (SMC) [15–17]. Among these methods, SMC has garnered significant attention for
its inherent robustness and simple structure. However, research on the control of fractional-
order Buck converters is currently limited. In [18], adaptive sliding mode control was
developed to address matched disturbances and improve the system’s robustness. In [19],
a fractional-order terminal sliding mode control was proposed to achieve a finite-time
convergence during sliding mode reaching phase. In [20], a fractional-order sliding mode
control based on disturbance observer (DOB) was proposed to compensate for mismatched
disturbances. Ref. [21] proposes a fractional-order DOB to estimate mismatched disturbance
and its derivative and achieve their suppression. Nevertheless, all of the aforementioned
studies were based on the Caputo definition. Therefore, exploring controllers designed for
R-L definition fractional-order Buck converters could provide novel insights and greater
flexibility for circuit system control theory and practice.

Based on the above discussion, this paper proposes a continuous finite-time sliding
mode control based on an adaptive law for the fractional-order Buck converter. The main
contributions can be concluded as follows:

1. Following the studies in [7–11], a fractional-order Buck converter mathematical model
based on R-L definition is developed, which is able to describe the characteristics of
the Buck converter more accurately.

2. Compared with the existing works [22–24], adaptive laws are developed in this paper
to estimate the upper bound of disturbances such that it is not necessary to know the
upper bound of the disturbance in advance.

3. Compared with [18,25,26], a globally finite-time stability is achieved in this paper.
4. Compared with [17,20,22,24], a continuous sliding mode control input is developed

to attenuate the chattering caused by the traditional discontinuous sign function.

The paper is organized as follows. In Section 2, essential definitions and lemmas of
fractional-order calculus are presented. Section 3 derives the fractional-order mathematical
model of the Buck converter based on the R-L definition. Section 4 proposes an overall
continuous adaptive finite-time sliding mode control strategy using the backstepping
method. The effectiveness of the proposed controller is demonstrated through simulation
results presented in Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries

This section gives the basic concepts of fractional-order calculus and the relevant lemmas.
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2.1. Fractional Calculus

Fractional calculus redefines the real number order for both integral and derivative
calculations. The fractional-order derivatives based on the R-L definition and Caputo
definition are introduced in this section.

Definition 1. The α th-order Caputo fractional derivative for continuous differentiable function
f (t) can be defined as

C
t0

Dα
t f (t) =

1
Γ(m− α)

∫ t

t0

f (m)(τ)

(t− τ)α−m+1 dτ (1)

where D denotes the fractional-order calculus operator, α ∈ [m− 1, m), t > t0. Γ(·) denotes the
Gamma function, which can be represented as

Γ(α) =
∫ ∞

0
τα−1e−τdτ

with α > 0.

Definition 2. The α th-order R-L fractional derivative for continuous differentiable function f (t)
can be given as

RL
t0

Dα
t f (t) =

1
Γ(m− α)

(
d
dt

)m ∫ t

t0

f (τ)
(t− τ)1−m+α

dτ (2)

where D denotes the fractional-order calculus operator, α ∈ (m− 1, m), t > t0.

It should be noted that a fundamental distinction between the R-L and Caputo defini-
tions resides in the order of differentiation and integration. Specifically, the former proceeds
with integration before differentiation on the function f (t), whereas the latter conducts
differentiation before integration.

Remark 1. It is clearly seen that the fractional-order calculus is an extension of the integer-order calculus,
which is a special form of the fractional-order calculus. It is therefore necessary to design a controller for
the fractional-order model of the Buck converter in order to broaden the range of applications.

Remark 2. When f (t) is constant, the fractional-order differentiation outcomes differ under the
Caputo and R-L definitions. Specifically, the Caputo differentiation of f (t) yields 0, whereas under

the R-L definition, the differential can be expressed as C(t−t0)
−β

Γ(1−β)
. Although scholars typically utilize

the Caputo definition with an initial condition set to zero to study power electronic systems, this
approach is inaccurate, as noted in [10,11]. In contrast, the R-L definition’s initial condition carries
physical significance in the circuit system. The R-L definition of the fractional-order model has been
demonstrated to be more precise in describing Buck converters.

2.2. Stability

Lemma 1 ([27]). Let V(x) ∈ R be a continuously differentiable function; then, for ∀t ≥ t0,
the following inequality

1
2 t0 Dα

t V2(x) ≤ V(x)t0 Dα
t V(x), ∀α ∈ (0, 1) (3)

holds.

Lemma 2 ([28]). Consider the Caputo or R–L fractional nonautonomous system t0 Dα
t = f (t, x)

with x(t0), α ∈ (0, 1); f : [t0, ∞]×Ω → Rn is piecewise continuous in t and locally Lipschitz
in x on [t0, ∞] × Ω and Ω ∈ Rn is a domain that contains the origin x = 0. Let x = 0
be the equilibrium point for the system. D ⊂ Rn is a domain containing the origin. Suppose
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V(t, x(t)) : [0, ∞)× D → R is a continuously differentiable function and locally Lipschitz with
respect to x such that

α1‖x‖a ≤ V(t, x(t)) ≤ α2‖x‖ab (4)

DαV(t, x(t)) ≤ −α3‖x‖ab

with t ≥ 0, x ∈ D, α ∈ (0, 1), α1, α2, α3, a and b are arbitrary positive constants. Then x = 0 is
Mittag–Leffler-stable, and if the assumptions hold globally on Rn, then the equilibrium point x = 0
is globally Mittag–Leffler-stable.

Mittag–Leffler-stable implies asymptotically stable.

Lemma 3 ([25]). Suppose a function g(t) ∈ C1([0, b]), α ∈ (0, 1), β ∈ R; then, it obtains

Dαgβ(t) =
Γ(1 + β)

Γ(1 + β− α)
gβ−α(t)Dαg(t)

The symbol D in the following sections denotes the R-L fractional-order calculus operator.

3. Fractional-Order Mathematical Model of Buck Converter Based on R-L Definition

The Buck converter typically comprises several essential components, such as a voltage
source (Vin), a diode (D), an inductance (L), a capacitance (C), a controller (Sω), and a
parasitic resistance (R), as depicted in Figure 1.

Figure 1. Block diagram of Buck converter.

Without considering disturbances, the mathematical model of the Buck converter with
the ON status of Sω can be written as

diL
dt

=
1
L
(Vin − v0)

dv0

dt
=

1
C
(iL −

v0

R
)

(5)

When it switches to OFF, the model can be written as
diL
dt

= −v0

L
dv0

dt
=

1
C
(iL −

v0

R
)

(6)

Combining (5) and (6), it obtains
diL
dt

=
1
L
(µVin − v0)

dv0

dt
=

1
C
(iL −

v0

R
)

(7)

where µ denotes the status of Sw, which takes the value 1 for ON status and 0 for OFF
status. The controller determines the value of µ.
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Considering the fact that the capacitance and resistance are not of integer-order,
to further improve the accuracy of modeling, the fractional-order calculus is introduced here
to establish a fractional-order model based on the R-L definition. Rewrite the function (7) as

dαv0

dtα
=

1
C
(iL −

v0

R
)

dβiL

dtβ
=

1
L
(µVin − v0)

(8)

where α, β ∈ (0, 1) denote the fractional order of capacitance and inductance, respec-
tively, whose values depend on the loss of the capacitance and the proximity effects in
the engineering.

Considering the presence of uncertainties and disturbances in the actual system, which
may arise from model parameter perturbations and external disturbances, deviations may
occur between the actual model and the ideal model. As a result, this paper proposes the
development of a mathematical model for the Buck converter, accounting for disturbances
and parameter perturbations, expressed as

Dαv0 =
1

C0 + ∆C
(iL −

v0

R0 + ∆R
) + d1

DβiL =
1

L0 + ∆L
(µ(Vin0 + ∆Vin)− v0) + d2

(9)

where L0, C0, R0, Vin0 are the nominal values of the components of the Buck converter,
∆L, ∆C, ∆R, ∆Vin are the parametric uncertainties of the components, d1 and d2 are dis-
turbances acting on the current and voltage channels, including unknown dynamics and
external disturbances.

Assumption 1. It is assumed that the disturbances d1 are d2 are bounded.

Combining the uncertainties and disturbances in Equation (9), it obtains
Dαv0 =

1
C0

(iL −
v0

R0
) + d∗1

DβiL =
1
L0

(µVin0 − v0) + d∗2

(10)

where d∗1 , d∗2 are

d∗1(t) =
v0∆R

R0(R0 + ∆R)(C0 + ∆C)
+

v0∆C− iL∆CR0

C0R0(C0 + ∆C)
+ d1

d∗2(t) =
µ∆VinL0 − µ∆LVin0 + ∆Lv0

(L0 + ∆L)L0
+ d2

The objective of this paper is to design a continuous adaptive fractional-order sliding mode
controller such that the output of Buck converter v0 can track the ideal reference voltage
vre f in the presence of matched disturbances and mismatched disturbances.

Let x1 = v0 − vre f ; then, the aim is to force x1 → 0. Rewrite (10) as{
Dαx1 = x2 + w1

Dβx2 = f (x1, x2) + gu + w2
(11)



Entropy 2023, 25, 700 6 of 17

where

x1 = v0 − vre f , x2 =
1

C0
(iL −

V0

R0
), g =

Vin0

C0L0
, f (x1, x2) = −

1
C0L0

x1 −
1

L0C0
vre f

w1 = d∗1 − Dαvre f , w2 =
1

C0
d∗2 −

1
C0R0

Dβx1 −
1

R0C0
Dβvre f

Note that the control gain g > 0. There must exist positive constants K1, K2 such that

K1 = sup
t>0
|w1|, K2 = sup

t>0
|w2|

under the condition of Assumption 1.

Assumption 2. The disturbances w1 and w2 are differentiable and their α/β order differentiations
are bounded. That is, there exist positive constants ξ1,ξ2 such that

ξ1 = sup
t>0
|Dαw1|,ξ2 = sup

t>0

∣∣∣Dβw2

∣∣∣
holds.

4. Continuous Adaptive Finite-Time Sliding Mode Control Method

The system described by (11) is subject to both matched and mismatched disturbances.
While the matched disturbance w2 directly affects the control channel, linear sliding mode
control can effectively suppress its effects and drive the system state to asymptotically
converge to the equilibrium point on the sliding surface when w1 = 0. However, when
w1 6= 0, since it does not directly affect the control channel, the linear sliding mode variable
cannot compensate for the effects of the mismatched disturbance as stated in [22]. As a
result, the system trajectory may converge to a neighborhood that contains the equilibrium
point, with the extent of convergence depending to some extent on the bound of w1.
Additionally, sudden variations in the disturbances may cause the system state to deviate
from the equilibrium point. To address these issues, this paper proposes a novel continuous
adaptive sliding mode controller based on the backstepping method to handle unknown
bounded disturbances. Adaptive algorithms are developed to estimate the upper bounds
of both matched and unmatched disturbances, while a continuous sliding mode controller
is designed to suppress chattering.

In accordance with the backstepping method, a virtual control signal φ2 is firstly
designed to deal with mismatched disturbances. The system state x2 is defined to track the
virtual control φ2. z2 is the tracking error, which is defined as

z2 = x2 − φ2 (12)

This easily obtains x2 = z2 + φ2. By substituting Equation (12) into (11), it obtains

Dαx1 = z2 + φ2 + w1 (13)

When z2 converges to 0, the system state x2 can accurately track φ2; rewrite (13) as

Dαx1 = φ2 + w1 (14)

The new fractional-order sliding mode variable inspired by [29] is proposed as

s1 = Dαx1 + C1Dα−1(x1 + xρ1
1 ) (15)

where C1 is a positive constant, ρ1 ∈ (0, 1).
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Theorem 1. Consider the following controller
φ2 = −C1Dα−1(x1 + xρ1

1 ) + φn

Dαφn = ζ1 − T1φn

ζ1 = −(K̂1 + T1ξ̂1 + η1|s1|δ1)sign(s1)

(16)

and adaptive law{
DαK̂1 = l1|s1|, Dα ξ̂1 = T1q1|s1|, i f |s1| ≥ ∆1

DαK̂1 = l1∆1sign(s1), Dα ξ̂1 = T1q1∆1sign(s1), i f |s1| < ∆1
(17)

where δ1 ∈ (0, 1), K̂1 and ξ̂1 are the estimation of K1 and ξ1, respectively, T1, q1, l1, η1 are positive
adaptation parameters that play the important role in regulating the adaptation speed. ∆1 is the
design constant, which is a very small constant, used to avoid the unbound growth of adaptive gain.
When the sliding mode variable is chosen as (15), then the system (14) is finite-time stable with the
controller (16) and adaptive law (17).

Proof. Substitute (14) and (16) into (15); it obtains

s1 = φ2 + w1 + C1xDα−1(x1 + xρ1
1 )

= φn + w1 (18)

Define the Lyapunov function as

V1 =
1
2
(s2

1 + q−1
1 ξ̃2

1 + l−1
1 K̃2

1) (19)

where ξ̃1 = ξ1 − ξ̂1, K̃1 = K1 − K̂1. Differentiating (19) with α-order along (18) and (17)
based on Lemma 1, one obtains

DαV1 ≤ s1Dαs1 + ξ̃1q−1
1 Dα ξ̃1 + K̃1l−1

1 DαK̃1

≤ s1Dα(φn + w1)− ξ̃1q−1
1 Dα ξ̂1 − K̃1l−1

1 DαK̂1

= s1(ζ1 − T1φn + Dαω1)− ξ̃1q−1
1 Dα ξ̂1 − K̃1l−1

1 DαK̂1 (20)

= |s1|(−K̂1 − T1 ξ̂1 − η1|s1|δ1 ) + s1(−T1φn + Dαω1)− ξ̃1q−1
1 Dα ξ̂1 − K̃1l−1

1 DαK̂1

≤ |s1|[−(K̂1 + T1 ξ̂1 + η1|s1|δ1 ) + T1|φn|+ K1]− ξ̃1q−1
1 T1q1|s1| − K̃1l−1

1 l1|s1|

According to (18) and Assumption 1, we have s1 = φn + w1 = 0 → |φn| = |ω1| ≤ ξ1.
Substituting it into (20), one has

DαV1 ≤ −η1|s1|δ1+1 (21)

Based on Lemma 2, the state of system (14) can converge asymptotically to the sliding mode
surface s1 = 0. To further study the convergence time of sliding mode reaching phase,
define the following auxiliary Lyapunov function:

V11 =
1
2

s2
1(t) (22)

Compared with V1 and V11, there must exist a positive constant η11 > 1 such that

1
η11

(V1(t))
δ1+1

2 ≤ (V11(t))
δ1+1

2 (23)
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Using (21), it obtains

DαV1 ≤ −η1|s1|δ1+1

= −η1(V1/2
11 )δ1+1(

√
2)δ1+1

=

[
−η1 · 2

δ1+1
2

]
×V

δ1+1
2

11

≤ −η̄1 · (V1(t))
δ1+1

2 (24)

where η̄1 = 2
δ1+1

2 η1
η11

. According to Lemma 3, it obtains

V1(t)DαV1(t) =
Γ(2)

Γ(2 + α)
Dα[V1(t)1+α]

≤ −η̄1 · (V1(t))
δ1+3

2 (25)

Let v(t) = [V1(t)1+α]; then, [V1(t)]
δ1+3

2 = [v(t)]
δ1+3

2(1+α) . Based on the above calculations,
it obtains

Dα[v(t)α− δ1+3
2(1+α) ] ≤ −η̄1

Γ(1 + α− δ1+3
2(1+α)

)

Γ(1− δ1+3
2(1+α)

)

Γ(2 + α)

Γ(2)
(26)

Taking the fractional integral of both sides of (26) in (0, t), suppose that V1(t) = 0, ∀t ≥ Tr1;
then, v(t) = 0, and it yields

− vα− δ1+3
2(1+α) (0)

≤ −η̄1

Γ(1 + α− δ1+3
2(1+α)

)

Γ(1− δ1+3
2(1+α)

)

Γ(2 + α)

Γ(2)
tα

Γ(1 + α)
(27)

Then, the value of Tr1 is obtained as

Tr1 =

V
2α+2α2−δ1−3

2
1 (0)Γ(2)Γ(1− δ1+3

2(1+α)
)Γ(1 + α)

η̄1Γ(1 + α− δ1+3
2(1+α)

)Γ(2 + α)


1
α

(28)

Hence, the state trajectories of the system (15) will converge to s1 = 0 within a finite time Tr1.
After s1 = 0 is reached, from (15), it obtains

Dαx1 = −C1Dα−1(x1 + xρ1
1 ) (29)

Choose the following positive definite function as a Lyapunov function candidate:

Vx1 = |x1| (30)

Taking the time derivative of (30) and using (29), it obtains

V̇x1 = sign(x1)ẋ1

= sign(x1)D1−α(Dαx1)

= sign(x1)D1−α(−C1Dα−1(x1 + xρ1
1 ))

= −C1(|x1|+ |x1|ρ1)

≤ −C̄1(|x1|+ |x1|ρ1) (31)
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with 0 < C̄1 < C1. After simple calculations, it obtains

dt ≤ − d(|x1|)
C̄1(|x1|+ |x1|ρ1)

= − |x1|−ρ1 d(|x1|)
C̄1(1 + |x1|1−ρ1)

= − 1
C̄1(1− ρ1)

d(|x1|)1−ρ1

1 + |x1|1−ρ1
(32)

Taking the integral of both sides of (32) from tr to ts and knowing s1(tr) = 0 and x1(ts) = 0,
it obtains

ts − tr ≤ − 1
C̄1(1− ρ1)

∫ x1(ts)

x1(tr)

(|x1|)1−ρ1

1 + |x1|1−ρ1

= − 1
C̄1(1− ρ1)

ln(1 + |x1|1−ρ1)
∣∣∣x1(ts)

x1(tr)

=
1

C̄1(1− ρ1)
ln(1 + |x1(tr)|1−ρ1) (33)

where ts denotes the convergence time from x0 to x = 0 and tr denotes the convergence
time from s(x0) to s = 0. Therefore, the state x1 will converge to zero along the sliding
mode surface in the finite time t = ts − tr ≤ 1

C̄1(1−ρ1)
ln(1 + |x1(tr)|1−ρ1). Thus, the overall

finite-time stability of the system (15) under controller (16) is proved.

Secondly, the control u is designed to force the system state x2 to track the virtual con-
trol φ2, that is, z2 → 0. Taking the β-order time-derivative on both sides of the Equation (12),
it obtains

Dβz2 = Dβx2 − Dβφ2

= f + gu + w2 − Dβφ2 (34)

For system (34), a new sliding mode variable is designed as

s2 = Dβz2 + C2Dβ−1(z2 + zρ2
2 ) (35)

where C2 denotes a positive constant and ρ2 ∈ (0, 1).

Theorem 2. Consider the following controller
u = g−1(− f + Dβφ2 − C2Dβ−1(z2 + zρ2

2 ) + un)

Dβun + T2un = ζ2

ζ2 = −(K̂2 + T2ξ̂2 + η2|s2|δ2)sign(s2)

(36)

and adaptive law{
DβK̂2 = l2|s2|, Dβ ξ̂2 = T2q2|s2|, i f |s2| ≥ ∆2

DβK̂2 = l2∆2sign(s2), Dβ ξ̂2 = T2q2∆2sign(s2), i f |s2| < ∆2
(37)

where l2, q2, T2, η2 are positive constants, δ2 ∈ (0, 1), and ∆2 is the design constant, which is a
very small constant, used to avoid the unbound growth of adaptive gain. When the sliding mode
variable is chosen as (35), then the system (34) is finite-time stable with the controller (36) and
adaptive law (37).
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Proof. Substituting (34) and (36) into (35), it obtains

s2 = un + w2 (38)

Define the following Lyapunov function as

V2 =
1
2
(s2

2 + q−1
2 ξ̃2

2 + l−1
2 K̃2

2) (39)

where ξ̃2 = ξ2 − ξ̂2, K̃2 = K2 − K̂2. Differentiating (39) with β-order along (36) and (35)
based on Lemma 1, it obtains

DβV2 ≤ s2Dβs2 + ξ̃2q−1
2 Dβ ξ̃2 + K̃2l−1

2 DβK̃2

≤ s2Dβ(un + ω2)− ξ̃2q−1
2 Dβ ξ̂ − K̃2l−1

2 DβK̂2

= s2(ζ2 − T2un + Dβω2)− ξ̃2q−1
2 Dβ ξ̂2 − K̃2l−1

2 DβK̂2 (40)

= |s2|(−K̂2 − T2 ξ̂2 − η2|s2|δ2 ) + s2(−T2un + Dβω2)− ξ̃2q−1
2 Dβ ξ̂2 − K̃2l−1

2 DβK̂2

≤ |s2|[−(K̂2 + T2 ξ̂2 + η2|s2|δ2 ) + T2|un|+ K2]− ξ̃2q−1
2 T2q2|s2| − K̃2l−1

2 l2|s2|

When the system states move on the sliding mode surface according to (38), it obtains
s2 = 0, then |un| = |d2| ≤ ξ2. Substituting it into the above function, it yields

DβV2 ≤ −η2|s2|δ2+1. (41)

Similar to Theorem 1, the asymptotic stability of system (35) is guaranteed based on
Lemma 2. The deduction of convergence time is the same as Theorem 1 and is thus omitted
here. The estimation of convergence time of sliding mode reaching phase Tr2 for system
(35) is obtained as

Tr2 =

V
2β+2β2−δ2−3

2
2 (0)Γ(2)Γ(1− δ2+3

2(1+β)
)Γ(1 + β)

η̄2Γ(1 + β− δ2+3
2(1+β)

)Γ(2 + β)


1
β

(42)

The estimation of convergence time on the sliding mode phase is

Ts2 ≤
1

C̄2(1− ρ2)
ln(1 + |z2(tr)|1−ρ2) + Tr2 (43)

with C̄2 ∈ (0, C2). This completes the proof.

On the basis of Theorems 1 and 2, the finite-time stability of the overall system (11) is
guaranteed. The overall block diagram of the Buck converter control system is shown in
Figure 2.

Figure 2. Block diagram of Buck converter control system.
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Remark 3. Figure 2 demonstrates the attainment of global finite-time stability for the system.
Initially, the designed controller u ensures that s2 = 0. Subsequently, during the sliding mode
phase, the error signal z2 is forced to 0, resulting in precise tracking of the virtual control signal φ2
by the system state x2. Once the sliding mode variable s1 reaches 0 within finite time, the system
output y = x1 is stabilized at 0 under the virtual controller φ2.

5. Simulation

In order to validate the effectiveness and applicability of the proposed continuous
adaptive finite-time sliding mode controller, this section employs the Matlab/Simulink
simulation platform and the FOTF toolbox to establish the mathematical model of the
fractional-order Buck converter based on the R-L definition. The results are analyzed.
The parameters of the Buck converter and reference output voltage are shown in Table 1.

Table 1. Parameters of Buck converter.

Description Parameter Units Nominal Value

Load resistance R0 Ω 100
Inductor L0 mH 2.0
Capacitor C0 mF 1.1

Input voltage Vin V 20
Reference voltage Vre f V 15

Considering uncertainties and disturbances that exist in the Buck converter and with-
out loss of generality, the matched and mismatched disturbances are set as
ω1 = 2.5 sin(t) + 0.5 + 1.2 cos(t) and ω2 = 1.4 cos(t) to verify the robustness of the pro-
posed controller. The control object is to track the reference voltage of the Buck converter
vre f against disturbances. Table 2 shows the parameters of the controller. According to
the above discussion, the parameters α = 0.9 and β = 0.95 are selected to obtain a more
accurate simulation result.

Table 2. Parameters of continuous adaptive finite-time sliding mode controller.

Description Parameter Description Parameter

C1 10 C2 10
ρ1 0.5 ρ2 0.5
T1 0.1 T2 0.1
q1 100 q2 80
l1 40 l2 100
η1 18 η2 20
δ1 0.8 δ2 0.9

The initial state values of system (10) are set to [−15, 0] in accordance with the defi-
nition of state variable x1. The simulation results for the system output voltage v0, state
variables x1 and x2, and the tracking state z2 are presented in Figure 3. The results indicate
that the proposed controller is capable of accurately and rapidly tracking the reference out-
put voltage under both matched and mismatched disturbances, and can maintain system
stability under nonvanishing disturbances, thereby showcasing its high performance and
robustness. However, it should be noted that the system state x2 is not stabilized at 0 due to
the presence of mismatched disturbances. To address this issue, the proposed sliding mode
controller adopts the backstepping method and introduces a virtual control variable φ2,
which is forced to track x2. In doing so, x2 can be employed to suppress the mismatched
disturbance w1 in the system and force z2 → 0. Despite the nonvanishing disturbances
set in the simulation, x2 can track −w1 under the controller u, thus enabling ẋ1→ 0 and
achieving the tracking of system output v0 to vre f . In addition, Figure 4 illustrates the two
sliding mode variables s1 and s2 that are designed in the controller. It can be observed that
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the two control laws designed can make the state points reach the sliding surfaces in finite
time, thus verifying the finite-time stability of the Buck converter and the robustness of the
proposed controller.

t/s

(a)

V

 

 

 

t/s

(b)

t/s

(c)

O
u

tp
u

t/
V

 

 

 

t/s

(d)

 

 

 

Figure 3. Tracking curves of Buck converter under the proposed controller: (a) curve of system state
x1; (b) curve of system state x2; (c) curve of system output v0; (d) curve of virtual state z2.

t/s

(a)

t/s

(b)

Figure 4. Curves of sliding mode variables: (a) curve of sliding mode variable s1; (b) curve of sliding
mode variable s2.

Figure 5 shows the partial control signal of the sliding mode controller. It is evident that
the actual control signal u is smooth. Taking the controller (16) as an example, the chattering
phenomenon of sliding mode control stems from the discontinuity of the control, that is, the
sign function. The discontinuous control signal causes the discontinuous chattering output.
This paper proposes a controller inspired by the idea of the super-twisting algorithm,
placing the discontinuous term in the ζ2 term and integrating it to obtain a continuous
actual control signal. The ζ2 signal is discontinuous, but the un signal after being filtered
by a fractional-order integral filter is smoothed, which can reduce the chattering while
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enhancing the robustness of the system and maintaining the effectiveness of sliding mode
controller. This illustrates the continuous property of the proposed controller.

t/s

(a)

t/s

(b)

t/s

(c)

Figure 5. Curves of the actual control signal and virtual signals: (a) curve of un; (b) curve of ξ2;
(c) curve of the actual control input u.

Figure 6 shows the disturbance observation values obtained from the adaptive al-
gorithms. It can be seen that the parameters K̂1, K̂2, ξ̂1, and ξ̂2 obtained by the adaptive
algorithms (17) and (37) can all converge to certain constants within a finite time. In the
simulation, the mismatched disturbance term is ω1 = 2.5sin(t) + 0.5 + 1.2cos(t). The es-
timated value of K̂1 obtained by the adaptive algorithm approaches around 4, while the
value of ξ̂1 obtained by the algorithm is significantly reduced due to the constant distur-
bance term, as shown in the figure, approaching around 2.2. The matched disturbance
term is ω2 = 1.4cos(2t), and the estimated value of K̂2 obtained by the adaptive algorithm
approaches around 2.1, while the obtained ξ̂2 approaches around 3.1. The above discussion
illustrates that the proposed adaptive algorithm in this paper is effective and can estimate
the upper bound of disturbances in the presence of unknown bounded disturbances, al-
lowing the system output to track the reference voltage under the proposed controller and
adaptive law.

To test the robustness against different kinds of disturbances, sudden changed time-
varying disturbances and random disturbance are included and the result can be seen in
Figure 7. Plots of (a) are under the following mismatched disturbance:

w1 =

{
2.5sin(t) + 0.5 + 1.2cos(t), t < 2 and t ≥ 5

1.5sin(t) + 1.5 + 0.5cos(t), t ∈ [2, 5)
(44)

The matched disturbance w2 keeps the same as above. It is clearly seen that the system state
x1 is stabilized at 0 under the proposed controller, and x2 follows the changed −w1 rapidly.
Plots of (a) are under ω1 =2.5sin(t)+0.5 + 1.2cos(t) and ω2 =1.4cos(t) and when t ∈ (2, 5),
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random disturbances conform to a normal distribution with standard deviation and mean
square error set as (0,1). x0 is chattering around 0 but acceptable due to the random varying
disturbances as in (b). Figure 7 validates the robustness of the proposed controller against
multiple disturbances.

In order to further validate the effectiveness of the proposed controller, a comparative
analysis was conducted with various existing controllers, including traditional sliding
mode control (TSMC), fractional-order disturbance-based complementary sliding mode
control (FDOB-CSMC) proposed in [30], fractional-order disturbance-based SMC (FDOB-
SMC) presented in [21], and asymptotically stable adaptive continuous SMC (AS-ACSMC)
proposed in [25]. The comparison was conducted under identical conditions, and the
results are presented in Figure 8.

0 1 2 3 4 5
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Figure 6. Curves of the estimated values of disturbances w1 and w2 based on the proposed adap-
tive law: (a) estimations of adaptive law (17); (b) estimations of adaptive law (37).
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Figure 7. Plots of system states under different disturbances: (a) with sudden changed disturbance;
(b) with random disturbance.
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t/s

 
 

 

t/s

Figure 8. Output voltage of the Buck converter using the controller proposed in this paper compared
with the method stated in [21,25,30].

It is evident from Figure 8 that all the considered control methods achieve convergence,
but traditional sliding mode control (TSMC) is unable to effectively suppress mismatched
disturbances, resulting in a significantly higher steady-state error than the other methods.
Additionally, the convergence speed of TSMC is highly dependent on the sliding mode
surface coefficient kt, as noted in [20]. The larger the coefficient value, the faster the
variation, which increases the system’s chattering and requirements for the controller,
potentially leading to degradation of control quality in practical systems. In contrast,
fractional-order disturbance-based complementary sliding mode control (FDOB-CSMC)
introduces DOB to suppress mismatched disturbances, but its steady-state error is still
higher than that of the proposed adaptive sliding mode algorithm. Moreover, FDOB-
CSMC requires prior knowledge of the disturbance upper bound, which is challenging
to obtain in practical systems and can cause significant overshoots, conflicting with the
emphasis on stability in the Buck converter system. Similarly, the FDOB-SMC utilizes
a fractional-order DOB with easy structure and observer-based sliding mode variable
design, but its convergence speed is slow, and it exhibits high overshoot due to the simpler
structure of DOB. The parameters of FDOB-SMC as presented in Theorem 1 of [21] are
l1 = 10, l2 = 8, c1 = 10, ξ1 = 5, and ξ2 = 3. Both DOB-based methods show unacceptable
overshoot since the initial value of x1 in the Buck converter system is –15, which necessitates a
strong adjustment speed of DOB. Therefore, the proposed adaptive continuous sliding mode
control (ACSMC) algorithm balances the large overshoot and steady-state error brought by
the controller and can effectively utilize the adaptive algorithm to estimate the disturbance
upper bound, achieving good control performance. Compared with asymptotically stable
adaptive continuous SMC (AS-ACSMC) in [25], the proposed finite-time controller exhibits
a faster convergence speed, which is crucial for applications.

It is worth noting that both CSMC and TSMC methods employ a disturbance observer
to handle mismatched disturbances; however, these methods require prior knowledge of
the upper bound of the disturbances. Unfortunately, in many applications, obtaining such
knowledge is not feasible. In contrast, the proposed adaptive law in this paper enables
estimation of the upper bound of disturbances and can effectively suppress disturbances
that are unknown but bounded, thereby allowing more flexibility in controller design.
The superiority of this adaptive controller is further elucidated.
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6. Conclusions

This article proposes a novel mathematical model based on the R-L fractional cal-
culus definition for the Buck converter that takes into account the challenges presented
by practical systems, including the existence of non-integer-order components and uncer-
tainties/disturbances in practical systems. The lumped disturbances of the system are
separated into matched and mismatched disturbances. Considering the different differ-
ential orders of capacitance and inductance and the unknown upper bound disturbances,
adaptive laws are developed to estimate the disturbance upper bound and suppress them.
The proposed continuous adaptive sliding mode controller based on the backstepping
method is an effective solution for the Buck converter system with both matched and mis-
matched disturbances. By introducing a virtual control variable and designing an adaptive
algorithm, the controller can compensate for the unknown bounded disturbances and
ensure the system’s robustness and stability. The global finite-time stability property of the
proposed controller improves the convergence speed and guarantees the system’s stability
within a finite time. Moreover, the proposed controller’s output signal is continuous, which
significantly reduces the chattering phenomenon commonly seen in sliding mode control
systems. The simulation results demonstrate that the proposed controller can ensure the
Buck converter output to track the reference voltage rapidly and precisely, even under
the influence of nonvanishing disturbances. Additionally, the adaptive algorithm shows
effectiveness in estimating and handling disturbances. Comparison shows the superiority
of the proposed controller.
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