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Abstract: Ionic liquids are good candidates as the main component of safe electrolytes for high-energy
lithium-ion batteries. The identification of a reliable algorithm to estimate the electrochemical stability
of ionic liquids can greatly speed up the discovery of suitable anions able to sustain high potentials.
In this work, we critically assess the linear dependence of the anodic limit from the HOMO level
of 27 anions, whose performances have been experimentally investigated in the previous literature.
A limited r Pearson’s value of ≈0.7 is found even with the most computationally demanding DFT
functionals. A different model considering vertical transitions in a vacuum between the charged state
and the neutral molecule is also exploited. In this case, the best-performing functional (M08-HX)
provides a Mean Squared Error (MSE) of 1.61 V2 on the 27 anions here considered. The ions which
give the largest deviations are those with a large value of the solvation energy, and therefore, an
empirical model that linearly combines the anodic limit calculated by vertical transitions in a vacuum
and in a medium with a weight dependent on the solvation energy is proposed for the first time. This
empirical method can decrease the MSE to 1.29 V2 but still provides an r Pearson’s value of ≈0.72.

Keywords: QSAR; machine learning; DFT calculations; anodic stability; ionic liquids

1. Introduction

Batteries are nowadays one of the most versatile energy storage systems for portable
electronics and are also reaching high spread for fueling electric vehicles. Especially
for the latter application, there is a need for high-energy devices. Among the possible
strategies to achieve this goal, the formulation of batteries working at higher voltages
(approaching 5V) is extremely attractive, but this choice poses demanding challenges on
the constituent materials of the cells [1]. One of the problems is the anodic instability of the
common electrolytes for Li-ion batteries. The typical aprotic electrolyte formulations are
based on mixtures of organic carbonates, and on paper, they are stable up to 4.5 V vs. Li.
At higher potentials, these electrolytes can decompose, producing degradation products
which can damage or hinder the correct functioning of any batteries [1]. Among other
options to improve the electrochemical stability of electrolytes, the use of ionic liquids, as
additives, co-solvents or solvents, has been proven to disclose remarkable enhancement
in the electrochemical stability window of electrolytes [2–5]. Ionic liquids have many
physicochemical properties which make them ideal candidates to replace organic carbonates
as electrolytes in electrochemical devices: high thermal stability, low volatility, large liquid
range, large electrochemical stability and high ionic conductivity [2–5].

Experimentally, the electrochemical stability of ionic liquids has been investigated
in many systems, and it is clear that the fluorination of the anions composing the ILs is
a key ingredient to obtain electrolytes for high potential application [2–5]. Overall, the
identification of novel ILs would benefit from fast screening methods to find molecular pairs
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with good electrochemical performances, without addressing expensive trial-and-error
procedures, which are extremely time-consuming.

Any electrolyte is electrochemically stable in the potential range, which avoids the
irreversible reduction or oxidation of salts and solvents’ constituents. Being ionic liquids
formed by charged species, there is a general agreement that the irreversible oxidation
(removal of one electron) occurs mostly from the anion, while the irreversible reduction
(addition of one electron) takes place on the cation. Oxidations and reductions occur
through transitions between states at different energy levels: these estimates allow us
to evaluate the potential difference limiting the electrochemical stability. This concept is
quite simple, but the choice of the method to calculate the energy difference between the
states for oxidations or reductions is not trivial, and many options have been proposed in
the literature.

The first attempt to calculate the highest voltage at which ILs could be used assumed
a direct correlation with the energy of the highest unoccupied molecular orbital (HOMO)
of anions [6,7]. A second model correlated the anodic limit to the energy difference for a
vertical transition from the charged ion to the neutral state, either in the gas phase or in the
presence of a suitable polarizable medium (PM) [8,9]. With the inclusion of a polarizable
medium, the anodic limit is always highly overestimated [8], while better results are
obtained with calculations in a vacuum. Similar DFT calculations were also performed on
cations to determine their cathodic limit [10]. Numerous DFT functionals were exploited to
calculate the electrochemical stability windows of many ionic liquids, using either vertical
or adiabatic transitions [11–13]. More recently, some authors introduced DFT calculations
based on thermodynamic cycles also involving the solvation of the single ions [14,15].
High-throughput screening of hundreds of possible functionalized anions and cations was
reported by Cheng [14], using DFT calculations with the B3LYP functional. Besides DFT
methods, in the literature, some more complex calculations of the electrochemical stability
of ionic liquids based on a combination of DFT and molecular dynamics calculations [16]
or ab-initio molecular dynamics [17] are available. The problem of finding an effective way
to estimate the electrochemical stability of ionic liquids continues to fascinate researchers,
and some recent publications were devoted to this theme [18–21].

In our previous works, we explored different methods to calculate the anodic limit of
ionic liquids, previously proposed in the literature, all based on ab-initio or DFT calcula-
tions [22,23]. For an oxidation reaction where the reagent (initial state) is the chemical specie
A with net charge n, the energy involved in the oxidation reaction, An → An+1 + e− , is

∆Eanodic = Etot

(
An+1

)
− Etot(An) (1)

and the anodic limit is

Anodic limit (V vs. Li) =
∆Eanodic

F
− 1.46 (2)

where F is the Faraday constant, and the term −1.46 V is used to refer these limits to the
standard Li+/Li0 [11].

We displayed that performing this kind of calculation on ionic couples gave unphysical
results, as similar values of the anodic limit were obtained for ionic liquids containing
either the TFSI− or the Cl− anions, which experimentally differ by at least 2 eV [24]. On
the contrary, much better results were obtained considering the single anions [22]. The
comparison with the experimental data reported in Ref. [25] for ILs containing the TFSI or
FSI anion provided evidence that the best way to calculate the anodic limit is by means
of a vertical electronic transition (no geometry variation) from the anion to the neutral
species [22]. A series of different DFT functionals with increasing levels of complexity, from
the Generalized Gradient Approximation to the Range-Separated Hybrid meta-Generalized
Gradient Approximation, were compared [23]. The best match with the experimental data
reported in Ref. [25] was found by means of the BMK, ωB97M-V and MN12-SX; acceptable
results could be obtained by M06-2X, M11, M08-HX and M11-L [23]. Reasonable values
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were also calculated by means of the less computationally expensive functionals CAM-
B3LYP and ωB97X-D [23].

In the present work, we want to extend the investigation by the method defined in
our previous papers to other anions to possibly find some best-performing DFT functions,
which could be used in the future also in view of predictions on new anions. Moreover,
we wanted to explore the possibility to correlate QSAR descriptors to the anodic limit of
known anions. In the end, we propose an empirical model which combines the anodic limit
calculated in a vacuum with that obtained in a polarizable medium, using a weighting
dependent on the solvation energy of the anions.

2. Materials and Methods

All calculations reported in the present paper were performed by means of the Spar-
tan20 software [26]. All structures were optimized at the various levels of theory used in the
paper, and only the lowest energy structure was considered. In all cases, the 6-31G** basis
set was employed, as in our previous papers [22,23]. The QSAR descriptors were calculated,
as well as the anodic limit of 27 anions using Equations (1) and (2). In the first part of
the paper, all calculations were performed in a vacuum considering vertical transitions,
following the results of our previous papers [22,23]. However, we extended the calculation
also to vertical transition in a polar solvent (exploiting the solvent 2pentanone, which has
an εr of 15.2, a value typical for ILs, see Section 3.3) using the Polarizable Continuum Model
(C-PCM) algorithm and recalculating the anodic limit using Equations (1) and (2) applied
to the values obtained in the medium. The solvation energy used for the development of
the empirical model, SE, of the anions was obtained as the electronic energy difference
between the anion in the solvent and the anion in a vacuum. The vibrational contribu-
tion was omitted, for simplicity, in view of the close resemblance of the vibrations in the
two environments.

Figure 1 reports the structures of the 27 anions whose anodic limits were experimen-
tally studied in the literature, which will be computationally investigated in the present
paper. The experimental values are reported in Table 1, together with the proper literature
sources. For the comparison with the experimental data, only the papers with a clear refer-
ence electrode were selected. In some cases, we could find only one report of the anodic
stability of certain anions. On the contrary, for some of them, there is a large literature (see
for example TFSI). We considered the mean of the experimental values when they were
available. A typical uncertainty of 0.5 V was obtained. For this reason, we considered this
uncertainty in the experimental data.

Table 1. Energy of the HOMO level of different anions calculated by MP2, HF, B3LYP, MN12-SX and
M11 theories and comparison with the experimental values of their anodic limit. All calculations
were performed using the 6-31G** basis set.

MP2 eV HF eV B3LYP eV MN-12SX eV M11 eV Experimental Anodic
Limit V

acetate −4.33 −4.35 0.26 −0.25 −3.05 4.64 [24,27]
AsF6 −11.36 −11.25 −4.76 −5.44 −8.44 6.5 [7]

B(CF3)4 −9.71 −9.24 −4.56 −4.87 −7.59 6.48 [28]
B(CN)4 −8.65 −9.01 −5.18 −5.32 −8.33 6.30 [29,30]

BETI −8.49 −8.24 −3.86 −4.26 −6.99 5.65 [31]
BF4 −9.64 −9.55 −3.13 −3.76 −6.82 5.76 [24,30,32–34]
BH4 −4.67 −4.67 −0.87 −0.85 −3.72 2.0 [35]
BOB −8.61 −8.32 −3.7 −4.06 −6.81 4.5 [36]

Cl −3.38 −3.38 0.4 0.27 −2.5 3.60 [24,32,34,37]
ClO4 −7.33 −7.21 −2.14 −2.63 −5.48 5.71 [24,38]

cyanopyrrolide −2.81 −2.77 −0.49 −0.53 −3.06 3.37 [39]
DCA −4.32 −4.31 −0.97 −1.1 −3.74 2.82 [24,40]
FAP −8.83 −8.38 −4.08 −4.39 −7.00 5.72 [29,32]



Entropy 2023, 25, 793 4 of 11

Table 1. Cont.

MP2 eV HF eV B3LYP eV MN-12SX eV M11 eV Experimental Anodic
Limit V

FSI −8.34 −8.16 −3.72 −4.06 −6.85 5.62 [40,41]
FTFSI −8.2 −7.93 −3.63 −3.97 −6.71 5.00 [42]
HSO4 −6.48 −6.24 −1.56 −1.88 −4.81 6.86 [24]
IM14 −8.47 −8.22 −3.84 −4.24 −6.97 4.85 [31,43]

Im(BF3)2 −5.81 −5.99 −3.3 −3.33 −6.11 5.35 [44]
NO3 −5.72 −5.39 0.01 −0.63 −3.48 4.57 [24]

ODFB −7.73 −7.41 −3.98 −3.1 −5.86 4.2 [45]
PF6 −10.86 −10.71 −4.27 −4.92 −7.94 5.38 [32,34]
TFO −7.01 −6.84 −2.02 −2.47 −5.33 5.50 [24,32,34]

TFSAM −6.11 −6.16 −2.43 −2.67 −5.38 5.70 [40]
TFSI −8.32 −8.06 −3.67 −4.07 −6.8 5.65 [24,29,32,34,40]

thiocyanate −3.42 −3.44 −0.41 −0.4 −3.08 3.65 [46,47]
triazolide −3.18 −3.31 −0.54 −0.6 −3.38 3.57 [39]

TSAC −6.85 −6.72 −2.81 −3.11 −5.81 6.02 [40]
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Figure 1. Structure of all anions investigated in this work and legend of the colors of atoms. 

3. Results and Discussion 

Figure 1. Structure of all anions investigated in this work and legend of the colors of atoms.

3. Results and Discussion

In the following, the computational studies will be rationalized starting from simple
QSAR considerations, reported in Section 3.1, proceeding with DFT and ab-initio calculations
with different functionals and in different media (Section 3.2) and completing with the proposi-
tion of an empirical model relying on calculations in a vacuum and in a dielectric environment,
combined with the solvation energy of the anion, that can provide a better agreement with
the experimental data than the calculations in a single environment (Section 3.3).

3.1. QSAR and Anodic Limit of Different Anions

The QSAR descriptors of the 27 anions were calculated at the MP2, HF, B3LYP, MN-
12SX and M11 level of theory, using in all cases the 6-31G** basis set. They include the
energy, the HOMO and LUMO levels, polarizability, dipole moment, number of hydrogen-



Entropy 2023, 25, 793 5 of 11

bond donor and acceptor sites, the area, volume, polar surface area, ovality, the accessible
area, the polar area and accessible polar area, the minimum and maximum values of the
electrostatic potential and the minimum value of the local ionization potential. The used
theory levels were chosen as representative of different grades of approximation: MP2 is the
Møller–Plesset second-order perturbation theory approximation, HF is the Hartree–Fock
theory, B3LYP is a DFT functional based on the simple Global Hybrid Generalized Gradi-
ent Approximation (GH-GGA), while both MN-12SX and M11 are classified as the most
complex type of DFT functionals (Range-Separated Hybrid meta-Generalized Gradient
Approximation (RSH-mGGA)).

As expected, most descriptors, for all types of theory, did not show any correlation
with the anodic limit of the different anions. In Figure S1 of the Supporting Information,
the dependence of the experimental anodic limit versus the electronic properties of the
anions (the energy, the LUMO and HOMO levels and the minimum of the ionization
potential (Minion-p)) are reported when calculated at the HF level of theory. Similar results
are obtained for the other levels of theory. A correlation can be found in the case of the
HOMO level and the minimum of the ionization potential, with a Pearson’s r value for
a linear fit of 0.71 and 0.67, respectively (see Figure S1). However, if one tries a linear fit
using two independent variables (HOMO level and Minion-p), Minion-p is excluded from
the fit on a statistical basis. Therefore, only the HOMO level has a significant correlation
with the experimental anodic limit, even though it is relatively low.

Table 1 displays the values of the HOMO levels calculated by means of the five levels of
theory (MP2, HF, B3LYP, MN12-SX and M11), while Figure 2 shows the dependence of the
experimental anodic limit from the HOMO level at the different theory levels, together with
the best linear-fit lines. The Pearson’s r value is similar for all levels of theory (070–071),
except for B3LYP, which has r ≈ 0.63. Even with the best-performing models, one obtains
that only r2 ≈ 50% of the variation of the anodic limit of anions depends on the HOMO
level. Therefore, the correlation values seem relatively small to be highly predictive for the
search of better-performing anions.
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A correlation between the anodic limit and the HOMO level was evidenced many
years ago for a limited number of anions (no more than 10) [8,9], and in some cases, at the
very beginning of the theoretical investigation of the anodic limit of anions, this correlation
was taken for granted [8,9]. Here, we use a more quantitative approach and the availability
of experimental studies on a larger number of anions to investigate this possible correlation.
However, as reported above, there is a limited correlation between HOMO level and anodic
limit of ILs, and, therefore, we moved to the investigation of the anodic limit by DFT
calculation based on the electronic properties of the ions.

3.2. Ab-Initio and DFT Calculation of the Anodic Limit

The anodic limit of the 27 anions was calculated by means of Equations (1) and (2)
using different DFT functionals with different levels of complexity in a vacuum: B3LYP
(Global Hybrid Generalized Gradient Approximation, GH-GGA), ωB87X-D and CAM-
B3LYP (Range-Separated Hybrid Generalized Gradient Approximation, RSH-GGA), M11-L
and BMK (meta-Generalized Gradient Approximation, mGGA), M06-2X and M08-HX
(Global Hybrid meta-Generalized Gradient Approximation, GH-mGGA), MN-12SX, M11,
ωB87M-V (Range-Separated Hybrid meta-Generalized Gradient Approximation, RSH-
mGGA). For comparison, the MP2 theory was also applied. In all cases, the 6-31G**
basis set was used. Vertical transitions between the anion and the neutral species were
considered [22].

Figure 3 shows the comparison between the experimental and the calculated values
of the anodic limit. One can note, in general, that the functionals with the lowest level of
approximation, such as B3LYP, give the lowest values of the anodic limit; functionals with
a higher level of approximation tend to increase the value of the anodic limit, even though
there is not a well-defined trend, in the sense that the highest-level approximations do not
always give the highest values of the anodic limit.
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A statistical analysis was performed to determine which functional provides the
best agreement with the experimental data. The Mean Squared Error (MSE) between the
observed experimental data and the values obtained by each functional was calculated and
their comparison is reported in Table 2.

Table 2. Mean Squared Error (MSE) values obtained for the comparison between the experimental
values of the anodic limit and those calculated by various functionals.

Functional Type of Approximation MSE (V2)

M08-HX GH-mGGA 1.61
M11 RSH-mGGA 1.64

M06-2X GH-mGGA 1.81
MN-12SX RSH-mGGA 1.81

MP2 – 1.87
M11-L mGGA 1.97
BMK mGGA 2.00

ωB97X-D RSH-GGA 2.18
ωB97M-V RSH-mGGA 2.22

CAM-B3LYP RSH-GGA 2.27
B3LYP GH-GGA 2.78

The MSE increases in the order M08-HX < M11 < M06-2X < MN-12SX < MP2 < M11-L
< BMK < ωB97X-D < ωB97M-V < CAM-B3LYP < B3LYP, passing from 1.61V2 for M08-HX
to 2.78 V2 for B3LYP. Except for ωB97M-V, the agreement between the experimental and
computed anodic limit values improves as the level of theory approximation increases.

The values of the MSE are relatively high. It must be noted (see Figure 3), however,
that the major contributions to these high figures come from several ions (the same ions for
all kinds of functionals): acetate, Cl, ClO4, cyanopyrrolide, NO3, TFO, TFSAM, thyocianate,
triazolide and TSAC. The other 17 anions are quite well described by the proposed model.

3.3. Development of an Empirical Model

Since some specific ions clearly deviate from the model based on vertical transitions in
a vacuum, one may wonder whether these ions share some common chemical or physical
features which can explain such discrepancies. All these ions are quite small; moreover,
the model is based on electronic transitions in a vacuum, which is certainly a rough
approximation of the real environment in which the oxidation of the anion takes place. We
considered the DFT functional which overall gives the best agreement with the experimental
data (M08-HX), and we calculated the volume of the isolated ions and the solvation energy,
obtained as the difference between the energies of the anions in a dielectric medium (2-
pentanone, εr = 15.2) and in a vacuum. This dielectric constant was chosen as representative
of ILs, as they show εr around 15 [48–50]. Moreover, the anodic limit of the 27 anions was
calculated considering a vertical transition between the initial anion and the neutral state
in the medium. The results are reported in Figure 4. Some general considerations can be
derived from this graph: the values of the anodic limit derived from vertical transitions
in a polarizable medium are higher than those obtained from vertical transitions in a
vacuum, and they are constantly higher than the experimental values. The volume of the
anions does not show a clear correlation with the deviation of the anodic limit from the
experimental values, as already pointed out by the QSAR analysis. It was reported that a
strong correlation between the solvation energies of metal ions and their ionic radii exists,
in which the ion solvation energy becomes more positive as the ionic radius increases [51];
however, in the case of the presently investigated anions, for example, not all the ions with
a more positive value of the salvation energy are quite large.
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Figure 4. Bottom panel: Comparison of the experimental anodic limits of anions (dark-yellow mark-
ers) and the values obtained by calculations performed on single ions by the M08-HX, considering 
vertical transition in a vacuum (green marks) or vertical transitions in a medium (red marks). More-
over, the best values obtained by means of the proposed empirical model are reported as blue marks. 

Figure 4. Bottom panel: Comparison of the experimental anodic limits of anions (dark-yellow
markers) and the values obtained by calculations performed on single ions by the M08-HX, consid-
ering vertical transition in a vacuum (green marks) or vertical transitions in a medium (red marks).
Moreover, the best values obtained by means of the proposed empirical model are reported as blue
marks. Upper panel: Calculated volume (red stars) and solvation energy (blue dots) of the ions at the
M08-HX/6-31G** level of theory.

On the other hand, most of the 10 anions with the larger deviations from the experi-
mental values (acetate, Cl, ClO4, cyanopyrrolide, NO3, TFO, TFSAM, thyocianate, triazolide
and TSAC) display large values of the solvation energy. Keeping these findings in mind,
we explored the possibility to express the anodic limit of anions (EAL) by means of an
empirical model which linearly combines the anodic limit calculated by vertical transitions
in a vacuum (∆Evert,vacuum) and in a medium (∆Evert,medium) with a weight dependent on
the solvation energy (SE):

EAL = ∆Evert,vacuum + a(SE− SE0)∆Evert,medium (3)

where a is a proportionality constant and SE0 is a reference value. Both a (−0.003125 V mol/kJ)
and SE0(−185 kJ/mol) were obtained using a fit procedure. In the lower panel of Figure 4,
the EAL values are compared to the experimental values and the figures obtained by vertical
transitions in a vacuum. EAL values are closer than ∆Evert,vacuum to the experimental
figures, and indeed the MSE decreases to 1.29 V2 and the computed and experimental
values differ by less than 1 V, except for five anions (AsF6

−, BF4
−, BH4

−, HSO4
− and PF6

−).
The Pearson’s r for correlation between the calculated anodic limit with the empirical model
and the experimental values is 0.72, as reported in Figure S2 of the Supporting Information.
The origin of this discrepancy is not straightforward and cannot be easily understood. In
fact, there is not apparently a common chemical or physical feature that can easily group
together these anions. Overall, these five deviations with respect to the semi-empirical
model affect small ions (BF4

−, BH4
−) as well as large anions (AsF6

−, HSO4
− and PF6

−),
the bisulphate anion(which contains a hydrolysable proton as well as sully H-free anions),
F-rich anions as well as F-free ions. The only weak common feature of these anions is their
strong reactivity towards water that easily leads to bond cleavages (As-F, B-F, B-H, O-H,
P-F). Further work is surely needed to shed light on this specific point, and it is already in
progress in our laboratory.
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4. Conclusions

In this paper, a systematic search for reliable algorithms to calculate the anodic limit of
ionic liquids was performed. The selected ionic liquids were those for which experimental
values to be used as a reference were already available. As a starting point, the relationship
between the anodic limit and the HOMO levels of the anions is critically investigated.
There is a general linear trend between these two quantities which, however, has a limited
r Pearson’s value of ≈0.7. On the other hand, DFT calculations of the anodic limit seem
more reliable, when considering vertical transitions in a vacuum between the charged state
and the neutral molecule. However, even with the best-performing functional (M08-HX) a
Mean Squared Error of 1.61 V2 is obtained on the 27 anions here considered. The ions which
give the largest errors are those with a large value of the solvation energy, and therefore, an
empirical model that linearly combines the anodic limit calculated by vertical transitions in
a vacuum and in a medium with a weight dependent on the solvation energy is proposed
for the first time. This empirical method can decrease the MSE to 1.29 V2 and provide an r
Pearson’s value of ≈0.72.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/e25050793/s1. Figure S1: Experimental anodic limit versus the
energy (in atomic units), LUMO and HOMO levels (in eV) and the minimum of the ionization
potential (in eV) calculated at the Hartree–Fock level using the 6-31G** basis set. The red curves are
the best-fit lines obtained by a linear regression. Figure S2: Experimental anodic limit versus the
anodic limit calculated by means of the empirical model proposed in the text. The red curve is the
best-fit line obtained by a linear regression.
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