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Abstract: Deep learning methods, especially convolutional neural networks (CNNs), have achieved
good results in the partial discharge (PD) diagnosis of gas-insulated switchgear (GIS) in the laboratory.
However, the relationship of features ignored in CNNs and the heavy dependance on the amount of
sample data make it difficult for the model developed in the laboratory to achieve high-precision,
robust diagnosis of PD in the field. To solve these problems, a subdomain adaptation capsule network
(SACN) is adopted for PD diagnosis in GIS. First, the feature information is effectively extracted
by using a capsule network, which improves feature representation. Then, subdomain adaptation
transfer learning is used to accomplish high diagnosis performance on the field data, which alleviates
the confusion of different subdomains and matches the local distribution at the subdomain level.
Experimental results demonstrate that the accuracy of the SACN in this study reaches 93.75% on the
field data. The SACN has better performance than traditional deep learning methods, indicating that
the SACN has potential application value in PD diagnosis of GIS.

Keywords: partial discharge; capsule network; subdomain adaptation; gas-insulated switchgear;
fault diagnosis

1. Introduction

Gas-insulated switchgear (GIS) is widely used in the power grid because of its advan-
tages of good insulation, high reliability, and small footprint [1]. However, the failure rate of
GIS is much higher than that stipulated by the International Electro Technical Commission
standard, which seriously affects power supply reliability. Insulation defects in GIS are one
of the significant causes of GIS failure, leading to huge loss to the power grid. As a promi-
nent sign of an insulation defect, partial discharge (PD) may result in the insulation failure
of GIS. Therefore, performing PD diagnosis of GIS is essential for discovering insulation
defects early and removing them effectively, which is crucial to ensure reliable operation of
the power system.

Currently, GIS PD diagnosis methods can be divided into model-driven and data-
driven methods. Data-driven methods have become a popular research area because they
address the difficulty of finding or building models that fit data, which comprise machine
learning (ML) and deep learning (DL). ML methods of PD diagnosis consist of two parts:
Feature extraction and PD type classification. Feature extraction uses signal processing tech-
nology, such as wavelet packet decomposition [2] and the short-time Fourier transform [3],
to denoise and extract representative features. PD type classification utilizes different
classification methods such as support vector machines [4] and K-nearest neighbor [5]
and random forest [6] approaches. However, although manual feature extraction in ML
methods seriously relies on expert experience, the performance of the classifier is greatly
affected by the feature and generalization ability of the ML model; thus, there are great
discrepancies among different classifiers under different states.
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With the rapid development of artificial intelligence, DL, especially using convo-
lutional neural networks (CNNs), has received wide attention because of its powerful
capability of feature extraction and classification. Song et al. [7] employed a deep CNN to
recognize PD patterns under various data sources and improved the recognition accuracy
compared with traditional ML methods. Wang et al. [8] proposed a light-scale CNN for PD
pattern recognition and verified the superiority of the light-scale CNN on the recognition
accuracy and calculation time. Liu et al. [9] adopted a CNN with a long short-term memory
model for distinguishing PD types, achieving greater accuracy than that of other traditional
analysis methods. However, the CNN needs to learn features of PD from massive sam-
ples, and the diagnosis capability of the model seriously degrades when the sample size
is reduced.

To solve the problem of low accuracy under small-sample conditions, deep transfer
learning (DTL) has been continuously studied in recent years. Among the many DTL
methods, domain adaptation based on maximum mean discrepancy (MMD) [10] is studied
as the most popular method, as it has a flexible loss function and involves an uncomplicated
training process. Guo et al. [10] adopted deep convolutional transfer learning to accomplish
fault diagnosis with various data sources from different machines; their approach employs
a condition recognition module and uses MMD as the domain loss. Zhu et al. [11] presented
a DTL-based convolutional network for fault diagnosis in different working conditions
in which Gaussian kernels were added for MMD calculation optimization. Their model
performance was validated by experiments and compared with shallow learning methods.
However, MMD domain adaptation mainly learns the global distribution of source and
target domains, ignoring the confusion between subdomains for each PD type of GIS.

To compensate for the deficiency of MMD domain adaptation, subdomain adaptation
was proposed to learn the local domain distribution. Tian et al. [12] proposed a multi-
source subdomain adaptation transfer learning method to improve the generalization
ability of diagnostic models. Extensive experiments demonstrated that their proposed
model has significant advantages in cross-domain fault diagnosis. Zhu et al. [13] proposed
a simulation-data-driven subdomain adaptation adversarial transfer learning network that
combines adversarial learning and subdomain adaptation and verified its effectiveness in
rolling bearing fault diagnosis. Wang et al. [14] used a novel subdomain adaptation transfer
learning network for the fault diagnosis of roller bearings and tested its superiority with
six transfer tasks.

However, the feature classifiers of the above methods are mostly based on CNNs,
which ignores the relationship between features because of the scalar form of the full
connected layer, which can lead to feature information loss and limited diagnostic accuracy
of PD in GIS. Therefore, the capsule network (CapsNet) [15] was proposed, which considers
the relationship between features in feature extraction and has the ability to fit complex
data features. CapsNet effectively improves diagnostic accuracy and has achieved excellent
results in many fields. Chen et al. [16] adopted CapsNet to realize the fault recognition
of high-speed train bogies under various working conditions and proved its efficiency
through an experimental comparison with a CNN. Ke et al. [17] proposed a compound
fault diagnosis method based on CapsNet for a modular multilevel converter, verifying
it to have excellent fault recognition accuracy. Wang et al. [18] used CapsNet for fault
classification and enhanced diagnostic performance through adversarial training. The
accuracy of their proposed method is higher than that of other advanced methods.

Inspired by adaptive and capsule networks, we propose a subdomain adaptation
capsule network (SACN) for on-site small-sample GIS PD diagnosis. First, an improved
CapsNet is proposed to enhance the extraction capability and reduce information loss. Then,
an adaptative local maximum mean discrepancy (ALMMD) of subdomain adaptation is
adopted to measure the distance between subdomains adaptively and restrain the negative
effect of the category discrepancy of the samples. Finally, the model is applied to PD
diagnosis under the small-sample condition on site. The main contributions of this study
are generalized as follows:
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• A SACN is proposed for small-sample GIS PD diagnosis in the field. To the best of our
knowledge, this is the first time that SACN has been applied to GIS PD diagnosis.

• A novel method of subdomain adaptation is introduced into GIS PD diagnosis.
ALMMD is used as the distance criterion of subdomain adaptation to calculate the
distance between subdomains adaptively and solves the problems of local information
ignored by the MMD domain adaptation.

• An improved CapsNet is introduced into the feature extraction to further improve
feature extraction capability. A self-routing algorithm is introduced into CapsNet to im-
prove the routing coefficient generation strategy, thereby improving the computational
efficiency and classification accuracy of CapsNet.

• Laboratory and field experiments are constructed to verify the superiority of the
SACN proposed in this study. The experimental results show that the model pro-
posed has better performance than traditional DL methods in on-site small-sample
GIS PD diagnosis.

2. Preliminaries
2.1. Domain Adaptation

Domain adaptation is one of the typical algorithms employed in DTL [15]. Domain
adaptation aims to obtain the common features of source and target domains when the
learning task is the same. Under its theory, the source domain Ds =

{(
xs

i , ys
i
)} ns

i=1 con-

forms to the distribution of p and the target domain Dt =
{

xt
j, yt

j

} nt

j=1
conforms to the

distribution of q. Ds consists of ns samples, including input xs and label vector ys, while
Dt includes nt samples. To establish the specific character of the GIS fault diagnosis field,
the source domain is designed as the abundant data from the laboratory while the target
domain is from the field. The kernel of domain adaptation establishes a model of DL
to transfer distribution characteristics and promote the precision of classification of the
target domain in the case of insufficient data support. The optimization process obeys the
principle of minimizing the classification loss and the discrepancy between training and
test sets. According to the proposed principle, the optimization objective function can be
expressed as

min
f

1
ns

ns

∑
i=1

J( f (xs
i ), ys

i ) + α
∧
d(p, q), (1)

where J(·, ·) is the cross-entropy loss function,
∧
d(·, ·) represents the loss of domain transfer, α

expresses the coupling relationship as the trade-off parameter, and f
(

xs
i
)

is the classification
operation of input xs

i to get close to the true label ys
i .

As one of the distance criteria of domain adaptation, MMD is used most frequently.
MMD maps the initial feature distribution that is indivisible linearly into the reproducing
kernel Hilbert space (RKHS) to be divisible easily. The kernel function of RKHS amounts to
the inner product of the mapping function. MMD mainly focuses on global distribution
alignment while ignoring the feature association of different subdomains. The difference in
the function means mapped with the reproducing kernel can be represented as

d2
H(Ds, Dt) =

∥∥∥∥∥ 1
ns

ns

∑
i=1

φ(Ds)−
1
nt

nt

∑
j=1

φ(Dt)

∥∥∥∥∥
2

H

, (2)

where H represents RKHS and φ is the mapping function.
RKHS is generated with the embedding of a kernel mean such as a Gaussian or Laplace

kernel. Then, the formula via empirical estimation is:

d2
H
(

xi, xj
)
=

∥∥∥∥∥ 1
n2

s

ns

∑
i=1

ns

∑
j=1

k
(

xs
i , xs

j

)
− 2

nsnt

ns

∑
i=1

nt

∑
j=1

k
(

xs
i , xt

j

)
+

1
n2

t

nt

∑
i=1

nt

∑
j=1

k
(

xt
i , xt

j

)∥∥∥∥∥
H

, (3)
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where k is the kernel of the inner product.

2.2. Capsule Network

To solve the problem of feature extraction inadequacy and overfitting of the CNN,
CapsNet raises the capsule structure and the feature selection method via a dynamic
routing algorithm. A classical CapsNet framework is divided into three components:
a one-dimensional convolutional layer, a primary capsule (PCaps) layer, and a digital
capsule (DCaps) layer. The one-dimensional convolutional layer is composed of multiple
convolution-pool layers. The initial features are extracted by several convolutional layers
with pooling layers. In contrast to the scalar neurons in a CNN, a capsule layer contains a
certain number of capsules that compose a group of vector neurons.

CapsNet learns from the strength of feature extraction of the CNN. Meanwhile, Cap-
sNet raises the capsule structure and the feature selection method via a dynamic routing
algorithm. PCaps is used for describing the local feature of the object, and the purpose of
DCaps is to express the abstract feature. Then, feature information from PCaps is clustered
and updated into DCaps through the dynamic routing algorithm. The algorithm process is
shown in Figure 1.
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Figure 1. Dynamic routing algorithm.

If ui represents the capsule in the (j − 1)th layer, then the prediction vector Uj|i can be
calculated as follows:

Uj|i = ωijui, (4)

where ωij is the affine transformation matrix as weight adding to ui. The total input vector
sj is obtained by the weighted sum of the prediction vector as follows:

sj = ∑
i

cij ·Uj|i, (5)

where cij is the coupling parameter that satisfies ∑ cij = 1. Then, vj is designed as the
output vector of the jth capsule calculated by the nonlinear function squash as:

vj =

∥∥sj
∥∥2

1 +
∥∥sj
∥∥2 ·

sj∥∥sj
∥∥ . (6)

The weight parameter cij is gained and updated iteratively as follows:

cij =
exp(bij)

∑
k

exp(bik)
, (7)

where bij is the logarithmic prior probability whose initial value is zero.
In the process of forward propagation, cij is obtained using Equation (7) and vj is

received according to Equations (5) and (6). cij is updated and modified utilizing the
iteration of bij, and bij is from the change in vj. Then, sj is further corrected by forward
propagation to gain the output vector vj. The coupling coefficients above can be acquired
and optimized by the iteration of dynamic routing [19].
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3. Proposed Method

In this study, we propose a SACN for on-site small-sample PD diagnosis in GIS. The
overall architecture of our SACN is shown as Figure 2; it is composed of three parts: a
feature extractor, subdomain adaptation, and a classifier. The feature extractor adopts
CapsNet with a self-routing algorithm to simplify the complex iterative process of dynamic
routing in the traditional CapsNet. In the subdomain adaptation, ALMMD is utilized in the
computation of the domain loss function to reduce the confusion of different subdomains
and narrow the local distribution of source and target domains. Compared with domain
adaptation, subdomain adaptation not only guarantees the largest distance between classes
but also ensures the smallest distance between samples in the same class, thus avoiding
the boundary confusion between different classes. The classifier is used to determine the
category of GIS PD, and the domain-aligned and matched features are used as input to
realize small-sample PD diagnosis in the field.
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3.1. Feature Extractor

In this study, capsule networks are used to extract discriminative features in GIS PD
diagnosis. Because the dynamic routing algorithm used in the traditional CapsNet employs
a complex iteration mechanism, which brings a huge computation burden when the input
space dimension is large, a self-routing capsule network (SR-CapsNet) [20] is proposed.
Instead of dynamic routing, the self-routing algorithm between the capsule layers can
process lower capsules of different scales with a much lower calculation cost and fewer
model parameters because of its non-iteration characteristic.

The self-routing algorithm introduces two learnable weight matrices: a routing weight
matrix and a pose weight matrix.

The routing weight matrix Wroute is used to calculate the routing coefficient cij, which
indicates the probability that the upper capsule is activated. The routing coefficient is
calculated as follows:

cij = softmax
(
Wroute

i ui
)

j, (8)

where ui is the capsule pose vector of the (l − 1)th layer and softmax is the nonlinear
activation function.

The routing coefficient cij is then multiplied by the activation scalar to acquire the
activation scalar of the upper layer. The activation scalar is acquired by quantifying the
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initial feature to reflect the probability value of activation of the (l − 1)th layer. The
activation scalar of the lth layer, aj, is generated as follows:

aj =

∑
i∈Nl

cijai

∑
i∈Nl

ai
, (9)

where Nl is the number of capsules in the (l − 1)th layer.
The other learnable weight matrix of self-routing is the pose weight matrix used to

generate the prediction vector, which is calculated as follows:

ui|j = Wpose
ij ui, (10)

where ui|j is the prediction capsule of lth layer that is affected by activation scalar aj to
update the capsules in the lth layer:

uj =

∑
i∈Nl

cijaiui|j

∑
i∈Nl

ai
. (11)

The convolution-pool layers in SR-CapsNet apply a multiscale convolution method
to extract the multiscale features in the fault data and enrich the information of the PD
diagnosis. Multiscale convolution can extract the detail via a shallower network than a
deep convolution network. The process proposed is described as:

ymc = concentrate(y1, · · · , yn), (12)

where y1, · · · , yn is the output of convolution kernels of various sizes and concentrate(·)
represents the splicing in the direction of the channel. Some of the parameters of the feature
extractor are shown in Table 1, where 8 × (4) × 8 represents that the vector dimension is
four, and the feature layer width is eight.

Table 1. Parameters of the feature extractor.

Layers K-Size Stride Output Channels Output Size

Conv1 116 × 1 8 32 128 × 32
MaxPool1 2 × 1 2 32 64 × 32

Conv2 34 × 1 2 32 16 × 32
MaxPool2 2 × 1 2 32 8 × (4) × 8

Capsule layer 4 - 1 4 × (8)

3.2. Subdomain Adaptation

A subdomain contains different samples of the same class. To resolve boundary
confusion of different subdomains caused by domain adaptation, subdomain adaptation
addresses the issue of distribution alignment at the subdomain level. Therefore, it solves
the problem that different categories of data are mixed together and cannot be separated
accurately. Compared with MMD domain adaptation, local MMD (LMMD) obtains the
distance between samples of the same type in different domains and aligns the distribution
of the same category of data. However, the weight ratio of the distance of each category
sample in the calculation of LMMD is the same and cannot be distinguished. Consequently,
the addition of adaptive parameters improves LMMD to ALMMD, which can dynamically
adjust the distance of each category sample. To calculate the distance between subdomains
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better and restrain the negative effect of the category discrepancy of the samples of the
same type, the following ALMMD is proposed:

∧
dALMMD =

N

∑
n=1

∥∥∥∥∥ ns

∑
i

ωs,n
i φ

(
zs

i,m

)
−

nt

∑
j

ωt,n
j φ
(

zt
j,m

)∥∥∥∥∥
2

H

, (13)

where αn(n = 1, 2, · · · , N − 1) is the adaptative parameter, with {αn} being updated with
the loss function value decreasing and promoting the capture of the domain distance dy-
namically and adaptively, and N is the number of categories. The weight of the distribution
distance of features in the source domain ωs,c

i and the weight of the target domain ωt,c
j in

the nth domain are calculated as:

ωn
i =

ys
i

ns
∑
i

ys
i

, (14)

ωn
j =

Cls
(

zt
j,m

)
nt
∑
j
, Cls

(
zt

j,m

) , (15)

The calculation of ALMMD then proceeds as follows:

∧
dALMMD =

N

∑
n=1



1
n2

s

ns
∑
i

ns
∑
j

ωs,n
i ωs,n

j k
(

zs
i,m, zs

j,m

)
+ 1

n2
t

nt
∑
i

nt
∑
j

ωt,n
i ωt,n

j k
(

zt
i,m, zt

j,m

)
− 2

nsnt

ns
∑
i

nt
∑
j

ωs,n
i ωt,n

j k
(

zs
i,m, zt

j,m

)


. (16)

3.3. Training Process

The SACN model is trained via minimizing the classification loss of source and target
domains and the ALMMD loss. The loss function on the PD type classification of the source
domain and the training data selected from field data can be expressed as follows:

Js =
1
ns

ns

∑
i=1

J(ys
i , f (xs

i )), (17)

Jt =
1

nt_part

nt_part

∑
j=1

J
(

yt
j, f
(

xt
j

))
, (18)

where J(·, ·) is the loss function based on cross-entropy.
The ALMMD loss function is:

JALMMD =
αn

N

N

∑
n=1



1
n2

s

ns
∑
i

ns
∑
j

ωs,n
i ωs,n

j k
(

zs
i,m, zs

j,m

)
+ 1

n2
t

nt
∑
i

nt
∑
j

ωt,n
i ωt,n

j k
(

zt
i,m, zt

j,m

)
− 2

nsnt

ns
∑
i

nt
∑
j

ωs,n
i ωt,n

j k
(

zs
i,m, zt

j,m

)


. (19)

Therefore, the loss function of the overall model can be calculated as follows:

min
f

Js + αJt + λJALMMD(p, q), (20)
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where α is the weight parameter of the loss target domain and λ is the weight parameter
applying to the transfer ALMMD loss. The specific process is shown in Algorithm 1.

Algorithm 1 SACN training algorithm

1: Initialize trainable parameters: Feature extractor parameters fθ , routing weight matrix Wroute,
adaptive list of ALMMD {αn}, pose weight matrix Wpose

2: Initialize invariance parameters: Weight parameters α and λ, training epochs number t, error
margin ε

3: Input source domain data Ds{(xs, ys)}, target domain data Dt
{(

xt, yt)}
4: For n = 1, 2, 3, . . . , t do

5: Feature extractor: uk = fθ

(
xs

i
)
, ul = fθ

(
xt

j

)
6: PCaps generation: uPCaps

k ← uk , uPCaps
l ← ul

7: DCaps generation: cij = softmax
(
Wroute

i ui
)

j, uDCaps
k ← uPCaps

k , uDCaps
l ← uPCaps

l

8: Forward propagation: ys
k_pre = MLP

(
‖uDCaps

k(1) ‖, ‖u
DCaps
k(2) ‖, · · · , ‖uDCaps

k(n) ‖
)

,yt
l_pre =

MLP
(
‖uDCaps

l(1) ‖, ‖uDCaps
l(2) ‖, · · · , ‖uDCaps

l(n) ‖
)

9: Back propagation: Loss = Js

(
ys

k_pre, ys
k

)
+ αJt

(
yt

l_pre, yt
l

)
+ λJALMMD

(
uDCaps

k , uDCaps
l

)
10: End for
11: Output: prediction probability yt

pre

4. GIS partial Discharge Experiment
4.1. Source Domain Data Acquisition

This study uses laboratory data as the source domain data. To build the source domain
dataset, we built a 252-kV GIS PD experimental platform, as shown in Figure 3. The
platform comprises a power source system, a GIS cavity, and a PD signal acquisition system.
The power source system includes a PD power frequency test transformer and a voltage
regulator. The rated capacity of the test transformer was 50 kVA, and the highest output
voltage on the high-voltage side was 250 kV. The output voltage from the high-voltage
side can be regulated in a range of 0–110 kV via voltage regulation of the low-voltage
side. The total length of the GIS cavity is 7284 mm. Before the experiment began, the GIS
cavity was vacuumed to remove gas impurities; then, the cavity was injected with SF6
until reaching a pressure level of 0.4 MPa. The PD signal acquisition procedure entailed an
ultra-high-frequency (UHF) sensor receiving the high-frequency signals generated by PD
in GIS. The signal was then amplified by a wide-band amplifier and the UHF signal was
transmitted to an oscilloscope.
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The key equipment parameters and models in the experimental system are given in
the Table 2.
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Table 2. Equipment parameters and models.

Equipment Key Parameters

UHF sensor
Model: PDU-G2

Bandwidth: 300–1500 MHz
Load impedance: 50Ω

Oscilloscope
Model: Agilent DSO9404

Analog bandwidth: 4 GHz
Sampling rate: 20 GS/s

Amplifier Gain: 40 dB

Four kinds of typical defects (tip discharge, free particle discharge, floating elec-
trode discharge, and surface discharge) were simulated by artificial defect setting. (1) Tip
discharge: A copper needle was installed on the high-voltage electrode to simulate the
projection on the conductor surface. The length of the needle was 15 mm and the tip
diameter was 0.5 mm. (2) Free particle discharge: A number of copper globes were pep-
pered throughout the cavity as conductive metal particles. These globes can bounce as a
result of the electrostatic force under AC voltage. (3) Floating electrode discharge: A 5 mm
thick epoxy resin plate was deposited between the high-voltage electrode and the ground
electrode. A copper plate was fastened to the epoxy resin plate at a height of 10 mm to
keep the state of suspension. (4) Surface discharge: Copper wires (of 10 mm in length) were
fixed on the surface of the epoxy resin.

For each kind of defect, the test voltage was incrementally added to both ends of
the test GIS in voltage steps of 2 kV as in the step-up voltage method. The voltage range
was from 35 to 110 kV. PD occurs primarily at the initial voltage U0. If the discharge was
sustainable, the PD signal was recorded and stored. The voltage was incremented in steps
of 2 kV continuously when sustained discharge occurred. PD developed into flashover on
the surface of the insulator as the test voltage increased. The corresponding voltage is the
breakdown voltage Ub.

To obtain representative samples, two methods were used. The first method is repeat-
ing each test result 10 times and selecting the average value as the final result to avoid
accidental errors of a single experiment. The second strategy involved choosing different
positions of the simulated defect. Regarding surface discharge, the locations of the copper
wires were positioned close to the high-voltage conductor, the center conductor, and the
shell. Finally, after the experimental simulation of the four defects above, 1320 groups of
samples (in which 330 groups of samples correspond to one kind of fault) were collected
to establish the database of the source domain. The waveform diagrams of four kinds of
defects are shown in Figure 4.

4.2. Target Domain Data Acquisition

The on-site defect samples were derived from years of historical maintenance data
records of an electric power company in a chosen province. The historical raw data were
affected by interference factors of the field operating environment. Therefore, after the
process of labeling with the types of faults that occurred and uniformization to facilitate
comparative and comprehensive analysis, the target domain dataset was built. Additionally,
the initial data needed to be denoised because of the interference of environmental factors
on site. The fast Fourier transform method was used for reducing the signal noise. A total
of 320 groups of field samples were obtained, including 80 for tip charge defects, 40 for free
particle discharge, 120 for surface discharge, and 80 for floating electrode discharge.
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5. Result and Analysis

To demonstrate the superiority of the proposed model in PD diagnosis on small
samples in the field, we conducted a comparative analysis from the feature extractors and
domain adaptation methods. To demonstrate the excellent performance in the feature
extraction of SR-CapsNet, we selected a CNN and CapsNet (dynamic routing algorithm)
to compare the capability of PD diagnosis under the same number of layers. In addition,
the superiority of the ALMMD subdomain adaptation was also verified by a comparison
with other domain loss schemes such as MMD domain adaptation and LMMD subdomain
adaptation. The feature extractors adopted in the above methods have the same structure
as those of CapsNet. Finally, the superiority of the proposed method was verified by a
comparison with existing methods.

The diagnosis network proposed was implemented on the PyTorch framework using
the Python programming language. The network was implemented on a Windows 10
(64 bit) platform running on a PC with an i7-9750HF CPU, an NVIDIA RTX 3060 GPU, and
a random-access memory of 16 GB.

The diagnosis accuracies for different feature extractors are shown in Table 3. It can be
seen from Table 3 that the accuracies of SR-CapsNet were 11% and 12% higher than those
of dynamic routing CapsNet on defects 0 and 1, respectively, which shows that self-routing
further improves the diagnosis accuracy. The accuracies on defects 2 and 3 exhibited
no improvement with dynamic routing. The performance of the CNN was significantly
enhanced by CapsNet, which verifies that CapsNet compensates for the deficiency of
ignoring the relationship between the local features and the relevant information hidden
below by the CNN. The capsule layer, compared to the full-connection layer, can extract
more features from the source domain to have initial recognition ability for almost all kinds
of defects. As shown in Table 3, the feature distribution of the experimental data exhibit an
obvious discrepancy with small samples in the field, so the model trained by the source
domain directly is not suitable for on-site small samples.

To clearly display the significant advantage of the ALMMD subdomain adaptation, we
compared it with other domain adaptation methods. The diagnosis accuracies of models
with different domain adaptation methods are listed in Table 4. The table indicates that the
MMD domain adaptation improves the overall accuracy of the PD diagnostic model using
only CapsNet by 13.88% on small samples in the field. In addition, compared with MMD
and LMMD, ALMMD improves the overall PD diagnostic accuracy by 11.12% and 5.5%,
respectively.
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Table 3. Diagnostic accuracy of PD defects using different feature extractors.

Method

Diagnostic Accuracy

Tip (0) Free Particle (1) Floating
Electrode (2) Surface (3) Overall (%)

CNN 0.97 0.07 0.15 0.10 32.63
CapsNet

(dynamic routing) 0.63 0.58 0.95 0.47 64.38

CapsNet
(self-routing) 0.74 0.70 0.97 0.46 68.75

Table 4. Diagnostic accuracy of different domain adaptation methods.

Method

Diagnostic Accuracy

Tip (0) Free Particle (1) Floating
Electrode (2) Surface (3) Overall (%)

CapsNet 0.74 0.70 0.97 0.46 68.75
CapsNet + MMD 0.86 0.82 1.00 0.69 82.63

CapsNet + LMMD 0.91 0.90 1.00 0.78 88.25
CapsNet + ALMMD 0.94 0.95 1.00 0.89 93.75

The confusion matrices of diagnosis performance on the different PD types utilizing
no-transfer learning, MMD, LMMD, and ALMMD are shown as Figure 5, where 0, 1, 2, and
3 represent tip discharge, free particle discharge, floating electrode discharge, and surface
discharge, respectively. As shown by confusion matrices (a) and (b), the addition of the
MMD domain adaptation improved the classification accuracy notably, increasing the rate
by 12%, 12%, 3%, and 23%, respectively. Moreover, the accuracy rate of defect 2 reached
100%. This demonstrates that the domain adaptation framework finds classification features
that fit the target domain better and makes the discrimination effect of the four PD defect
types more significant. As shown in confusion matrices (b) and (c), the accuracy of defects
0, 1, and 3 increased 5%, 8%, and 9%, respectively. This indicates that LMMD further
improves the diagnostic accuracy of PD. As shown in confusion matrix (d), ALMMD
increases the accuracy of defects 0, 1, and 3 by 3%, 5%, and 11%, respectively. This shows
that the addition of adaptive coefficients can better measure the distance of each category
sample and improve diagnostic accuracy. For defect 3, which has the lowest accuracy rate,
both the discharge time and amplitude have great uncertainty. In addition, the features
extracted from the surface discharge signal overlap with those of the other three types of
defects. Therefore, defect 3 has a certain percentage of being misclassified as other defects.
However, the accuracy of the ALMMD subdomain adaptation is closest to 90%.

To visualize the advantages of ALMMD compared to other domain adaptation meth-
ods, t-distributed stochastic neighbor embedding (t-SNE) was used to obtain the two-
dimensional visualization results in Figure 6. As shown in Figure 6a, different categories of
subdomain boundaries are not well differentiated, and the distance between the samples of
the same category is too large to be clustered together, which shows that the classification
effect of only CapsNet is limited. The MMD domain adaptation in Figure 6b clearly reduced
the confusion of the boundaries between each category, so the diagnosis accuracy increased
greatly. Compared to MMD, LMMD in Figure 6c reduced the distance between samples in
the same class, thereby further enlarging the distance between PD types. The distinguishing
effect of ALMMD is better than that of the other three methods; its classification boundary
of the four kinds of defects is the most remarkable, which demonstrates the superiority
of feature extraction and high performance applied to the small-sample condition. It also
shows that ALMMD not only matches the distribution at the global level but also matches
the local distribution of different subdomains of the same category.
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To evaluate the advantages of the proposed method, fine-tuning transfer learning
(FTTL) [21], domain adversarial training (DAT) [22], and joint adaptation (JD) [23] were
selected for comparison. The diagnostic accuracies of these methods are listed in Table 5.
As shown in Table 5, FTTL had the lowest accuracy rate of only 82.5%, and its standard
deviation was also the largest. JD had an accuracy of 84.73% and its standard deviation was
smaller than that of FTTL and DAT. DAT aligned the global distribution match and further
improved the average accuracy to 88.56%. The average accuracy of the SACN used in this
study was the highest among all methods, reaching 93.75%. The relatively small standard
deviation indicates its good robustness. Therefore, this indicates that the SACN can find
more representative features at the subdomain level and has better diagnostic ability under
the application conditions of small samples in the field.
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Table 5. Diagnostic results of different methods.

Method Average Diagnostic Accuracy (%) Standard Deviation
of Accuracy

FTTL 82.50 1.76
JD 84.73 0.93

DAT 88.56 1.19
SACN 93.75 0.67

6. Conclusions

We adopted an SACN for on-site PD defect diagnosis in GIS. For feature extraction, the
self-routing improved CapsNet was adopted; this network can effectively use the relation-
ship between features to reduce the loss of feature information and improve the efficiency
of feature extraction. Compared with a CNN, the improvement in the feature extraction
of CapsNet increases diagnosis accuracy by 36.12%. CapsNet introduces ALMMD subdo-
main adaptation, which achieves higher performance under the small-sample condition.
By matching local distributions of different subdomains in the same category, ALMMD
separates the classification boundary of different PD types more clearly. Compared with
MMD and LMMD, ALMMD subdomain adaptation increases diagnosis accuracy by 11.12%
and 5.5%, respectively. The superiority of the SACN in small-sample GIS PD diagnosis was
verified by comparison with the current commonly used methods. However, the field data
come from one data source, and multi-source result verification is required in the future.
Additionally, the influence of the size of the target domain data on the model training and
testing process is not validated directly; this aspect will be further studied in our next work.
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