
Citation: Cohen, S.; Goldshlager, N.;

Shapira, B.; Rokach, L. TTANAD:

Test-Time Augmentation for Network

Anomaly Detection. Entropy 2023, 25,

820. https://doi.org/10.3390/

e25050820

Academic Editors: Liang-Jian Deng,

Minyu Feng and Feng Chen

Received: 20 April 2023

Revised: 15 May 2023

Accepted: 17 May 2023

Published: 19 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

TTANAD: Test-Time Augmentation for Network
Anomaly Detection
Seffi Cohen *,† , Niv Goldshlager †, Bracha Shapira and Lior Rokach

Software and Information Systems Engineering, Ben-Gurion University, Beer Sheva P.O. Box 653, Israel;
nivgold@post.bgu.ac.il (N.G.)
* Correspondence: seffi@post.bgu.ac.il
† These authors contributed equally to this work.

Abstract: Machine learning-based Network Intrusion Detection Systems (NIDS) are designed to
protect networks by identifying anomalous behaviors or improper uses. In recent years, advanced
attacks, such as those mimicking legitimate traffic, have been developed to avoid alerting such
systems. Previous works mainly focused on improving the anomaly detector itself, whereas in this
paper, we introduce a novel method, Test-Time Augmentation for Network Anomaly Detection
(TTANAD), which utilizes test-time augmentation to enhance anomaly detection from the data side.
TTANAD leverages the temporal characteristics of traffic data and produces temporal test-time
augmentations on the monitored traffic data. This method aims to create additional points of view
when examining network traffic during inference, making it suitable for a variety of anomaly detector
algorithms. Our experimental results demonstrate that TTANAD outperforms the baseline in all
benchmark datasets and with all examined anomaly detection algorithms, according to the Area
Under the Receiver Operating Characteristic (AUC) metric.

Keywords: NIDS; TTA; anomaly detection; time series

1. Introduction

Network anomaly detection plays a crucial role in defending against a wide range of
cyber attacks, as modern cyber threats become increasingly sophisticated and persistent
in evading detection systems. Intrusion detection (ID) is the core element for network
security [1]. The main objective of ID is to identify abnormal behaviors and attempts caused
by intruders in the network and computer system [2]. Network Intrusion Detection Systems
(NIDS) combine information from sensors that monitor different network points around
the organization’s network. The sensors monitor the incoming and outgoing traffic and
can collect informative network features such as packet payloads, IP addresses, ports,
number of bytes transmitted, and other network flow characteristics [3]. NIDS can be
broadly categorized into two main groups: Signature-based NIDS and Anomaly-based
NIDS. Signature-based NIDS are static in that the detection methods rely solely on a fixed
set called a knowledge database, which needs to be updated over time and requires more
human effort and time [4]. On the other hand, Anomaly-based NIDS are dynamic because
after the normal state of the network is learned, they can detect any irregular and anomalous
events [5]. The learning involves creating a baseline profile representing normal network
behavior based on historical network traffic or a malicious-free network traffic snapshot. As
a result, anomaly-based NIDS are considered the most popular detection method because
they can detect unknown attacks (zero-day attacks) [6]. In real-world cyberspace tasks,
storing, transferring, and processing the huge amount of data captured by the sensors is a
big issue [7]. Sampling techniques have been proposed in several works [8–10] in order to
cope with this challenge. These techniques aim at taking a portion of the data that gives
the same characteristics as the whole dataset. Brauckhoff et al. [11] detailed the complete

Entropy 2023, 25, 820. https://doi.org/10.3390/e25050820 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25050820
https://doi.org/10.3390/e25050820
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1135-0079
https://orcid.org/0000-0002-6956-3341
https://doi.org/10.3390/e25050820
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25050820?type=check_update&version=1


Entropy 2023, 25, 820 2 of 12

processing chain from packet capture to the generation of anomaly detection and included
temporal aggregation , which extracts statistics such as mean, standard deviation, etc., from
the data that arrives during a time window with a length of T. Temporal aggregation is
applied to achieve further data compression and to transform the traffic trace into the
observation timescale of interest for anomaly detection [11].

Test-time augmentation (TTA) is an application of data augmentation techniques on
the test set. TTA techniques generate multiple augmented copies for each test instance, pre-
dicting each of them and combining the results with the original instance’s prediction [12].
Intuitively, TTA produces different points of view at inference time, thus predicting the
given test instance more robustly. Data augmentation can improve the model’s performance
without changing its architecture. However, it requires more training resources since more
training data are used [13]. TTA, on the other hand, is more efficient than data augmen-
tation in the training phase because retraining the model is not required. Several studies,
mostly from the vision domain, have used various test-time augmentation techniques in
their work [14,15].

The TTA is commonly used in image classification tasks to improve the performance of
machine learning models by augmenting the test data. It has been shown to provide a sig-
nificant boost in the predictive performance of various machine learning models. However,
no previous works have utilized TTA for network anomaly detection, primarily because
TTA has been predominantly applied to image and text data. The lack of application of TTA
in network anomaly detection presents an opportunity to explore the potential benefits of
this technique for enhancing the performance of NIDS.

In this paper, we propose a novel method, Test-Time Augmentation for Network
Anomaly Detection (TTANAD), which utilizes test-time augmentation to improve network
anomaly detection. By taking advantage of the temporal characteristics of traffic data,
TTANAD generates temporal test-time augmentations on the monitored traffic data to
create additional points of view when examining network traffic during inference. The ex-
perimental results demonstrate that TTANAD performs better on all benchmark datasets
and all examined anomaly detection algorithms.

The main contributions of this work are as follows:

• We introduce TTANAD, a novel method that leverages test-time augmentation to
improve the performance of network anomaly detection tasks, across various anomaly
detection algorithms.

• Our work introduces the unique approach of generating synthetic augmentations
based on temporal aggregation features at test time, without modifying or retraining
the underlying models.

The remainder of this paper is organized as follows. Related work is given in Section 2.
The proposed method is explained in detail in Sections 3 and 3.3 describes our benchmark
datasets, experiments, and experimental set. Results are detailed in Section 4. Finally,
Section 5 concludes this paper and provides the prospect of future work.

2. Related Work
2.1. Network Anomaly Detection

Anomaly detection can be defined as identifying patterns in the data that do not
conform to expected behavior in some context [16]. Anomaly detection modeling can
be broadly categorized into several types of techniques: statistical methods, neighbor-
based methods, and dimensionality-based methods [16]. In statistical methods, the low
probability samples under the learned distribution will be considered as an anomaly.
Neighbor-based methods assume that normal data has significantly more neighbors than
anomalous data. Dimensionality reduction-based methods try to find an approximation of
the data using a combination of attributes that capture the bulk of the variability in the data.
Additionally, anomaly detection can be accomplished using reconstruction methods that
reconstruct the input from latent space. The reconstruction error of anomalous instances
will be higher as the model has been adapted to reconstruct only normal data [17]. Despite



Entropy 2023, 25, 820 3 of 12

the progress in this field, detecting sophisticated attacks remains a significant challenge
due to the evolving nature of threats and the increasing volume of network traffic. In our
experiments, we used an Autoencoder as a reconstruction-based anomaly detector, an
Isolation Forest as a statistical-based anomaly detector, and a Local Outlier Factor as a
neighbor-based anomaly detector.

2.1.1. Autoencoder-Based Anomaly Detection

A method was proposed by Dau [18] that uses a replicator neural network, also
referred to as an autoencoder, for anomaly detection. It can work in both single and
multiple-class settings. The network is trained to reconstruct only “normal” observations,
so it is assumed that normal samples should have low reconstruction error. Conversely,
anomalous samples are expected to have higher reconstruction error because the network
is not trained to replicate them. Autoencoders have been extensively studied for network
intrusion detection (NID) [19–24]. However, a major weakness of autoencoder-based
anomaly detectors is their struggle to identify anomalies in complex or noisy data accurately.
This is because autoencoders aim to reproduce the input data closely. However, if the
input data are complicated or noisy, the autoencoder may fail to capture the underlying
patterns, failing to identify anomalies. Our proposed method, TTANAD, is designed to
enhance the performance of various anomaly detection algorithms, including autoencoders,
by providing additional perspectives on the test data through temporal augmentations.
By offering autoencoders more opportunities to detect anomalies, we aim to overcome their
potential weaknesses in identifying sophisticated attacks. In our evaluation, we used an
autoencoder-based anomaly detector to test our approach and examine the effectiveness of
TTANAD in improving detection performance.

2.1.2. Local Outlier Factor Anomaly Detection

The Local Outlier Factor (LOF) was proposed by Breunig [25] as an unsupervised
anomaly detection technique that calculates the anomaly score based on the deviation of a
data point’s local density compared to its neighbors. It classifies samples with significantly
lower density than their neighbors as outliers. The method involves determining the local
density of a sample using its k-nearest neighbors, and the LOF score of observation is
calculated as the ratio of its k-nearest neighbors’ average local density to its own local
density. Normal samples are expected to have a similar local density to their neighbors,
while abnormal data are expected to have a much lower local density. LOF has been
widely studied for network intrusion detection [25–30], but its internal density-based
mechanism can make it less effective at detecting anomalies that are not well-separated
from normal data points or are located in low-density regions of the data. Our proposed
method addresses this weakness by providing augmented instances for each sample with
different values. One of these augmented instances has a better chance of separating
anomalies due to its feature. In addition to autoencoders, we also evaluate the effectiveness
of our proposed method, TTANAD, by employing the LOF algorithm as one of the anomaly
detectors in our experiments. This allows us to assess the performance improvements
offered by TTANAD across different anomaly detection techniques.

2.1.3. Isolation Forest Anomaly Detection

The Isolation Forest method, introduced by Liu [31], is a technique for identifying
anomalies by constructing decision trees. The method works by randomly selecting a
feature and splitting the values of the selected feature, resulting in partitions. Anomalies
are instances with short average path lengths on the trees as they are less common and
require fewer splits to separate them from regular observations. Despite being widely used
for Network Intrusion Detection [32–36], Isolation Forests are prone to be impacted by
outliers and instances that significantly differ from the rest of the data, leading to possible
false positive or false negative results. The use of TTA should improve robustness by
providing more points of view for each instance. The isolation forest algorithm is another



Entropy 2023, 25, 820 4 of 12

anomaly detector that we incorporate as part of our experiments, similar to autoencoders
and LOF.

2.2. Test-Time Augmentation

Test-time augmentation is the process of producing several enhanced copies of each
sample in the test set, applying a prediction for each, then returning an ensemble of
those predictions. TTA was extensively shown to improve results in many domains, most
notably the vision domain. In Alexnet [15] the authors also applied TTA by averaging
the predictions on ten randomly cropped parts of the inference image. Cohen et al. [37]
proposed Test-Time Augmentation for the tabular anomaly Detection technique, a TTA-
based method to improve anomaly detection performance on all kinds of tabular data.
Shanmugam et al. [12] determine the augmentations used in TTA by setting an appropriate
weight for each augmentation created. Their method significantly outperforms existing
approaches by focusing on the factors influencing TTA augmentation and finding the
optimal weight per augmentation. A study by Cohen et al. [38] presented state-of-the-art
results using TTA to predict Intensive Care Unit (ICU) survival. Although TTA has been
successfully applied to images, text, and tabular data, its application to network anomaly
detection has not been extensively explored. This research aims to fill this gap by proposing
a TTA technique specifically designed for network anomaly detection tasks.

3. Materials and Methods

In this section, we first provide a problem formulation for network traffic anomaly
detection and the temporal aggregation technique, which we later utilize to describe
our proposed approach—TTANAD. Our method proposes a novel approach for creating
meaningful augmentations in such a way that is specifically appropriate in the domain
of time-series anomaly detection. As such, TTANAD is used to improve the inference
performance from the data perspective instead of the modeling, i.e., the architectural
perspective. Later, we describe the experiments performed and the setup used to evaluate
TTANAD. Note that TTANAD is agnostic to the anomaly detector that is used in the
pipeline. As a result, our extensive experimental study presents how we adapted several
anomaly detectors to show generalization. We utilize the TTANAD on Network anomaly
detection tasks to evaluate our approach.

3.1. Temporal Aggregation Formulation

In our work, we aggregate the raw time-series network traffic data with a sliding
window. This approach is described in previous works [11,39] as a preprocessing step
called temporal aggregation (we use this term), and as a pre-filtering phase. Temporal
aggregation is used to cope with the high volume and velocity of the captured data
from the network sensors. This approach extracts high-level information from the raw
data features, such as basic statistical measures, utilizing aggregations with a fixed-size
sliding window technique that takes advantage of the natural temporal characteristics
of data. These extracted statistics, obtained by the aggregations, are then passed to an
anomaly detector.

Formally, a sequence of raw network traffic data with n samples is defined as,

X =
[
x1 x2 · · · xi · · · xn

]T

xi ∈ Rd, where xi is a vector of d real-valued features that represent each sample in the
dataset. Here, d signifies the number of features captured for each sample, and R denotes
the set of real numbers. The temporal aggregation is defined with a window size w and step
size s, such that when convolving, each window consists of
Xt:t+w =

[
xt xt+1 · · · xt+w

]T , where t is an arbitrary timestamp such that the pre-
vious window is Xt−s:t−s+w. Note that X ∈ Rn×d and Xt:t+w ∈ Rw×d. Xk

t:t+w is defined as
we refer only to feature k from all the samples in that sequence.



Entropy 2023, 25, 820 5 of 12

A set of m aggregators G = {G1,G2, · · · ,Gi, · · · ,Gm} operate on each window Xt:t+w:

ΦG
t:t+w = G(Xt:t+w) =

m⋃
i=1

Gi(Xt:t+w) (1)

ΦG
t:t+w is an aggregated window starting at timestamp t with window size w over the

G aggregators set. The operation of a single aggregator is defined as follows:

G(Xt:t+w) =
[
G(X1

t:t+w) G(X2
t:t+w) · · · G(Xd

t:t+w)
]

(2)

Note that ΦG
t:t+w ∈ R1×m·d because the aggregation operates over the time dimension

and the union operates over the feature dimension (Only one direction of inner windows is
created for the first and last aggregation windows).

In our work, we used three aggregators: minimum, maximum, and standard deviation
denoted as Gmin, Gmax, and Gstd, respectively; using Equation

Gmin(Xt:t+w) =
[
min{X1

t:t+w} · · · min{Xd
t:t+w}

]
Gmax(Xt:t+w) =

[
max{X1

t:t+w} · · · max{Xd
t:t+w}

]
Gstd(Xt:t+w) =

[
std{X1

t:t+w} · · · std{Xd
t:t+w}

]
where std{Xk

t:t+w} denotes calculating the standard deviation over the sequence Xk
t:t+w:

std{Xk
t:t+w} =

√
∑t+w

i=t (Xk
i − µ)2

w
, µ =

∑t+w
i=t Xk

i
w

So, in our case, where G = {Gmin,Gmax,Gstd}, the generic definition of ΦG
t:t+w from

Equation (1), is now defined as follows:

ΦG
t:t+w = Gmin(Xt:t+w) ∪ Gmax(Xt:t+w) ∪ Gstd(Xt:t+w)

ΦG
t:t+w =

[
min{X1

t:t+w} max{X1
t:t+w} std{X1

t:t+w}
· · · min{Xd

t:t+w max{Xd
t:t+w std{Xd

t:t+w
] (3)

thus now ΦG
t:t+w ∈ R1×3d.

3.2. Temporal Aggregation-Based TTA

Given a time-series network traffic X and a set of aggregators G = Gmin,Gmax,Gstd,
we define Gmin as the minimum value in X, Gmax as the maximum value in X, and Gstd as
the standard deviation value of X. We extend the temporal aggregation to the test phase as a
test-time augmentation technique to produce a more diverse and robust final prediction [12].
TTANAD produces augmentations by creating synthetic “inner” aggregation windows
with a window size w′ = w and a step size s′ = 1 (i.e., step size of 1 and same window size
used to create the original aggregation windows). Formally, the augmented inner windows
for an arbitrary test window Xt:t+w with s′ = 1 and w′ = w are as follows:

TTA(Xt:t+w) = {Xt−w+1:t+1, Xt−w+2:t+2, · · · ,

Xt−1:t−1+w, Xt+1:t+1+w, Xt+2:t+2+w,

· · · , Xt+w−1:t+2w−1}
(4)



Entropy 2023, 25, 820 6 of 12

Now, we can define TTA with aggregations:

ΦG
TTA(Xt:t+w)

=



ΦG
t−w+1:t+1

ΦG
t−w+2:t+2

...
ΦG

t−1:t−1+w
ΦG

t+1:t+1+w
ΦG

t+2:t+2+w
...

ΦG
t+w−1:t+2w−1


(5)

Finally, a simple average operation is used, considering all the TTA’s predictions,
ŷΦG

TTA(Xt:t+w)
as well as ΦG

t:t+w (i.e., the original test aggregated window) prediction, ŷΦG
t:t+w

,

to obtain the final prediction:

ŷ f inal =
{ŷΦG

t:t+w
} ∪ ŷΦG

TTA(Xt:t+w)

‖TTA‖+ 1
(6)

The motivation behind setting w′ as the same as w, is that the synthetic aggregation
windows created will be constructed from the same amount of samples as the original
windows. We decided to set s′ = 1 in order to create the maximum number of inner
windows possible because more information could be exploited by the model. Figure 1
illustrates an example with w = 5, s = 5. As demonstrated, setting w′ = w = 5, s′ = 1
results in the creation of 4 TTAs for the first original aggregation window. Note that, for
the first and the last test aggregation windows ‖TTA‖ = w− 1 while for the other test
aggregation windows ‖TTA‖ = 2(·w− 1).

Figure 1. Temporal aggregation-based TTA: Creating more samples using inner windows with a
stride of 1, then extracting temporal features using the defined aggregators. We produce a prediction
for the original window and the augmentations using the anomaly detector, then calculate the final
prediction using the average of all predictions.

The entire schema of using TTANAD can be summarized as follows at a higher level.
First, the raw time-series network traffic data are aggregated using temporal aggregation.
We then train an anomaly detector using the aggregated data and predict anomalies
utilizing TTANAD as a test-time augmentation method. Intuitively, TTANAD could create
augmentations that would give an ensemble of new perspectives to the anomaly detector
at inference, which would result in better performance.



Entropy 2023, 25, 820 7 of 12

3.3. Experiments

In this section, we describe the experiments conducted to evaluate the impact of
TTANAD on anomaly detection. All of the evaluated algorithms, anomaly detectors,
datasets, and experimental setups are explained in the subsections below.

3.3.1. Data

Three datasets of raw network packets were used for evaluation: Two datasets from
the Canadian Institute for Cybersecurity (https://www.unb.ca/cic/datasets/, accessed on
16 May 2023), and the UNSW-NB15 dataset from the Cyber Range Lab of UNSW Canberra
(https://research.unsw.edu.au/projects/unsw-nb15-dataset/, accessed on 16 May 2023):

• CIC-IDS2017— The CIC-IDS2017 [40] dataset includes eight different files containing
five days’ normal and malicious traffic data. Combining these files results in roughly
3 million instances and 83 features with 15 labels—1 normal and 14 attack labels.

• CSE-CIC-IDS2018—The CSE-CIC-IDS2018 [40] dataset contains about 16 million
instances collected over ten days, with roughly 17% of the instances compromised of
malicious traffic.

• UNSW-NB15—The UNSW-NB15 [41] dataset was created by the IXIA PerfectStorm
tool for generating a hybrid of real modern normal activities and synthetic contempo-
rary attack behaviors. This dataset contains about 2.5 million instances and 49 features.

3.3.2. Preprocessing

In our experiments, we first preprocessed the datasets to ensure that they were suitable
for the anomaly detection algorithms. This preprocessing involved the following steps:

• Integrate and Sort: We first loaded the data for the evaluated datasets, concatenating
all of the provided files for each dataset and ordering the instances by their timestamp
in ascending order.

• Data Cleaning: We removed any duplicate records and checked for inconsistencies
in the dataset. If any inconsistencies were found, such as missing values, we either
imputed them using appropriate statistical techniques or removed the correspond-
ing records.

• Temporal Feature Extraction: Using a window with a size s, we are sliding it with
a stride equal to s and aggregating the features of the instances in each window.
The aggregation contains extracting minimum, maximum, and standard deviation for
each feature.

• Feature Scaling: To ensure that all features were on the same scale, we standardized
the numerical features using z-score normalization.

• Data Splitting: We time-based split to train and test sets using a 70–30% ratio, respectively.

It is important to note that our preprocessing steps were designed to prepare the
datasets for the anomaly detection algorithms without introducing any biases or data
leakage. If no inconsistencies were found during the data cleaning process, we continued
with the remaining preprocessing steps to ensure the data were in a suitable format for
our experiments.

The anomaly detection schema with the described temporal aggregation formulation
can be seen in Figure 2.

https://www.unb.ca/cic/datasets/
https://research.unsw.edu.au/projects/unsw-nb15-dataset/


Entropy 2023, 25, 820 8 of 12

Figure 2. Temporal Aggregation: extracting temporal features using the minimum, maximum, and
standard deviation aggregators with a window size and step size of 5. The extracted features are
forwarded to the anomaly detector.

3.3.3. Compared Algorithms

For each dataset, we inferred the anomaly detector using two methods: (1) using the
standard test phase (w/o TTA) as the baseline for our method, and (2) a test phase with
our suggested technique (TTANAD), that is, utilizing test-time augmentations generated
by TTANAD for each test instance. Due to the lack of previous work utilizing TTA in the
domain of network anomaly detection, a vanilla test phase is our only baseline.

3.3.4. Evaluated Anomaly Detectors

We used three different anomaly detectors for each evaluated dataset. We compared
the anomaly detector algorithm and the temporal aggregation window size, in order to
demonstrate the superiority of TTANAD over its baseline. Different types of anomaly detectors
were chosen, such as reconstruction-based, density-based, and tree-based algorithms.

3.3.5. Experimental Setup

Sakurada et al. [42] proposed using autoencoders as a dimensional reduction-based
approach to detect subtle anomalies. In our experiments, we utilize an autoencoder as an
anomaly detector. We trained the autoencoder in the same way for all datasets. After tuning,
the architecture of the autoencoder is as follows: input layer with a number of neurons
corresponding to the number of features, a hidden layer with 64 neurons, latent space with
16 neurons, a hidden layer with 64 neurons, and an output layer with the same size of
the input layer. All the hidden layers are followed by ReLU activation. The autoencoder
was trained for 300 epochs and with a batch size of 32. We used Adam optimizer with
default values of parameters (i.e., β1, β2). The loss function that was used is Mean Squared
Error (MSE).

The isolation forest anomaly detector was trained using 150 estimators (in the ensem-
ble) while overriding the default value of max_samples with 0.94, meaning we take 94 % of
the training data (without bootstrapping) to train each estimator. Moreover, each estimator
was trained using the whole feature space.

The Local Outlier Factor detects anomalies based on the density of a sample within its
neighborhood. As a sample with a density measure substantially lower than its neighbors,
this sample is considered an anomaly. As a result, the main two hyperparameters in this
anomaly detector are the neighborhood size n_neighbors, and the distance metric metric.
We used the standard Euclidean distance metric in our experiments while optimizing the
n_neighbors across the range [2, 150].

We reported the results on the presented datasets when varying the aggregation
window size with values {3, 4, and 5}. Note that when changing different aggregation
window sizes, both the baseline and TTANAD results change because the window size



Entropy 2023, 25, 820 9 of 12

affects both the aggregation operation result (varying window sizes) and the amount of
test-time augmentations.

After calculating the anomaly score of every sample in the test set, we measured the
Area Under the Curve (AUC) for the generated ROC curve. We chose to measure the AUC
because it is agnostic to the threshold (anomaly score) and a suitable metric in anomaly
detection [43,44].

The experiments were implemented using TensorFlow (https://www.tensorflow.org/,
accessed on 16 May 2023) 2.x and RAPIDS (https://rapids.ai/, accessed on 16 May 2023)
with CUDA 11.4 using Nvidia GeForce RTX 2080 Ti with 11 G memory and 32 G RAM on a
CentOS machine. The benchmark datasets, the anomaly detector, and TTANAD’s repro-
ducible source are publicly available (https://github.com/nivgold/TTANAD, accessed on
16 May 2023).

4. Results

The results of the methods are presented in Table 1. These results demonstrate that all
network anomaly detectors perform better in all experiments when using TTANAD. It is
important to note that even a small AUC margin of 10−3 can be significant when detecting
“non-trivial” anomalies, particularly in the domain of network traffic, where dealing with
high volume data leads to a considerable number of detections. TTANAD outperforms the
baseline (i.e., without TTA) on all compared datasets and for all window sizes. The LOF
anomaly detector experienced the most significant improvement, likely due to its initially
poor baseline results. Conversely, the autoencoder and isolation forest anomaly detectors
had the lowest average TTANAD improvements, despite achieving the best performance
among the other two anomaly detectors.

Table 1. AUC results on the evaluated datasets.

Method CIC-IDS2017 CSE-CIC-IDS2018 UNSW-NB15

Temporal Aggregation Window T = 3 T = 4 T = 5 T = 3 T = 4 T = 5 T = 3 T = 4 T =5

Autoencoder w/o TTA 0.754 0.769 0.767 0.925 0.921 0.922 0.989 0.987 0.985
TTANAD 0.760 0.782 0.773 0.930 0.926 0.929 0.995 0.994 0.992

Isolation Forest w/o TTA 0.813 0.813 0.870 0.948 0.948 0.944 0.889 0.921 0.909
TTANAD 0.819 0.813 0.884 0.950 0.950 0.947 0.922 0.946 0.930

Local Outlier Factor w/o TTA 0.654 0.675 0.701 0.665 0.651 0.708 0.640 0.937 0.836
TTANAD 0.6984 0.764 0.747 0.684 0.666 0.710 0.649 0.941 0.887

We can conclude that sliding window-based augmentations enable the final prediction
to obtain a wider perspective on the test instance, resulting in more robust and reliable
predictions. This, in turn, helps the model achieve higher performance in detecting network
traffic anomalies. Overall, the TTANAD method improved AUC results by 2.47% on the
CIC-IDS2017 dataset, 0.6% on the CSR-CIC-IDS2018 dataset, and 1.6% on the UNSW-NB15
dataset. The CIC-IDS2017 and CSE-CIC-IDS2018 datasets offer a suitable representation of
network traffic domains [45]. For a more comprehensive experimental validation, we also
included the UNSW-NB15 dataset.

Discussion

We have presented the AUC scores of our proposed TTANAD method and the baseline
methods (i.e., without TTA) on three benchmark datasets (CIC-IDS2017, CSE-CIC-IDS2018,
and UNSW-NB15) using three different anomaly detection algorithms (autoencoder, iso-
lation forest, and local outlier factor). A deeper analysis of the results is necessary to
understand the performance improvements achieved by TTANAD across various scenarios.
For the CIC-IDS2017 dataset, TTANAD outperformed the baseline methods in all three
anomaly detection algorithms, with the most significant improvement observed in the

https://www.tensorflow.org/
https://rapids.ai/
https://github.com/nivgold/TTANAD


Entropy 2023, 25, 820 10 of 12

local outlier factor algorithm. This improvement can be attributed to the relatively poor
baseline performance of the local outlier factor algorithm, leaving more room for enhance-
ment. In the case of the CSE-CIC-IDS2018 dataset, improvements were relatively modest,
with the highest improvement observed for the isolation forest algorithm. The smaller
improvements could be due to the dataset’s nature or the already high performance of the
baseline methods.

For the UNSW-NB15 dataset, TTANAD demonstrated significant improvements across
all three anomaly detection algorithms. The autoencoder and isolation forest algorithms,
which already had high baseline performance, showed substantial improvements, suggest-
ing that TTANAD is particularly effective in this dataset.

These results indicate that the proposed TTANAD method can enhance the perfor-
mance of various network anomaly detection algorithms across different datasets. The slid-
ing window-based augmentations provide a broader perspective on the test instances,
leading to more robust and reliable predictions, and ultimately improving the detection of
network traffic anomalies.

5. Conclusions

Network anomaly detection plays a critical role in identifying abnormal patterns
within network traffic. In this paper, we presented TTANAD, a novel test-time augmen-
tation (TTA) technique aimed at enhancing the performance of various network traffic
anomaly detection algorithms. The key advantage of our approach is that it does not re-
quire modifying or retraining the underlying anomaly detector models. Instead, TTANAD
generates synthetic augmentations by leveraging temporal aggregation features during
the test phase. To the best of our knowledge, no previous studies have applied test-time
augmentation to network anomaly detection or tabular time series data. Our compre-
hensive experiments demonstrated that TTANAD consistently improved the predictive
performance across multiple benchmark datasets and a diverse set of anomaly detection
algorithms. This highlights the potential of our proposed method in advancing state-of-
the-art network anomaly detection. As a direction for future work, we propose extending
our methodology to supervised Signature-based Network Intrusion Detection Systems
(NIDS). Additionally, incorporating a wider range of anomaly detection algorithms and
comparing the results directly with existing literature will further validate the effectiveness
of TTANAD and help identify areas for improvement or specific use cases where it performs
particularly well.

Author Contributions: Conceptualization, all authors; methodology, all authors; software, N.G.;
validation, all authors; formal analysis, all authors; investigation, all authors; resources, all authors;
data curation, N.G.; writing—original draft preparation, S.C.; writing—review and editing, all
authors; visualization, all authors; supervision, B.S. and L.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Three datasets of raw network packets were used for evaluation. The
CIC-IDS2017 and CSE-CIC-IDS2018 datasets from the Canadian Institute for Cybersecurity are
available at https://www.unb.ca/cic/datasets, accessed on 16 May 2023, and the UNSW-NB15
dataset from the Cyber Range Lab of UNSW Canberra is available at https://research.unsw.edu.au/
projects/unsw-nb15-dataset, accessed on 16 May 2023.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.unb.ca/cic/datasets
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset


Entropy 2023, 25, 820 11 of 12

Abbreviations
The following abbreviations are used in this manuscript:

TTANAD Test-Time Augmentation for Network Anomaly Detection
NIDS Network Intrusion Detection Systems
TTA Test Time Augmentation
ID Intrusion Detection

References
1. Li, Y.; Ma, R.; Jiao, R. A hybrid malicious code detection method based on deep learning. Int. J. Secur. Appl. 2015, 9, 205–216.

[CrossRef]
2. Kwon, D.; Kim, H.; Kim, J.; Suh, S.C.; Kim, I.; Kim, K.J. A survey of deep learning-based network anomaly detection. Clust.

Comput. 2019, 22, 949–961. [CrossRef]
3. Fernandes, G.; Rodrigues, J.J.; Carvalho, L.F.; Al-Muhtadi, J.F.; Proença, M.L. A comprehensive survey on network anomaly

detection. Telecommun. Syst. 2019, 70, 447–489. [CrossRef]
4. Garcia-Teodoro, P.; Diaz-Verdejo, J.; Maciá-Fernández, G.; Vázquez, E. Anomaly-based network intrusion detection: Techniques,

systems and challenges. Comput. Secur. 2009, 28, 18–28. [CrossRef]
5. Zhang, J.; Zulkernine, M. Anomaly based network intrusion detection with unsupervised outlier detection. In Proceedings of the

2006 IEEE International Conference on Communications, Istanbul, Turkey, 11–15 June 2006; Volume 5, pp. 2388–2393.
6. Xin, Y.; Kong, L.; Liu, Z.; Chen, Y.; Li, Y.; Zhu, H.; Gao, M.; Hou, H.; Wang, C. Machine learning and deep learning methods for

cybersecurity. IEEE Access 2018, 6, 35365–35381. [CrossRef]
7. Su, L.; Yao, Y.; Li, N.; Liu, J.; Lu, Z.; Liu, B. Hierarchical Clustering Based Network Traffic Data Reduction for Improving Suspicious

Flow Detection. In Proceedings of the 17th IEEE International Conference on Trust, Security and Privacy in Computing and
Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), New York,
NY, USA, 1–3 August 2018; pp. 744–753. [CrossRef]

8. Jiang, K.; Wang, W.; Wang, A.; Wu, H. Network intrusion detection combined hybrid sampling with deep hierarchical network.
IEEE Access 2020, 8, 32464–32476. [CrossRef]

9. Wang, Q.; Ouyang, X.; Zhan, J. A classification algorithm based on data clustering and data reduction for intrusion detection
system over big data. KSII Trans. Internet Inf. Syst. (TIIS) 2019, 13, 3714–3732.

10. Liu, L.; Wang, P.; Lin, J.; Liu, L. Intrusion detection of imbalanced network traffic based on machine learning and deep learning.
IEEE Access 2020, 9, 7550–7563. [CrossRef]

11. Brauckhoff, D.; Salamatian, K.; May, M. A signal processing view on packet sampling and anomaly detection. In Proceedings of
the 2010 IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1–9.

12. Shanmugam, D.; Blalock, D.; Balakrishnan, G.; Guttag, J. When and Why Test-Time Augmentation Works. arXiv 2020,
arXiv:2011.11156.

13. Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings
of the 2018 International Interdisciplinary Ph.D. Workshop (IIPhDW), Swinoujscie, Poland, 9–12 May 2018; pp. 117–122.

14. Wang, G.; Li, W.; Aertsen, M.; Deprest, J.; Ourselin, S.; Vercauteren, T. Aleatoric uncertainty estimation with test-time augmentation
for medical image segmentation with convolutional neural networks. Neurocomputing 2019, 338, 34–45. [CrossRef]

15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

16. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [CrossRef]
17. Chalapathy, R.; Chawla, S. Deep learning for anomaly detection: A survey. arXiv 2019, arXiv:1901.03407.
18. Dau, H.A.; Ciesielski, V.; Song, A. Anomaly detection using replicator neural networks trained on examples of one class.

In Proceedings of the Asia-Pacific Conference on Simulated Evolution and Learning, Dunedin, New Zealand, 15–18 December
2014; pp. 311–322.

19. Farahnakian, F.; Heikkonen, J. A deep auto-encoder based approach for intrusion detection system. In Proceedings of the 20th
International Conference on Advanced Communication Technology (ICACT), Online, Republic of Korea, 11–14 February 2018;
pp. 178–183.

20. Azmin, S.; Islam, A.M.A.A. Network intrusion detection system based on conditional variational laplace autoencoder. In Pro-
ceedings of the 7th International Conference on Networking, Systems and Security, Dhaka, Bangladesh, 22–24 December 2020;
pp. 82–88.

21. Yang, L.; Song, Y.; Gao, S.; Hu, A.; Xiao, B. Griffin: Real-time network intrusion detection system via ensemble of autoencoder in
SDN. IEEE Trans. Netw. Serv. Manag. 2022, 19, 2269–2281. [CrossRef]

22. Li, X.; Chen, W.; Zhang, Q.; Wu, L. Building auto-encoder intrusion detection system based on random forest feature selection.
Comput. Secur. 2020, 95, 101851. [CrossRef]

23. Rao, K.N.; Rao, K.V.; PVGD, P.R. A hybrid intrusion detection system based on sparse autoencoder and deep neural network.
Comput. Commun. 2021, 180, 77–88.

http://doi.org/10.14257/ijsia.2015.9.5.21
http://dx.doi.org/10.1007/s10586-017-1117-8
http://dx.doi.org/10.1007/s11235-018-0475-8
http://dx.doi.org/10.1016/j.cose.2008.08.003
http://dx.doi.org/10.1109/ACCESS.2018.2836950
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00108
http://dx.doi.org/10.1109/ACCESS.2020.2973730
http://dx.doi.org/10.1109/ACCESS.2020.3048198
http://dx.doi.org/10.1016/j.neucom.2019.01.103
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1109/TNSM.2022.3175710
http://dx.doi.org/10.1016/j.cose.2020.101851


Entropy 2023, 25, 820 12 of 12

24. Muhammad, G.; Hossain, M.S.; Garg, S. Stacked autoencoder-based intrusion detection system to combat financial fraudulent.
IEEE Internet Things J. 2020, 10, 2071–2078. [CrossRef]

25. Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Dallas, TX, USA, 16–18 May 2000; pp. 93–104.

26. Gulhare, A.K.; Badholia, A.; Sharma, A. Mean-Shift and Local Outlier Factor-Based Ensemble Machine Learning Approach for
Anomaly Detection in IoT Devices. In Proceedings of the International Conference on Inventive Computation Technologies
(ICICT), Lalitpur, Nepal, 20–22 July 2022; pp. 649–656.

27. Omar, M. Malware Anomaly Detection Using Local Outlier Factor Technique. In Machine Learning for Cybersecurity: Innovative
Deep Learning Solutions; Springer: Berlin/Heidelberg, Germany, 2022; pp. 37–48.

28. Tang, J.; Ngan, H.Y. Traffic outlier detection by density-based bounded local outlier factors. Inf. Technol. Ind. 2016, 4. [CrossRef]
29. Auskalnis, J.; Paulauskas, N.; Baskys, A. Application of local outlier factor algorithm to detect anomalies in computer network.

Elektron. Elektrotechnika 2018, 24, 96–99. [CrossRef]
30. Madhupriya, G.; Shalinie, S.M.; Rajeshwari, A.R. Detecting DDoS attack in cloud computing using local outlier factors.

In Proceedings of the 2nd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 11–12
May 2018; pp. 859–863.

31. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation Forest. In Proceedings of the Isolation Forest; IEEE Computer Society: New York, NY,
USA, 2008; pp. 413–422. [CrossRef]

32. Shukla, A.K.; Srivastav, S.; Kumar, S.; Muhuri, P.K. UInDeSI4. 0: An efficient Unsupervised Intrusion Detection System for
network traffic flow in Industry 4.0 ecosystem. Eng. Appl. Artif. Intell. 2023, 120, 105848. [CrossRef]

33. AbuAlghanam, O.; Alazzam, H.; Alhenawi, E.; Qatawneh, M.; Adwan, O. Fusion-based anomaly detection system using modified
isolation forest for internet of things. J. Ambient. Intell. Humaniz. Comput. 2022, 14, 1–15. [CrossRef]

34. Chiba, Z.; Abghour, N.; Moussaid, K.; Omri, A.E.; Rida, M. Newest collaborative and hybrid network intrusion detection
framework based on suricata and isolation forest algorithm. In Proceedings of the 4th International Conference on Smart City
Applications, Casablanca, Morocco, 2–4 October 2019; pp. 1–11.

35. Laskar, M.T.R.; Huang, J.X.; Smetana, V.; Stewart, C.; Pouw, K.; An, A.; Chan, S.; Liu, L. Extending isolation forest for anomaly
detection in big data via K-means. ACM Trans.-Cyber-Phys. Syst. (TCPS) 2021, 5, 1–26. [CrossRef]

36. Ripan, R.C.; Sarker, I.H.; Anwar, M.M.; Furhad, M.H.; Rahat, F.; Hoque, M.M.; Sarfraz, M. An isolation forest learning based
outlier detection approach for effectively classifying cyber anomalies. In Proceedings of the Hybrid Intelligent Systems: 20th
International Conference on Hybrid Intelligent Systems (HIS 2020), Virtual, 14–16 December 2020; pp. 270–279.

37. Cohen, S.; Goldshlager, N.; Rokach, L.; Shapira, B. Boosting Anomaly Detection Using Unsupervised Diverse Test-Time
Augmentation. Inf. Sci. 2023, 626, 821–836. [CrossRef]

38. Cohen, S.; Dagan, N.; Cohen-Inger, N.; Ofer, D.; Rokach, L. ICU survival prediction incorporating test-time augmentation to
improve the accuracy of ensemble-based models. IEEE Access 2021, 9, 91584–91592. [CrossRef]

39. Lesti, G.; Spiegel, S. A Sliding Window Filter for Time Series Streams. In Proceedings of the IOTSTREAMING@ PKDD/ECML,
Skopje, Macedonia, 18–22 September 2017.

40. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

41. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; pp. 1–6.

42. Sakurada, M.; Yairi, T. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of the
MLSDA 2nd Workshop on Machine Learning for Sensory Data Analysis, Gold Coast, Australia, 2 December 2014; pp. 4–11.

43. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 2012, 6, 1–39.
[CrossRef]

44. Soule, A.; Salamatian, K.; Taft, N. Combining filtering and statistical methods for anomaly detection. In Proceedings of the 5th
ACM SIGCOMM Conference on Internet Measurement, Berkeley, CA, USA, 19–21 October 2005; p. 31.

45. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. A detailed analysis of the cicids2017 data set. In Proceedings of the International
Conference on Information Systems Security and Privacy, San Francisco, CA, USA, 24 May 2018; pp. 172–188.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2020.3041184
http://dx.doi.org/10.17762/itii.v4i1.38
http://dx.doi.org/10.5755/j01.eie.24.3.20972
http://dx.doi.org/10.1109/ICDM.2008.17
http://dx.doi.org/10.1016/j.engappai.2023.105848
http://dx.doi.org/10.1007/s12652-022-04393-9
http://dx.doi.org/10.1145/3460976
http://dx.doi.org/10.1016/j.ins.2023.01.081
http://dx.doi.org/10.1109/ACCESS.2021.3091622
http://dx.doi.org/10.1145/2133360.2133363

	Introduction
	Related Work
	Network Anomaly Detection
	Autoencoder-Based Anomaly Detection
	Local Outlier Factor Anomaly Detection
	Isolation Forest Anomaly Detection

	Test-Time Augmentation

	Materials and Methods
	Temporal Aggregation Formulation
	Temporal Aggregation-Based TTA
	Experiments
	Data
	Preprocessing
	Compared Algorithms
	Evaluated Anomaly Detectors
	Experimental Setup


	Results
	Conclusions
	References

