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Szczepanik, P.; Kaczmarek, A.Z.;
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Abstract: The concept of entropy is not uniquely relevant to the statistical mechanics but, among
others, it can play pivotal role in the analysis of a time series, particularly the stock market data.
In this area, sudden events are especially interesting as they describe abrupt data changes with
potentially long-lasting effects. Here, we investigate the impact of such events on the entropy of
financial time series. As a case study, we assume data of the Polish stock market, in the context
of its main cumulative index, and discuss it for the finite time periods before and after outbreak
of the 2022 Russian invasion of Ukraine. This analysis allows us to validate the entropy-based
methodology in assessing changes in the market volatility, as driven by the extreme external factors.
We show that some qualitative features of such market variations can be well captured in terms of
the entropy. In particular, the discussed measure appears to highlight differences between data of the
two considered timeframes in agreement with the character of their empirical distributions, which
is not always the case in terms of the conventional standard deviation. Moreover, the entropy of
cumulative index averages, qualitatively, the entropies of composing assets, suggesting capability
for describing interdependencies between them. The entropy is also found to exhibit signatures of
the upcoming extreme events. To this end, the role of recent war in shaping the current economic
situation is briefly discussed.

Keywords: entropy; volatility; information theory; econophysics; sudden events; war; time series;
data science

1. Introduction

In general, sudden or extreme events translate to the atypical patterns and deviations
from the expected observations. As such, the ability to detect and address accordingly
aforesaid anomalies is of great importance in various areas of science, technology, or even
social studies [1–5]. This is to say, timing and occurrence of sudden events is essential
when considering reliability of a system under extreme external conditions. A special
attention to these aspects is given in the field of economy, where sudden events correspond
to a notable incline/decline in economic activity or may even mark a breakdown of some
economic models, e.g., by exposing their limitations in terms of efficiency and rationality of
the market [6]. In what follows, it is crucial to account for such events during economic
modeling when considering processes such as the forecasting, decision making, or anomaly
detection [7]. This is conventionally carried out on the grounds of the time series analysis,
a vital part of data science [8]. The main reason for that is related to character of the time
series itself, which are derived from the financial data and intrinsically encode information
about economic events [9]. Thus, to allow discussion of the extreme changes in economy,
appropriate tools in the time series domain are required.
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In the context of the above, entropy appears as an intriguing analytical concept,
which spans beyond its original field of thermodynamics. While in terms of the statistical
mechanics, this property relates to the discrete probabilities of microstates, in the area
of time series entropy, it is considered as an extension of the information theory [10–13],
in accordance with the groundbreaking works by Shannon and Kolmogorov [14,15]. In
particular, entropy can quantify the uncertainty, disorder, or simply randomness of the time
series, without adding constraints on the corresponding probability distribution [13,16–18].
Hence, it constitutes an attractive alternative to the standard deviation for measuring
market volatility [19,20]. However, entropy allows for discussing not only the magnitude
of such fluctuations but also their distributions and patterns [21,22]. It can account for the
nonlinearities and correlations in the datasets, simultaneously capturing interdependence
between assets [23–25]. Moreover, since volatility relates to the degree of an asset movement
over time, the corresponding entropy should be inherently sensitive to the sudden events or
the economic shocks of interest. As a result, entropy constitutes potentially highly relevant
framework for discussing impact of sudden events on the market and a pivotal tool in
econophysics [10,12,13,18,26].

So far, the studies on the economic sudden events in terms of entropy have been
limited mainly to a few instances, such as the investigations related to the 2008 economic
crisis [27] or to the outbreak of the COVID-19 pandemic [11]. However, recent Russian
invasion of Ukraine resulted in a yet another prominent economic shock, which is well
defined in terms of the timeframes, and influences multiple market branches [28]. The
economic consequences of this event constitute not only a perfect platform to investigate
the impact of the shock of war on the modern economy but also to validate the entropic
methodology in assessing market changes due to the extreme external factors. These
arguments, along with the aforementioned general characteristics of entropy in the field
of econophysics, constitute intriguing motivation to analyze this new measure in terms of
the market volatility description and the resulting potential for the detection of sudden
events. Herein, we provide our contribution to this still not fully explored area. In detail,
we concentrate our study on the behavior of the main cumulative index of the Polish stock
market (WIG20) and conduct our calculations with respect to the conventional Shannon
entropy. The WIG20 index was chosen due to the direct proximity of the corresponding
market to the theater of war as well as the relatively high development of the Polish
economy. For convenience, the obtained results are compared with the predictions of the
standard deviation. This analysis allows us to verify efficiency and predictive capabilities
of the entropy-based formalism and to outline pertinent perspectives for the future research.
It also provides the possibility to give preliminary insights into the other factors potentially
influencing the WIG20 index, besides the pivotal shock of war.

2. Methodology

The present analysis is conducted for the time series of the daily log-returns, as
calculated based on the financial data of interest. In particular, the daily log-returns (Ri) are
derived by following the relation:

Ri = ln
Pi

Pi−1
≈ Pi − Pi−1

Pi−1
, (1)

where Pi (Pi−1) is the closing price of an asset on day i (i − 1). In this manner, we obtain
convenient time series data which are additive and symmetric in accordance with the scope
of the present analysis. While the former property simply means that the log-returns are
additive over time, the second one is much less self-explanatory. In brief, the symmetry of
log-returns relates to the fact that positive and negative log-returns of equal magnitude are
equidistant from zero on the logarithmic scale, yielding no net change when compared.
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The volatility of the above time series is explored based on the two measures, namely,
the standard deviation and the entropy. The former parameter is given by:

S =

√√√√ 1
N − 1

N

∑
i=1

(Ri − µ)2, (2)

for the N data points and µ being the arithmetic mean of all the returns. On the other hand,
the latter measure is calculated based on the Shannon entropy [14]:

H = −
M

∑
i=1

pi ln pi. (3)

In Equation (3), M stands for the number of bins (known also as the intervals or
classes [29]) in the discrete probability density function of the returns and pi is the probability
related to a given bin. Herein, pi is calculated by employing the Riemann approximation
as follows:

pi = (xi+1 − xi) f (xi+1), (4)

where xi(xi+1) is the left (right) width endpoint of a bin and f (xi+1) denotes the corre-
sponding height. Note that, in Equation (3), when the logarithm base is e, the entropy is
measured in nats. One can also use base equal to 2 or 10, resulting in the units of shannons
or hartleys, respectively. Obviously, the change of units does not influence the qualitative
behavior of entropy.

In the present study, the above theoretical model is fed with the financial data of
the WIG20 cumulative index and its composing stocks, as divided into two one-year-
long datasets. The first set corresponds to the one-year timeframe before the invasion
(24 February 2021–23 February 2022), whereas the second considers a similar period but
after the beginning of the invasion (24 February 2022–23 February 2023). In the following,
we arrive with the total of N = 251 data points for each set, providing sufficient economic
perspective for our calculations. Note that the WIG20 index serves here as a pivotal
parameter for comparison between the two approaches in modeling volatility. However,
due to its cumulative character, this index measures only the total fluctuations, and to gain
better insight into the underlying correlations of the market, the composing stocks are
discussed. All of these stocks, including the WIG20 index, are listed in Table A1 along with
their full names, market symbols, and the basic summary statistics in Appendix A. This list
is valid for the assumed-here time period but it is obviously subject to changes in the future.
For the sake of completeness, it is also crucial to note that the component company Pepco
was introduced to the stock market on 26 May 2021, i.e., the corresponding records do not
cover the entire one-year period before the invasion. In addition, the composition of the
WIG20 index changed four times over the analyzed timeframe of two years. In detail, on
18 March 2022, the already-mentioned Pepco and other company named mBank replaced
previously indexed stocks of Tauron and Mercator, respectively. Similarly, on 16 September
2022, the company Kȩty replaced Lotos, and on 16 December 2022, Kurk switched with
the PGING. All the described changes are appropriately marked in the Section 3 and in
Appendix A.

To this end, for the purpose of the present study, both the datasets of interest are
divided into the finite number of bins, which compose the discrete probability density
function of the returns. There is no general and valid rule that determines the number and
character of such bins [29]. The final choice is always strongly related to the population of
data points and their variability. In general, one should never stay with the empty bins or
decrease their number to the point that resolution of the probability distribution is too low.
In reference to the multiple models for the bin number, we observe that M = 20 is optimal
for our case. In the first place, the chosen M value provides relatively high resolution of



Entropy 2023, 25, 823 4 of 12

the probability distribution on equal footing across all considered time series, allowing us
to not hinder information about the tails in some of the instances. Secondly, the assumed
number of bins does not simultaneously exceed the upper theoretical limits for N ∼ 250, as
set by the Velleman formula [29].

3. Results

In Figure 1, we depict standard deviation as calculated for the WIG20 index and its
composing stocks. According to the initial assumptions, the results are presented here for
the one-year timeframe before (orange) and after (blue) the beginning of the invasion. Note
that Figure 1 is divided into three panels: the first for the constant component companies,
whereas the second (third) panel corresponds to the stocks, which at some point were
introduced to (removed from) the WIG20 index. For convenience, the corresponding
numerical results and the percentage difference between estimates obtained for the two
considered timeframes are given in Table A2 in Appendix A.
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Figure 1. The standard deviation for the WIG20 index and its composing stocks. The first panel is
for the constant component companies and the second (third) for the stocks introduced to (removed
from) the index at some point. The results are given for the one-year time period before the beginning
of the Russian invasion of Ukraine (blue) and after this event (orange). The solid lines correspond to
the WIG20 index, whereas closed symbols represent estimates for the component stocks. Dashed
lines are the guide for an eye.

Upon the analysis of Figure 1, the total standard deviation appears to be higher
after the beginning of the invasion than for the time period before it. This means that
the volatility of the market visibly increases for the former dataset. In other words, this
indicates higher degree of stock price variations in the second considered period, which can
be caused by not only the decline but also incline of the asset value. Similar behavior can
be observed for most of the composing stocks. In detail, one can notice that only companies
such as Kruk (debt management and purchase), Mercator (medical devices), and CD Projekt
(video game developer and publisher) do not comply with this trend. The first company
shows practically indistinguishable values for the two considered datasets, while the two
latter ones present inverse behavior in comparison to the total standard deviation. The
observed standard deviation for the first two companies is potentially related to the fact
that their stocks were not included in the WIG20 index for the entire time, meaning their
impact on the total index was limited. Moreover, Mercator capitalization, as a producer of
medical gloves, was heavily reduced by the end of the COVID-19 pandemic. Finally, the
value of CD Projekt was subject to turbulence due to the mixed reviews of their flagship
video game product Cyberpunk 2077. Thus, the standard deviation for each of the three
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companies is the results of not only the wartime market changes but also other, external
factors. Despite these deviations, it can be stated that most of the composing assets as well
as the cumulative results highlight the impact of the shock of war.

Nonetheless, the results for the individual stocks still allow us to observe that the
largest volatility increase is present for the bank sector, with other notable examples
in petroleum and telecommunication sectors (see Table A2 in Appendix A for details).
Interestingly, by comparing the component estimates with the results for the cumulative
index, we can note that the total standard deviation measure does not average values
obtained for the individual stocks. In fact, this measure is always lower than any of the
corresponding component values. This is true for both considered sets of data and can
originate from the way that the cumulative index is calculated or potentially from the
shortcomings of the standard deviation approach.

To investigate more in detail the already observed trends, in Figures 2 and 3 we
present the discrete probability density function of the returns for the total index and
its composing stocks, respectively. Note that these are the empirical distributions of the
pooled returns. All the distributions are given for the time period before and after the
beginning of the invasion, with the same color scheme as before. Based on Figure 2, it
can be observed that the probability distributions for the WIG20 index resemble normal
distribution. However, the wartime dataset is characterized by the fatter tails and lower
central maxima than the distribution corresponding to the index values before the conflict
outbreak. This observation is in qualitative agreement with the results obtained within
the standard deviation approach, which suggest higher volatility of the market after the
beginning of the invasion. The situation is once again similar when inspecting return
distributions for the component stocks, i.e., volatility for most of the stocks is higher after
the beginning of the Russian invasion. Still, there is some visible exception from this trend
in terms of Pepco data. This is potentially due to the fact that, as mentioned earlier, data
for Pepco do not cover the entire year before the invasion because of its relatively late
introduction to the market on 26 May 2021.
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Figure 2. The discrete probability density function for the WIG20 index, for the one-year period
before (blue) and after (orange) the beginning of the Russian invasion of Ukraine.
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Figure 3. The discrete probability density function for the component stocks of the WIG20 index. The
first four rows are for the constant component companies, and the fifth (sixth) row is for the stocks
introduced to (removed from) the index at some point. The results are presented for the one-year time
period before the beginning of the Russian invasion of Ukraine (blue) and after this event (orange).

It is next instructive to compare all the above results with the predictions of the
entropic model. These are presented in Figure 4, in the form of the entropy estimates for the
WIG20 index and its component stocks, based on the two types of the datasets of interest.
In general, the total entropy, as well as the relative behavior, between composing entropies
is similar to the standard deviation predictions. However, closer inspection of the results
allows us to observe that, contrary to the previous case, here, all the component stocks
exhibit higher entropy after the war outbreak. The only exception is Mercator, relatively
late in the WIG20 index and experiencing the COVID-19-related problems during the entire
analyzed period, as described before. Moreover, this time, the results for the total index
qualitatively average results for the component companies. The mentioned observation
is particularly visible for the data corresponding to the timeframe after the beginning of
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the invasion. The results allow us also to note that the percentage difference between the
results before and after invasion is smaller for each of the calculated entropies than in the
case of the standard deviation results (see Table A2 in Appendix A for details). Finally,
the obtained entropies appear to follow the character of the discrete probability density
function in Figures 2 and 3, in terms of the differences between results obtained for the two
considered timeframes.
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Figure 4. The Shannon entropy for the WIG20 index and its composing stocks. The first panel is
for the constant component companies and the second (third) for the stocks introduced to (removed
from) the index at some point. The results are given for the one-year time period before the beginning
of the Russian invasion of Ukraine (blue) and after this event (orange). The solid lines correspond to
the WIG20 index, whereas closed symbols represent estimates for the component stocks. Dashed
lines are the guide for an eye.

To supplement our analysis, we additionally plot the entropic index of WIG20 index
for various time periods within the here-assumed timeframes. In Figure 5, we present the
obtained results for the datasets before (left panel) and after (right panel) the beginning of
the considered conflict. Both panels depict different behavior, namely, before the invasion,
the entropic index clearly increases when the assumed time distance from the invasion date
becomes smaller. On the other hand, the entropy is relatively stable throughout the entire
period after the invasion data, independent of the number of considered days.
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Figure 5. The Shannon entropy for the WIG20 index as calculated for different periods of time before
(blue) and after (orange) the beginning of the Russian invasion of Ukraine. Dashed lines are the guide
for an eye.
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4. Conclusions

In the present study, we validated the entropy-based theoretical framework in describ-
ing behavior of financial time series under the influence of sudden and extreme external
events. This was carried out in the context of the WIG20 main cumulative index of the
Polish stock market for a one-year-long data samples before and after the Russian invasion
of Ukraine, respectively. In particular, it was shown that entropy reproduces some of the
features of the standard deviation when describing the effects of the shock of war. The
obtained results confirmed that entropy can indeed be used as an alternative measure of
volatility. These findings not only agree with the previous studies on applications of entropy
in finances [10,11,18,24,27], but also supplement them by considering the wartime-driven
changes in the stock market. For convenience, all the numerical results are summarized in
Table A2 in Appendix A.

In addition to the above, the present study reveled several noteworthy differences
between entropy and standard deviation measures. First, the entropy was found to capture
the character of empirical data in qualitative agreement with the discrete probability distri-
bution function, which was not always the case when considering the standard deviation
measure. As a result, it is concluded that the entropy was better in highlighting differences
between results obtained for the two timeframes of interest. This was particularly visible in
the case of CD Projekt data, where standard deviation predicted inverse behavior to the
probability distribution function and entropy. Finally, it was also revealed that the entropy
of cumulative index qualitatively averages entropies of the composing stocks, again in
contrast to the standard deviation estimates. This finding is particularly interesting since it
shows that entropy holds potential in encompassing interdependencies between assets.

The last part of the analysis revealed that the entropy measure can be used to quantify
anomalies in time series toward their better detection. In particular, entropy exhibits
different functional character when considering it for various time periods, before and
after the beginning of the invasion. In other words, it can be argued that entropy shows
signatures of the upcoming economic shock. That means that the impact of a potential
sudden event can be visible in the entropy behavior when the time range is sufficiently
small and the context data are available for a long time range. In the future, entropy may
constitute a building block for future tools aimed at sudden (extreme) event prediction.
Interestingly, these results also clearly indicate that the shock of war has a long-lasting
effect of increased volatility of the market, at least within the one-year time perspective.
To further verify the presented observations, we note that the analysis can be extended
toward other more complex or larger datasets and be conducted via more sophisticated
entropic models based not only on the Shannon entropy but also on other formulations,
e.g., by Rényi [30] or Tsallis [31].

To this end, all the obtained results allow us to make some preliminary statements on
the role of invasion in shaping the current economic situation in Poland. The calculated
standard deviation and entropy measures clearly point out that the volatility of the Polish
market is higher after the crisis outbreak than before. That is to say, the presented study
allows us to conclude that the shock of war visibly impacts the Polish economy, according to
the fact that the entire analysis was conducted with respect to this well-defined point in time.
However, it is difficult to judge how big this impact is in comparison to other factors, such
as the still-persisting effects of the COVID-19 pandemic or the internal economic decisions
of the Polish government and related financial institutions e.g., in terms of changes in the
interest rates of the National Bank of Poland [32]. To address the impact of an additional
factors, besides the considered shock of war, extended investigations spanning beyond the
scope of the present analysis are required. This can be carried out by identifying the aspects
of influence and then by analyzing them separately, but on the same footing, within the
economic model of choice. However, due to the potential complexity of the problem, it is
argued here that the proposed analysis should incorporate a more sophisticated approach
based, for example, on the network and behavioral modeling, in agreement with the recent
insights from the field of complex systems [33]. Since similar observations can be made at
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the level of the European or even global market, it is expected that our entropic approach
may provide interesting results with the dependence on the proximity to the conflict zone
or the bond strength with the Ukrainian or Russian market. Still, such analysis will be
limited in terms of influencing factors, and the above complex approach is expected to be
also valuable for such large-scale simulations. In summary, the shock of war appears to be
an important factor of recent economic turmoil, but its magnitude in the context of other
factors is yet to be determined.
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Appendix A. Summary Statistics

The current Appendix section contains supplementary data to the discussion presented
in the main text.

In Figure A1, the daily log-returns for the WIG20 cumulative index are depicted. The
left panel presents data before the conflict outbreak (blue), whereas the right panel depicts
data after the beginning of the invasion (orange). The inset presents a more detailed view
in the vicinity of the initial invasion day. Qualitatively similar behavior can be observed for
each of the WIG20 composing assets.
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Figure A1. The daily log-returns for the WIG20 cumulative index before (blue) and after (orange)
the beginning of the 2022 Russian invasion of Ukraine. For convenience, the inset presents data in the
vicinity of the initial invasion day.

In Table A1, the basic summary statistics of the daily log-returns are given for the
WIG20 cumulative index and its composing assets. The data are provided for two con-
sidered timeframes, i.e., one year before the invasion day and one year after this date.
In Table A2, the numerical values of the calculated standard deviation and entropy, as
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obtained within the presented analysis, are collected. The data are given in a similar fashion
as in Table A1.

Table A1. The summary statistics of the daily log-returns before (outside the brackets) and after (inside
the brackets) the outbreak of the 2022 Russian invasion of Ukraine. The cumulative index data are fol-
lowed by the first group for the constant component companies and then by the second (third) group for
the stocks introduced to (removed from) the index at some point. The dates of the introduction/removal
of the composing companies are given next to the name of the corresponding company.

Name Symbol Mean Minimum Maximum Skewness Kurtosis

Cumulative Index WIG20 0.00027 (0.00017) −0.0455 (−0.0452) 0.0299 (0.0844) −0.2908 (0.5006) 1.1820 (1.3099)

Asseco ACP 0.00074 (0.00056) −0.0595 (−0.0488) 0.0608 (0.0765) −0.0201 (0.4742) 1.7600 (1.3305)
Allegro ALE −0.0026 (0.0010) −0.1123 (−0.1027) 0.1067 (0.1578) 0.1747 (0.5547) 1.1735 (1.9310)

CCC CCC −0.00196 (−0.00050) −0.0851 (−0.068) 0.1327 (0.1490) 0.4102 (0.7795) 3.4547 (1.5699)
CD Projekt CDR −0.00118 (−0.00022) −0.1257 (−0.1024) 0.1307 (0.1347) 0.1356 (0.0001) 2.3658 (1.6826)

Cyfrowy Polsat CPS 0.00029 (−0.00150) −0.0395 (−0.0847) 0.0729 (0.0782) 0.5066 (0.0800) 2.2896 (0.8452)
Dino DNP 0.00076 (0.00157) −0.0670 (−0.0673) 0.0659 (0.0909) 0.1096 (0.2339) 0.9815 (1.3584)
JSW JSW 0.00144 (0.00251) −0.1117 (−0.1345) 0.1170 (0.3130) −0.0557 (1.5369) 0.5071 (9.5325)

KGHM KGH −0.00088 (0.00011) −0.0673 (−0.1178) 0.0853 (0.1168) 0.0967 (0.2907) 0.6175 (1.2485)
LPP LPP 0.00241 (0.00052) −0.1393 (−0.1090) 0.1468 (0.1581) 0.3934 (0.3732) 4.5029 (2.1642)

Orange OPL 0.00128 (−0.00021) −0.0653 (−0.0870) 0.0578 (0.0572) 0.2096 (−0.3807) 1.3278 (0.6936)
Bank Pekao PEO 0.00256 (−0.00016) −0.0711 (−0.1221) 0.0625 (0.1714) −0.3068 (0.7317) 1.5768 (5.6249)

PGE PGE 0.00076 (0.00062) −0.0721 (−0.0691) 0.1358 (0.1567) 0.6716 (0.9674) 2.6880 (3.5208)
Orlen PKN 0.00070 (0.00042) −0.0640 (−0.0620) 0.0457 (0.1096) −0.0736 (0.2118) 0.2344 (0.6775)

Bank PKO PKO 0.00167 (−0.00029) −0.0718 (−0.0717) 0.0017 (0.1327) −0.2323 (0.8032) 1.0216 (2.7165)
PZU PZU 0.00053 (0.00084) −0.0644 (−0.0660) 0.0523 (0.0784) −0.3524 (0.2138) 1.7112 (1.4921)

Santander Bank SPL 0.00190 (0.00035) −0.0536 (−0.0867) 0.0823 (0.1143) 0.4418 (0.3425) 1.3168 (1.7196)

Pepco
(18 March 2022) PCO −0.00050 (0.00074) −0.0470 (−0.0523) 0.0558 (0.1143) 0.1075 (0.6496) 0.4942 (3.1461)

mBank
(18 March 2022) MBK 0.00275 (0) −0.1002 (−0.0851) 0.0943 (0.1264) −0.0907 (0.4069) 0.9970 (0.7190)

Kȩty
(16 September 2022) KTY 0.00084 (−0.00001) −0.0684 (−0.1017) 0.0744 (0.0757) 0.3034 (−0.1884) 1.8525 (1.2969)

Kruk
(16 December 2022) KRU 0.00219 (0.00136) −0.0622 (−0.0584) 0.1313 (0.1220) 0.9346 (0.9295) 2.7356 (2.2608)

Tauron
(18 March 2022) TPE −0.00014 (0.00053) −0.0617 (−0.0796) 0.0853 (0.1301) 0.4780 (0.5036) 0.6674 (2.1356)

Mercator
(18 March 2022) MRC −0.00614 (0.00050) −0.2348 (−0.0980) 0.2080 (0.2571) 0.0931 (1.9378) 5.0186 (7.6932)

LOTOS
(16 September 2022) LTS 0.00113 (0.00481) −0.0826 (−0.0611) 0.0614 (0.0740) −0.5117 (0.3371) 1.8753 (0.0411)

PGNiG
(16 December 2022) PGN −0.00016 (0.00044) −0.0603 (−0.0644) 0.0568 (0.1793) −0.1985 (1.4098) 1.3151 (5.8434)

Table A2. The numerical values of the standard deviation and entropy, as calculated for the WIG20
index and its composing stocks. Similarly to Table A1, the cumulative index data are followed by
the first group for the constant component companies and then by the second (third) group for the
stocks introduced to (removed from) the index at some point. The dates of the introduction/removal
of the composing companies are given next to the name of the corresponding company. The results
are presented for the one-year time period before the beginning of the Russian invasion of Ukraine
and after this event. For convenience, the percentage difference between estimates obtained for the
two timeframes of interest is given for the standard deviation and entropy.

Name Symbol
Standard
Deviation

Before

Standard
Deviation

After
Percentage
Difference

Entropy
Before Entropy After Percentage

Difference

Cumulative Index WIG20 0.012 0.018 40% 1.956 2.336 17.71%

Asseco ACP 0.016 0.019 17.63% 2.224 2.426 8.68%
Allegro ALE 0.029 0.036 21.54% 2.131 2.336 9.18%

CCC CCC 0.027 0.034 22.95% 2.151 2.405 11.15%
CD Projekt CDR 0.032 0.031 3.180% 2.223 2.226 0.14%

Cyfrowy Polsat CPS 0.015 0.023 42.11% 2.387 1.967 19.29%
Dino DNP 0.019 0.023 19.05% 2.256 2.456 8.49%
JSW JSW 0.038 0.045 16.87% 1.936 1.998 3.15%

KGHM KGH 0.025 0.032 24.56% 2.143 2.378 10.39%
LPP LPP 0.030 0.034 12.50% 2.008 2.170 7.76%

Orange OPL 0.017 0.021 21.05% 2.201 2.449 10.66%
Bank Pekao PEO 0.019 0.030 44.90% 1.671 2.016 18.71%

PGE PGE 0.026 0.032 20.69% 2.173 2.353 7.95%
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Table A2. Cont.

Name Symbol
Standard
Deviation

Before

Standard
Deviation

After
Percentage
Difference

Entropy
Before Entropy After Percentage

Difference

Orlen PKN 0.019 0.026 31.11% 2.180 2.460 12.07%
Bank PKO PKO 0.019 0.027 34.78% 2.010 2.302 13.54%

PZU PZU 0.016 0.021 27.03% 2.130 2.393 11.63%
Santander Bank SPL 0.020 0.025 22.22% 2.085 2.274 8.67%

Pepco
(18 March 2022) PCO 0.017 0.022 25.64% 2.121 2.267 6.66%

mBank
(18 March 2022) MBK 0.028 0.033 16.39% 2.262 2.473 8.912%

Kȩty
(16 September 2022) KTY 0.018 0.025 32.56% 2.080 2.390 13.87%

Kruk
(16 December 2022) KRU 0.026 0.028 3.640% 2.353 2.371 0.76%

Tauron
(18 March 2022) TPE 0.024 0.029 18.87% 2.216 2.352 5.95%

Mercator
(18 March 2022) MRC 0.047 0.043 8.89% 1.894 1.785 5.93%

LOTOS
(16 September 2022) LTS 0.020 0.028 33.33% 2.310 2.558 10.19%

PGNiG
(16 December 2022) PGN 0.017 0.033 64% 1.747 2.269 26%
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