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Abstract: Quantum games, such as the CHSH game, are used to illustrate the puzzle and power of
entanglement. These games are played over many rounds and in each round, the participants, Alice
and Bob, each receive a question bit to which they each have to give an answer bit, without being
able to communicate during the game. When all possible classical answering strategies are analyzed,
it is found that Alice and Bob cannot win more than 75% of the rounds. A higher percentage of
wins arguably requires an exploitable bias in the random generation of the question bits or access to
“non-local“ resources, such as entangled pairs of particles. However, in an actual game, the number
of rounds has to be finite and question regimes may come up with unequal likelihood, so there
is always a possibility that Alice and Bob win by pure luck. This statistical possibility has to be
transparently analyzed for practical applications such as the detection of eavesdropping in quantum
communication. Similarly, when Bell tests are used in macroscopic situations to investigate the
connection strength between system components and the validity of proposed causal models, the
available data are limited and the possible combinations of question bits (measurement settings) may
not be controlled to occur with equal likelihood. In the present work, we give a fully self-contained
proof for a bound on the probability to win a CHSH game by pure luck without making the usual
assumption of only small biases in the random number generators. We also show bounds for the case
of unequal probabilities based on results from McDiarmid and Combes and numerically illustrate
certain exploitable biases.

Keywords: CHSH games; Bell inequalities; secure quantum communication; quantum information

1. Introduction

John Bell’s seminal ideas [1–6] have allowed a precise and quantifiable illustration
that quantum mechanical entanglement enables experimental outcomes which cannot be
classically generated. Such presentations of the quantum edge can come in different forms,
for example, the Mermin–Peres magic square game, the Greenberger–Horne–Zeilinger
(GHZ) game or the Clauser–Horne–Shimony–Holt (CHSH) game. These also come with
different story lines, such as hypothetical TV quizzes, polls or trials [7–13]. The goals of
these presentations are also different. They may concern teaching quantum information
theory or illustrating the power of entanglement, for example, for uses in quantum cryp-
tography or quantum computation, as well as in discussions of foundational questions
of locality and free choice. These games provide a good and accessible illustration of the
philosophical puzzle and the practical power of entanglement while only using terms from
macroscopic experience.

When using games as illustrations, it is important to also treat the effect of purely
random fluctuations when only a finite number of rounds are played. Sweeping the issue
of a finite number of rounds N under the rug takes away a lot from the usefulness of such

Entropy 2023, 25, 824. https://doi.org/10.3390/e25050824 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25050824
https://doi.org/10.3390/e25050824
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-8623-4478
https://orcid.org/0000-0002-3457-2870
https://orcid.org/0000-0003-1919-387X
https://doi.org/10.3390/e25050824
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25050824?type=check_update&version=3


Entropy 2023, 25, 824 2 of 21

presentations. It is equally important to consider imperfect probability distributions. Our
contribution lies in a rigorous and accessible treatment of CHSH games and the chances
of winning in a finite number of rounds with the additional difficulty that measurement
settings cannot be ensured to occur with equal probabilities. This topic is not only relevant
for illustrative games, but also has practical implications: in the implementation of quantum
devices for the use of quantum technologies, imperfect joint probability distributions may
arise, such as an undesired drifting of states or crosstalk between different qubits [14].
Detection and the possible correction of such issues is important in various applications
such as the detection of eavesdropping in quantum cryptography [15,16], the fidelity of
quantum random number generators [17] or the general witnessing of entanglement [18].

In the present work, we only discuss CHSH games, for which all questions are gen-
erated freely and independently. We assume a finite number of game rounds and we
do not insist that all measurement settings occur with equal probability. We made this
choice of topic for three reasons. First, the CHSH form can be tested well with current
experimental technology. Second, the CHSH form of the Bell inequalities can be symmetri-
cally formulated with expectation values and is so open for applications to macroscopic
systems outside physics [19,20]. In such applications, the number of rounds is naturally
finite and there is no a priori reason for which measurement settings would occur with
equal likelihood. The number of rounds can be quite low so that random fluctuations play
a greater role than in photon-based physical experiments. This is particularly problematic
when historical data are considered where the causal regime at work is suspected to have
changed over time. Lastly, CHSH games are rigid, so that strategies with maximum success
probability are isomorphic [21–23], allowing a generic way of treatment.

Statistical effects from random fluctuations over a finite number of rounds have of
course previously been discussed in the literature. The main focus has been the analysis
of Bell experiments to disprove local hidden variable models while not allowing loop-
holes. Statistical confidence in the conclusion from Bell experiments is usually derived by
observing that violations of Bell inequalities happen with a certain number of standard
deviations, but this line of argument typically requires the assumption of a Gaussian error
distribution and the independence of the game rounds, which makes it problematic [24].
We therefore do not follow this line of argument here, but start from early work from
Gill [25,26] on this topic, which was later extended in [27]. Such later work yielded sharper
bounds, but references, usually without proof, very technical mathematical tools (based
on the concentration inequalities from Hoeffding–Azuma, McDiarmid, and others) with
the goal of aiding specialists in designing and evaluating Bell experiments. Putting such
technical work to use, even by specialists, may still have its pitfalls, as pointed out in [28].
Here, we strive for an accessible presentation that yields interesting and illustrative bounds
for situations with unequal probabilities for the measurement settings, when games are
played over a finite number of rounds. In contrast to [27], we are interested in random
number generator biases that can be very large and we want to avoid linear programming
or martingale methods.

The present paper is organized as follows: in Section 2, we present two versions of
the CHSH game, one in which the players have to achieve a high percentage of winning
rounds and one in which the players have to achieve a high S-value, and comment on the
equivalence of the versions. In Section 3.1, we proved an extension of Gill’s result [26]
for the case of unequal probabilities. The proof is self-contained and only requires an
elementary knowledge of probability. We continue in Section 3.2 by proving a bound
for unequal probabilities based on McDiarmid Inequality. We also simulate certain game
strategies in Section 4 and illustrate some exploitable biases. The last section concludes
with a short summary.

2. The CHSH Game

Using the notion of the CHSH game, the additional resource that entangled particles
may bring can be easily illustrated without the need to understand quantum mechanics. To
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this end, imagine a game, which is played over many rounds, in which Alice and Bob work
as partners trying to win. We assume that they can jointly receive a prize, which is awarded
to them by a Verifier based on a clear statistical pre-agreed rule after all game rounds have
been played. Alice and Bob may discuss various pre-arranged strategies before the game
commences, but they are isolated and not allowed to communicate once the game has
started. The game shall be played over N rounds and in each round, Alice and Bob will
each receive one of two possible inputs (called questions) to which they have to give one
of two possible outputs (called answers). Once the information is brought together, the
complete list of questions and answers can be used by an independent Verifier to generate a
statistic from which he or she will determine whether Alice and Bob deserve the prize. We
will present two versions of the CHSH game, one in which Alice and Bob have the task of
winning in more than 75% of the rounds, and one in which they have the task of bringing a
statistical quantity (the so-called S-value, computed from four expectation values that can
be formed from the game statistic) above the value of 2. We will then show how these two
versions relate to each other.

2.1. The Game with the Goal of Achieving a High Percentage of Winning Rounds

In this version of the game, the task of Alice and Bob is presented as receiving local
input bits x and y (questions) from which they have to produce local output bits a and b
(answers), such that

x · y = a⊕ b (1)

holds. Whenever that happens, Alice and Bob have won the round, otherwise, they have
lost the round. In this equation, the symbol ⊕ denotes an addition modulo 2 and · denotes
ordinary multiplication. All variables x, y, a, b have to be in the set {0; 1}.

This means that, in each round, there is a specific question regime, i.e., a pair (x, y),
which we write in shorthand as xy := (x, y). The key point is that the question regime in
a given round xy ∈ {00, 01, 10, 11} is not fully known to Alice and Bob during the game,
and it can only be determined when the data are brought together and analyzed jointly.
During the game, Alice has to determine a based on x without knowing y, and Bob has to
determine b based on y without knowing x.

Therefore, the set of all possible elementary strategies, i.e., input–output relations be-
tween questions and answers in a given round that Alice and Bob may utilize can be
encoded in four single bits (A0, A1, B0, B1). In this notation, the number A0 ∈ {0; 1} is to
be understood as the value that Alice will give as her answer a in a round in which she
receives the input bit x = 0. A1 ∈ {0; 1} is the value she will give as her output bit if she
receives the input bit x = 1. Similarly, the number B0 ∈ {0; 1} is to be understood as the
value that Bob will give as his answer b in a round in which he receives the input bit y = 0,
whereas B1 ∈ {0; 1} denotes the output Bob will give in case of y = 1. As shown in Table 1,
each question regime has specific losing strategies.

Table 1. The following table illustrates the goal implied by Equation (1) for the four possible question
regimes and it lists the elementary strategies that result in a loss under each question regime. Instead
of showing all four bits of a losing elementary strategy (A0, A1, B0, B1), only the bits corresponding
to the relevant question regime are shown, because the value of the other bits is irrelevant. Note that,
in each round, Alice only knows x and has to answer by giving the value of a, while Bob only knows
y and has to give the answer b.

x y Regime Needed to Win Losing Strategies

0 0 xy = 00 0 = a⊕ b (A0, B0) = (0, 1) or (1, 0)
0 1 xy = 01 0 = a⊕ b (A0, B1) = (0, 1) or (1, 0)
1 0 xy = 10 0 = a⊕ b (A1, B0) = (0, 1) or (1, 0)
1 1 xy = 11 1 = a⊕ b (A1, B1) = (0, 0) or (1, 1)
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It is easy to see which elementary strategies produce the best results when the question
regime is unknown to both Alice and Bob. For example, always using the elementary
strategy (A0, A1, B0, B1) = (1, 1, 1, 1), Alice and Bob would win the round in the case of
question regimes xy = 00, 01, 10, but lose in the case of xy = 11, so this strategy produces a
win in 3 out of 4 regimes.

In general, the performance of an elementary strategy can be easily checked by observ-
ing that the number of question regimes L, in which Alice and Bob lose with the elementary
strategy (A0, A1, B0, B1), can be computed as

L = A0 ⊕ B0 + A0 ⊕ B1 + A1 ⊕ B0 + (1− A1 ⊕ B1). (2)

The validity of Equation (2) is easy to see, because in the question regimes 00, 01, and 10,
the goal of Alice and Bob is to generate a⊕ b = 0, while in the question regime 11 that Alice
and Bob need to produce a⊕ b = 1. Running through the 16 possible elementary strategies
shows that L can only take the values 1 or 3, noting that there is no elementary strategy that
would produce L = 0. Therefore, the best that Alice and Bob can do with an elementary
strategy is to ensure that they only lose in one of four possible question regimes, and with
(A0, A1, B0, B1) = (1, 1, 1, 1), we have already found such a strategy. If all question regimes
occur with equal likelihood during the game, this achieves a win in 75% of the rounds.

Therefore, the challenge given by the Verifier to Alice and Bob in this version of the
game is to produce a percentage of rounds of at least 75% + ν, for which Equation (1) holds. Here,
ν > 0 is a threshold that is set before the game commences.

2.2. The Game with the Goal of Achieving a High S-Value

In a different presentation of the game, Alice and Bob need to produce a high S-value.
The S-value is a statistical quantity derived from expectation values following the approach
of Clauser–Horne–Shimony–Holt in [29]. In this version of the game, Alice and Bob receive
questions x, y which are taken from the set {0, 1}, to which they have to give answers a, b
from the set {±1}.

Again, Alice and Bob work as a team that may pre-agree strategies but cannot commu-
nicate during the game. When all rounds have been played, the questions and answers will
be put together and a list of quadruplets (a, b, x, y) results, which can be partitioned depend-
ing on the question regime. This gives a statistic P(ab | xy) for the product value ab ∈ {±1},
conditional upon each of the four different question regimes xy ∈ {00, 01, 10, 11}. We can
now compute expectation values for the product ab under these four question regimes xy
by defining

〈ab〉xy := ∑
ab

ab P(ab | xy).

We will assume that each question regime occurs at least once in the game, so that all
four expectation values are well defined. Following [29], the combination of these four
expectation values yields four S-values

S1 = 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11 , (3)

S2 = 〈ab〉00 + 〈ab〉01 − 〈ab〉10 + 〈ab〉11 , (4)

S3 = 〈ab〉00 − 〈ab〉01 + 〈ab〉10 + 〈ab〉11 , (5)

S4 = −〈ab〉00 + 〈ab〉01 + 〈ab〉10 + 〈ab〉11 . (6)

If Alice and Bob agree to always give the answers a = b = 1, no matter what question
they receive, they are able to generate Si = 2 for all i = 1, 2, 3, 4. However, it is unclear how
higher S-values could be achieved. What makes winning the game difficult is the fact that,
in the expression for any Si, one of the correlations is subtracted from the other three. It
is this feature of the Si-values which precludes success using a simple strategy of always
giving the same answer to the same question.
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Therefore, the challenge given to Alice and Bob for this version of the game is to
produce an S1-value of at least 2 + η. Here, η > 0 is a threshold that is set before the game
commences. Instead of S1, one could also use one of the other values S2, S3, S4 to formulate
the challenge. As shown in Proposition 2 of [20], at most one of the four S-values may
exceed 2. The well-known claim is that this game is impossible to win if an infinite number
of rounds is played and if there are no additional resources, such as pairs of entangled
particles, available to Alice and Bob.

2.3. On the Equivalence of the Two Game Descriptions

We want to show that the two versions of the game presented above are essentially
the same. Conceptually, we therefore have to connect the probability of winning a single
round to expectation values. To do this, we first note that, after a game over N rounds, the
Verifier can break the complete list of quadruplets (a, b, x, y) into four lists by conditioning
on specific question regimes xy. In general, these four lists will have different lengths,
which we denote by Nxy, and we only know N = N00 + N01 + N10 + N11. In each of those
four sub-lists, the Verifier can count how often the product value ab was positive and how
often it was negative. Let us assume that the Verifier uses the symbol N+

00 for the number
of rounds in which ab = +1 occurred in the sub-list with xy = 00, and the symbol N−00 for
the number of rounds in which ab = −1 occurred in the sub-list with xy = 00. For the first
expectation value term in Equation (3), we can therefore write

〈ab〉00 =
N+

00 − N−00
N00

= 1− 2
N−00
N00

= 2
N+

00
N00
− 1,

because N00 = N+
00 + N−00. Analogous expressions hold for 〈ab〉01, 〈ab〉10 and 〈ab〉11. In

particular, we have

〈ab〉11 =
N+

11 − N−11
N11

= 2
N+

11
N11
− 1.

From Equation (3), we therefore obtain

S1 = 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11

= 1− 2
N−00
N00

+ 1− 2
N−01
N01

+ 1− 2
N−10
N10
−
(

2
N+

11
N11
− 1

)

= 4− 2

(
N−00
N00

+
N−01
N01

+
N−10
N10

+
N+

11
N11

)
. (7)

To connect the description of the game in Section 2.2, where the requirement is a, b ∈ {±1},
with the description in Section 2.1, where the answer values have to be in the set {0, 1}, we
start by denoting the answers in the description of Section 2.1 with an asterisk ∗, so that
the requirement for winning a round by fulfilling Equation (1) reads x · y = a∗ ⊕ b∗. The
transformation a = 2a∗ − 1 and b = 2b∗ − 1 bijectively maps the set {0, 1} to the set {±1}.
With this transformation, the 16 elementary strategies that Alice and Bob can use in a given
round can be described as tuples (A0, A1, B0, B1) ∈ {±1} × {±1} × {±1} × {±1}. To relate
this to the percentage of winning rounds, we define

Lxy :=
number of losing rounds played in question regime xy

total number of round played in question regime xy
.

In the question regime xy = 00, losing a round is equivalent to a∗ ⊕ b∗ = 1, which
is equivalent to ab = −1. Therefore, L00 = N−00/N00 is the percentage of losing rounds
in question regime xy = 00. Applying the same argument to the question regimes 01
and 10, we see that the losing percentages for these regimes are L01 = N−01/N01 and
L10 = N−10/N10, respectively. For the question regime xy = 11, the value of the product
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x · y is equal one, so Alice and Bob lose a round if and only if a∗ ⊕ b∗ = 0. In this question
regime, losing is equivalent to ab = +1, which gives the losing percentage L11 = N+

11/N11.
From Equation (7), we therefore obtain

S1 = 4− 2

(
N−00
N00

+
N−01
N01

+
N−10
N10

+
N+

11
N11

)
= 4− 2(L00 + L01 + L10 + L11). (8)

The last equation shows that maximizing the value of S1 is tantamount to minimizing the
losing percentages in the question regimes.

As discussed in Section 2.1, with every elementary strategy Alice and Bob face at least
one losing question regime. Using the same elementary strategy in all game rounds and
assuming that the Quiz Master uses all question regimes during the game, this implies that
L00 + L01 + L10 + L11 > 1 and hence S1 6 2 by Equation (8).

The situation becomes more involved if Alice and Bob switch between different
elementary strategies during the game. In some rounds, they may be lucky to have
chosen the right elementary strategy to produce a win. Intuitively, when the game is
played over many rounds and all question regimes come up unpredictably with non-
negligible frequency, then one would expect the chances of being lucky enough to produce
L00 + L01 + L10 + L11 < 1 to diminish. If Alice and Bob randomly switch between
elementary strategies and if the Quiz Master randomly switches between the four question
regimes, we expect equal percentages of losing rounds in all question regimes, i.e., L00 =
L01 = L10 = L11 =: L, over the long run. Under this additional assumption, Equation (8)
reads S1 = 4 − 8L, which shows that S1 = 2 is equivalent to L = 25%, so S1 = 2
translates to a winning percentage of 75%, which makes the challenges given at the end of
Sections 2.1 and 2.2 equivalent (with η = 8ν).

However, winning is subject to statistical fluctuations, and Alice and Bob may try to
benefit from the unequal frequencies of question regimes if they are aware of them. In
the next chapter, we will give bounds for the probability of winning by pure luck if the
question regimes occur with unequal probabilities.

3. Bounds for the Likelihood of Being Lucky

The well-known claim is that the CHSH game is impossible to win if the questions
are asked randomly and Alice and Bob have no additional (non-local) resources, such as
pairs of entangled particles, at their disposal. In fact, this is the reason which makes CHSH
games useful tools for an explanation of the power of entanglement.

To make the claim true, we first have to insist on ruling out cheats, in which Alice
and Bob may prompt some of the questions themselves or acquire knowledge about the
question regime they will receive during the game. Such cheats could have consequences
which are quantitatively equal to a violation of locality [19,30]. Going forward, we insist
on the free and independent generation of all questions, although we do not insist that all
question regimes occur with equal likelihood.

The objections that Alice and Bob may win by luck or clever play still have to be dealt
with, and we will deal with this now. In this, one needs to keep in mind that they can play
in different ways and “being lucky“ is a difficult term, as the effect of luck may in principle
depend on how they play the game. In particular, Alice and Bob can:

(i) Draw up a list, which specifies in advance which elementary strategy they will use in
a game round only based on the question posed in this round;

(ii) Create a deterministic algorithm that determines how they will answer in a given
round based on the information about all questions they have received so far locally;

(iii) Use the information about all answers they have given so far locally and all questions
they have received so far locally as an input to an algorithm, which may use classical
local independent randomization procedures while the game is ongoing, to generate
their answers;
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(iv) Determine how they will answer in a given round using a momentary hunch (i.e., gut
feeling) while the game is ongoing.

These four approaches will be discussed to determine the effect of luck. Randomness
may lie in the generation of the questions x, y; however, under Approaches (iii) and (iv), it
may also lie in the generation of the answers. We will now argue that Approaches (i)–(iii)
result in the answers being drawn independently from two N× 2 tables filled with numbers
of plus or minus one (i.e., from two “spreadsheets”).

In Approach (i), by definition, Alice will have a list of pairs (A0, A1) ∈ {±1} × {±1}
to determine her answers in each round and Bob will have another list of pairs (B0, B1) ∈
{±1} × {±1} to determine his answers. The output bit a given by Alice in round n of the
game is read out from row n of her list as

a :=

{
A0 if x = 0,
A1 if x = 1,

(9)

and the output bit b given by Bob in round n is determined from row n of his list by

b :=

{
B0 if y = 0,
B1 if y = 1.

(10)

Prior to the start of the game, Alice and Bob may create and discuss their lists together and
Alice may even take a copy of Bob’s list into her room, but that will not make a difference
as she is only allowed to have local knowledge during the game. The important part is that
we have counter-factual definiteness for the answers of Alice and Bob as they are read off
from a table that covers all situations.

Approach (ii) generalizes Approach (i), but can still be formalized by pre-agreeing
upon a set of elementary strategies for each possible path the game may take up to a given
round n. Written formally, in each round, Alice receives a question and gives an answer so
that the locally available information for her in round n consists of a question list x1x2 . . . xn
and a list of answers a1a2 . . . an−1 which she has already given. Based on this information,
she has to determine her answer an for the current round n, in which question xn was
posed. In principle, assuming sufficient memory, Alice and Bob could prepare a game
over a total of N rounds by pre-agreeing upon a large collection of tables to formalize their
strategy under Approach (ii). For example, based on the information up to and including
round n− 1, there are 4n−1 possible combinations of (global) question regimes that could
have been used, out of which Alice can differentiate 2n−1 based on her local knowledge.
To determine her next answer an, she would pick her table corresponding to the history
observed by her so far locally and read out row n. If that row reads (A0, A1), she will use
the current question xn and give her answer using Equation (9) with x := xn. Bob will work
analogously on his side. Again, the key point is that assuming the existence of a collection
of tables corresponds to counter-factual definiteness as far as the answers of Alice and
Bob are concerned. The questions they will receive may not be pre-determined, but Alice
and Bob can state how they would have answered if they would have received different
questions during the game. At the end of the day, the answers will have been generated by
independent draws from two N × 2 tables. Conceptually, two N × 2 tables could evidently
be seen as N × 4 tables, as in [26], but if Alice and Bob do not reveal their strategies to each
other, then neither of the players has access to the full N × 4 tables. If one wishes to discuss
“realism“, the collection of tables would correspond to elements of reality that could be read
out by asking the right sequence of questions despite the fact that not all tables are read out
in an actual game.

Approach (iii) generalizes Approach (ii), and now, the algorithm may be thought of
as a collection of tables corresponding to a locally observed history, but allowing several
tables that correspond to the same history. Out of these tables, Alice will pick the table she
will use in the current round by casting a classical die in her room, where the number of
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sides equals the number of her tables that is consistent with her locally observed history.
This randomization shows Alice which table to use in the current round. If, in that table,
she finds the entry (A0, A1) in row n, she will use the current question xn and give her
answer using Equation (9) with x := xn. Bob would proceed in an analogous way and the
important assumption is that Bob’s die is cast independently from Alice’s die.

For Approaches (i)–(iii), the answers can be regarded as being generated from two
N × 2 tables by independent draws. This allows the derivation of the CHSH inequality:
We start by observing that, when a combined row (A0, A1, B0, B1) is created from the two
tables of numbers ±1, then we always obtain

A0B0 + A0B1 + A1B0 − A1B1 = A0(B0 + B1) + A1(B0 − B1) ∈ {±2}.

Taking averages over all rounds, we conclude with the usual Bell-type argument

S1 = 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11 6 2. (11)

We remark that moving from individual game rounds to averages and expectation values
does require additional thoughts about the convergence of relative frequencies, because the
answers given during the game do not have to be independent over the game rounds. We
refer to [31] for details and give numerical examples in Section 4.

Approach (iv) is outside the scope of mathematical procedures because humans
determining answers “on a momentary hunch“ seems to be a concept that is impossible
to formalize. In this context, some people would treat Approach (iv) just as a form of
randomness and automatically subsume it under Approach (iii), but it is important to keep
in mind that such a treatment is an assumption based on certain philosophic positions.
While the hunch of Alice experienced in round n can be influenced by the history of
questions observed by her previously, some people would argue that this history alone
does not allow a comprehensive description of her possibilities. They might argue that
the local future of Alice or non-local connections to Bob cannot be ruled out a priori in the
creation of a hunch. To see whether something such as Approach (iv) can provide more
than Approach (iii) in terms of winning a CHSH game without having entanglement as a
resource, actual experiments would have to be performed, which can only naturally occur
over a finite number of rounds. The burden of proof certainly lies on those, which claim
that Approach (iv) can yield more than Approach (iii) and bounds for the likelihood of
winning by pure luck are given below.

Generally, it is believed that Alice and Bob cannot win the CHSH game unless they
have additional non-local resources, such as pairs of entangled particles. However, if
only a finite number of rounds N of the game are played, Alice and Bob may be declared
winners, because the losing percentages that were actually realized may happen to be
such that S1 > 2 + η occurs in Equation (8) by pure chance. If Alice and Bob switch
between elementary strategies between the rounds, e.g., under Approach (iii), then after
N rounds, they may have been lucky to have picked many winning ones even if the four-
question regimes xy were selected at random and with equal probability. We want to
determine how much luck is needed for this to happen. Formulated more precisely, we
want to prove statistical bounds for the probability that winning happens by pure luck.
Mathematically, such proofs depend on so-called concentration inequalities, which are
bounds for the probability that a sum of random variables deviates from its expected value,
and by a certain amount. In this area, mathematical contributions were made by Hoeffding,
Bernstein, Chernoff, Azuma, Bentkus, McDiarmid, Combes, and others, and many technical
formulations exist. We will use Hoeffding inequalities [32] and an extension of McDiarmid
inequalities [33], giving a self-contained proof of the required results of the former for the
completeness of presentation.

In what follows, it is important to note that the number of rounds N has to be fixed
in advance and agreed between the players and the Verifier. If the number of rounds is
not fixed beforehand, then one can be tempted to play until a desired level of violation
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has been reached. Such an approach can invalidate the entire statistical analysis, as can be
seen in [28], because the probability distribution for the maximum of a stochastic process is
different from the probability distribution of that process.

3.1. Bounds Based on Hoeffding Inequalities

As shown by Gill as Theorem 1 in [26], when the observed answers are completely
selected at random by fair, i.e., 50:50, coin tosses, the probability of generating an S1-values
above 2 is limited by

Pr{S1 6 2 + η} > 1− 8e−N(η/16)2
(12)

for any η > 0. Mathematically, the proof of that bound in [26] is essentially a repeated
application of Hoeffding’s inequalities [32]. The right-hand side of the inequality requires a
larger number of rounds to give meaningful bounds as shown in column (a) of Table 2.

Table 2. The following table illustrates the bounds for the certainty that the CHSH game is not won by
chance, assuming four equally probable question regimes. Column (a) illustrates the bound obtained
with Equation (12), Column (b) illustrates the best available bounds from Theorem 1 and Column (c)
illustrates the best available bounds from Theorem 2.

N η (a) (b) (c)

500 0.5 negative negative 37.73%
1000 0.5 negative 13.51% 69.66%
2500 0.5 30.37% 93.33% 97.23%
5000 0.5 93.94% 99.90% 99.95%

The derivation of Equation (12) stated above that is given in [26] is based on assuming
that starting from a spreadsheet containing a table with N rows and 4 columns, fully
populated with entries of ±1, for each row, “two fair coins are tossed independently of one
another, independently over all the rows”. Depending on the outcomes of the two coin tosses
for a round, one value from the first two columns and one value from the last two columns
is observed in the round corresponding to the specific row. While this gives a clear picture
of the assumed randomness, it creates an operational problem, because no one in the CHSH
game may have this full spreadsheet: Alice and Bob can work with different lists which they
did not share and the Verifier only has access to the list of answers that were actually given.

We will now give a self-contained proof for a bound that is stronger than Equation (12)
and that does not require the assumption of a fair coin toss for the selection of the ques-
tion regime. Relaxing this assumption is important, because the four question regimes
{00, 01, 10, 11}may occur with a somewhat unequal likelihood in physical Bell experiments
given biases of random number generators. In a game between humans, in which a Quiz
Master is free to choose the questions, the equal likelihood of question regimes cannot be
assumed a priori. In macroscopic situations, the available table of observations may not
necessarily be assumed to contain the four regimes with equal probability. For example, if
in the macroscopic application described in [19], large orders occur rarely and there are
few rumors, regime xy = 00 will be prevalent. In this case, the first expectation term in the
expression S1 = 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11 will be computed from the observations
of ab over many rounds, while the other three expectation values will result from the
observations over relatively few rounds. In such a case of highly asymmetric frequency
for the different regimes, randomness may have a stronger influence on the S1 value. In
an extreme case, where each of the three regimes {01, 10, 11} occurs only once during the
game rounds and chance happens to produce 〈ab〉01 = 1, 〈ab〉10 = 1, 〈ab〉11 = −1, we
obtain S1 = 〈ab〉00 + 3.

Therefore, with the subsequent Theorem 1, we will extend the work in [26] to situations
where the four regimes may occur with different probabilities. We will, however, stick with
the key idea of the proof made by Gill, i.e., a repeated application of Hoeffding’s inequalities.
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Before stating and proving Theorem 1, we start by proving Hoeffding’s inequality by
elementary means, to provide the reader with a fully self-contained presentation.

Proposition 1. Let X1, . . . , XN be independent random variables with values Xi in the interval
[0; 1]. Then, for all δ > 0, we have

Pr
{

X1 + · · ·+ XN
N

> µ + δ

}
6 exp

(
−2Nδ2

)
(13)

and

Pr
{

X1 + · · ·+ XN
N

< µ− δ

}
6 exp

(
−2Nδ2

)
(14)

with µ := E[(X1 + · · ·+ XN)/N].

Proof. To give a self-contained proof, we start by making the following observation: if Y is
a random variable with non-negative values, then for each positive real number a, we may
trivially write

Y ≥ a1{Y>a}

using the indicator function 1{... }. Taking the expectation value is a monotonic and linear
operation, so

E[Y] ≥ E
[

a1{Y>a}

]
= aE

[
1{Y>a}

]
= a Pr{Y > a}

follows, which proves the so-called Markov inequality

Pr{Y > a} ≤ 1
a
E[Y]. (15)

Second, we observe that, for arbitrary real numbers r and each constant c ∈ [0; 1],
we have

1 + (er − 1)c ≤ erc+r2/8, (16)

which can be shown as follows: consider the logarithm of the left-hand side and define the
function f (r) := ln(1 + (er − 1)c). This function is twice continuously differentiable with

f ′(r) =
erc

1 + (er − 1)c
=

c
c + (1− c)e−r and f ′′(r) ≤ 1

4
.

Because of f (0) = 0 and f ′(0) = c, the second-order Taylor expansion of f yields

f (r) = f (0) + r f ′(0) +
1
2

r2 f ′′(rθ) ≤ rc +
1
8

r2,

with some θ ∈ [0; 1], which proves Equation (16).
Third, we observe that for all real numbers r, the exponential function x → erx is

convex and hence, for all x ∈ [0; 1], we have

erx ≤ xer + (1− x)e0 = 1 + (er − 1)x.

Thus, for each random variable Xi, we obtain

erXi ≤ 1 + (er − 1)Xi ,

which leads to

E[erXi ] ≤ 1 + (er − 1)E[Xi]
Equation (16)
≤ erEXi+r2/8.
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This directly implies the so-called Hoeffding Lemma

E[er(Xi−EXi)] ≤ er2/8. (17)

After these three preparatory steps, we can make the following estimate, which holds
for all positive real numbers r

Pr
{

X1 + · · ·+ XN
N

> µ + δ

}
= Pr{r(X1 + · · ·+ XN) > rN(µ + δ)}

= Pr
{

er(X1+···+XN)−rNµ > erδN
}

Equation (15)
≤ e−rδNE

[
er(X1+···+XN)−rNµ

]
= e−rδNE

[
N

∏
i=1

er(Xi−EXi)

]
indep.
= e−rδN

N

∏
i=1

E
[
er(Xi−EXi)

]
Equation (17)
≤ e−rδN

N

∏
i=1

er2/8 = e−rδNeNr2/8 = e(r
2−8rδ)N/8

= exp
(
((r− 4δ)2 − 16δ2)N/8

)
.

The exponent in the last expression is minimized with the choice r := 4δ. This proves
Equation (13).

Knowing that Equation (13) holds true, it is easily seen that Equation (14) also holds
true: we only have to define Yi := 1− Xi which gives a collection of independent ran-
dom variables Y1, . . . , YN with values in the interval [0; 1] to which Equation (13) can
be applied.

Now, we can prove

Theorem 1. Assume that, for each round of the N rounds of the CHSH game one of the four
question regimes, xy is selected at random with a constant probability pxy independently of the
selection for the other rounds of the game. Further assume that there are N × 2 tables of numbers
±1, from which the answers of Alice and Bob in each given round are determined as described earlier
under the Approaches (i), (ii) or (iii) leading to the expectation of S1 6 2.

Then, for any positive number η, the probability of observing an S1-value above 2 + η at the
end of the CHSH game is limited by

Pr{Sobs
1 6 2 + η} > 1− q,

where the bound q is given by

q := 4 exp
(
−2Nδ2

)
+ ∑

xy
exp

(
−2N(pxy − δ)(η/8)2

)
. (18)

In this bound, the number δ > 0 can be freely chosen to minimize the value of q.

Proof. The proof uses arguments similar to those made by Gill in [26]. We use the nota-
tion introduced in Section 2.3 and added the superscript “(obs)” to those numbers that
are calculated from the question and answer pattern that was actually observed in the
CHSH game.

Let two positive numbers η and δ be given and let us write δ̃ := η/8. Applying
Equation (14) for each question regime xy = 00, 01, 10, 11, we see that the probability of a
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deviation of the sample mean from the theoretical probability pxy of the question regime is
bounded by

Pr

{
Nobs

xy

N
6 pxy − δ

}
6 exp

(
−2Nδ2

)
. (19)

Thus, ignoring the union of all sets for which (19) does not hold, we have

Nobs
xy > N(pxy − δ) for all xy = 00, 01, 10, 11, (20)

except possibly on a set that has a probability of at most 4 exp(−2Nδ2).
Conditional on Nobs

xy observations being made in question regime xy, we have to

compare the observed sample mean for a positive product Nobs,+
xy /Nobs

xy with its expected
value N+

xy/Nxy. Again, applying Hoeffding’s inequalities [32,34], we obtain the bound

Pr

{
Nobs,+

xy

Nobs
xy

>
N+

xy

Nxy
+ δ̃

}
6 exp

(
−2Nobs

xy δ̃2
)

, for all xy = 00, 01, 10

and similarly

Pr

{
Nobs,−

11

Nobs
11

>
N−11
N11

+ δ̃

}
6 exp

(
−2Nobs

11 δ̃2
)

.

Using (20), the upper bound for these probabilities can be dominated by

exp
(
−2Nobs

xy δ̄2
)
6 exp

(
−2N(pxy − δ)δ̄2

)
.

So, except on a small set, the observed frequency of each question regime and the
observed frequency of a positive or negative product ab in each question regime may not
deviate too far from their overall mean. As shown in Section 2.3, we have

〈ab〉00 =
N+

00 − N−00
N00

= 2
N+

00
N00
− 1,

〈ab〉01 =
N+

01 − N−01
N01

= 2
N+

01
N01
− 1,

〈ab〉10 =
N+

10 − N−10
N10

= 2
N+

10
N10
− 1,

−〈ab〉11 = −
N+

11 − N−11
N11

= 2
N−11
N11
− 1.

These equations remain true, when the reference is made to observed quantities only, i.e.,
when 〈ab〉xy is replaced by 〈ab〉obs

xy and Nxy by Nobs
xy , etc. Therefore, we conclude by using

(11) that the inequality

Sobs
1 = 〈ab〉obs

00 + 〈ab〉obs
01 + 〈ab〉obs

10 − 〈ab〉obs
11

6 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11 + 8δ̃ = S1 + 8δ̃

6 2 + 8δ̃ = 2 + η

has to hold, except possibly on a set with a probability of no more than

4 exp
(
−2Nδ2

)
+ ∑

xy
exp

(
−2N(pxy − δ)(η/8)2

)
.



Entropy 2023, 25, 824 13 of 21

Note that, in the last expression, we are free to choose any positive δ and the sum has to be
taken over all four question regimes xy = 00, 01, 10, 11.

For given parameters N, pxy, η the value for δ, which minimizes q in Equation (18) and
hence gives the best bound, can be found numerically, for example, by solving 0 = dq/dδ.
Performing the minimization, for example, for the case of equally likely question regimes
pxy = 0.25 with N = 5000 and η = 0.5, an optimal value of δ ≈ 0.03361 is found. With
this value, Theorem 1 provides the bound Pr{Sobs

1 6 2.5} > 99.90%, which is shown in
Column (b) in the last row of Table 2.

3.2. Bounds Based on an Extended McDiarmid Inequality

To the extent that one is interested in some ideas behind the mathematics needed for
more advanced bounds, an extension of the McDiarmid inequality can be of interest. In the
proof of Theorem 1, Proposition 1 is applied separately to each of the four expectation values
that occur in the definition of S1 in Equation (3). The probabilities of the four exception
sets, on which the observed averages deviate substantially from the theoretical expectation
value, are then simply added. However, the exception sets overlap and cancellations
may be expected to occur. In this section, we will work directly with the definition of the
S1-value as a linear combination of random variables with values of ±1. We will also use
a different concentration inequality, namely an extension of the McDiarmid inequality, to
arrive at a powerful bound for the probability of winning the CHSH game by pure chance.

McDiarmid’s inequalities build on the work of Hoeffding and Azuma and give con-
centration inequalities for situations in which differences for the evaluating function are
bounded, i.e., satisfy a Lipschitz condition, as can be seen in [35]. They were extended
in [33] by Combes to cover situations in which the differences are not bounded everywhere,
but only on a set that has a high probability. Of course, better bounds usually come at the
price of higher complexity, so we will not attempt a self-contained presentation of results,
but rather summarize McDiarmid and Combes’ result in the following

Proposition 2. Let X1, . . . ,XN be sets. Define X := X1 × · · · × XN and let Y be a subset of X .
Let f : X → R be a function that assigns a real number f (x) to every x = (x1, . . . , xN) ∈ X .
Assume that, on the set Y , the function f has bounded differences, i.e., there are constants c1, . . . , cN
such that

| f (x)− f (x′)| 6 ci for all (x, x′) ∈ Y × Y with xj = x′j for j 6= i. (21)

Let X1, . . . , XN be independent random variables with values Xi in the set Xi and let us write
X := (X1, . . . , XN) as well as m := E[ f (X)|X ∈ Y ]. Then, for all η > 0, we have

Pr{ f (X)−m > η} 6 p + exp

(
−2 max(η − p ∑N

i=1 ci, 0)2

∑N
i=1 c2

i

)
(22)

with p := Pr{X /∈ Y}.

Proof. See [33].

While a proof cannot be given here, Proposition 2 is not so difficult to understand
intuitively: if one has a set Y on which the function is well behaved, i.e., small random
fluctuations in the inputs do not create a big difference in its value, then one can estimate the
probability for a large deviation from the mean by an exp(− . . . ) term, vaguely reminiscent
of Hoeffding’s inequality. Outside the set, nothing can be said, but that is not a problem as
long as the probability of being in Y can be made very high by playing a sufficient number
of rounds.

Proposition 2 can be applied to the CHSH game in the following way: under Approach
(iii), there are N × 2 spreadsheets that specify how Alice and Bob will answer. Knowing
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all questions for all rounds, S1 can be computed via Equation (3), and this procedure for
obtaining S1 plays the role of the function f in Proposition 2. The random variable Xi
determines which question regime applies in round i, so it can take any of the four values
in the set Xi := {00, 01, 10, 11}. The assumption that, in each round of the game, one of
the four question regimes xy is selected at random with a probability of pxy independently
from the selection for the other rounds of the CHSH game, gives the independence property
for the random variables X1, . . . , XN .

To show that computing S1 has bounded differences on an appropriately defined set,
we first note that the expectation values 〈ab〉xy in (3) are taken over Nxy observations. The
numbers Nxy, which were introduced in Section 2.3 count how often the question regime
xy has occurred in the CHSH game. Formally, these numbers Nxy result via

Nxy =
N

∑
i=1

1{Xi = xy}

from the random variables Xi. To show that S1 has bounded differences on a subset of X ,
we define such a subset Y by making sure that inside it, all four question regimes occur
sufficiently often. This is achieved by

Y := X \ ({N00 6 K + 1} ∪ {N01 6 K + 1} ∪ {N10 6 K + 1} ∪ {N11 6 K + 1}),

for some natural number K. We compute

Pr{Nxy 6 K + 1} =
K+1

∑
k=0

(
N
k

)
pk

xy(1− pxy)
N−k

for all xy = 00, 01, 10, 11, which allows the following crude upper bound for its probability

Pr{X /∈ Y} = Pr

(⋃
xy
{Nxy 6 K + 1}

)
6 ∑

xy
Pr{Nxy 6 K + 1}

= ∑
xy

K+1

∑
k=0

(
N
k

)
pk

xy(1− pxy)
N−k. (23)

An exact computation of Pr{X /∈ Y} would be possible by using the properties of the multi-
nomial distribution, as can be seen in [36,37], but we want to avoid such technical arguments.

As we will show in the subsequent proof, the function S1 : X → [−4;+4] has bounded
differences, i.e., obeys Equation (21), on the set Y . We will show below that, when we
change the outcome of just one random variable Xi, then the resulting change in the
value of S1 is bounded by ci = 4/K. On this basis, an application of Proposition 2 yields
the following

Theorem 2. Assume that, for each round of N rounds of the CHSH game, one of the four question
regimes xy is selected at random with a constant probability of pxy, independently of the selection
for the other rounds of the game. Further assume that there are N × 2 tables of numbers ±1, from
which the answers of Alice and Bob in each given round are determined as described earlier under
Approaches (i), (ii) or (iii) leading to the expectation of S1 6 2.

Then, for any positive number η, the probability of observing an S1-value above 2 + η after N
rounds of the CHSH game is limited by

Pr{Sobs
1 6 2 + η} > 1− q
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with

q := p + exp
(
−2 max(η − 4pN/K, 0)2

16N
K2
)

, p := ∑
xy

K+1

∑
k=0

(
N
k

)
pk

xy(1− pxy)
N−k (24)

for all K < N/4.

Proof. We apply Proposition 2 with f (X) = Sobs
1 . The derivation of the expectation S1 6 2

under Approach (i), (ii) or (iii) also works on the subset Y , which implies

m = E[ f (X)|X ∈ Y ] 6 2.

With the definition p̃ := Pr{X /∈ Y}, Proposition 2 now provides the estimate

Pr{Sobs
1 > 2 + η} = Pr{ f (X)− 2 > η} 6 Pr{ f (X)−m > η}

6 p̃ + exp

(
−2 max(η − p̃ ∑N

i=1 ci, 0)2

∑N
i=1 c2

i

)
.

From this, we obtain the claimed Equation (24) with ci := 4/K for all i, because we know
p̃ 6 p from Equation (23).

To complete the proof of Theorem 2, it therefore only remains to be shown that the
function S1 : X → [−4;+4] obeys Equation (21) with constants ci = 4/K on the set Y that
was defined above. To prove this, let us, to avoid notation that is too complex, for example,
look at i = 42 and assume that x42 changes its value from x42 = 00 to x′42 = 01 while the
other variable x1, ..., x41, x43, . . . , xN remains unchanged. This leads to a change from S1
to S′1, so we need to estimate the magnitude of this change on the set Y . As a result of
this change from x42 to x′42, the number N00 changes to N′00 = N00 − 1 and N01 changes
to N′01 = N01 + 1, while N10 and N11 remain unaffected. As a consequence, the difference
between S1 and S′1 can be written as

S1 − S′1 =
N+

00 − N−00
N00

+
N+

01 − N−01
N01

−
(
(N+

00)
′ − (N−00)

′

N′00
+

(N+
01)
′ − (N−01)

′

N′01

)

=

(
N+

00 − N−00
N00

−
(N+

00)
′ − (N−00)

′

N00 − 1

)
+

(
N+

01 − N−01
N01

−
(N+

01)
′ − (N−01)

′

N01 + 1

)

=
(N00 − 1)(N+

00 − N−00)− N00((N+
00)
′ − (N−00)

′)

N00(N00 − 1)

+
(N01 + 1)(N+

01 − N−01)− N01((N+
01)
′ − (N−01)

′)

N01(N01 + 1)

=
N00(N+

00 − (N+
00)
′)− N00(N−00 − (N−00)

′)− (N+
00 − N−00)

N00(N00 − 1)

+
N01(N+

01 − (N+
01)
′)− N01(N−01 − (N−01)

′) + (N+
01 − N−01)

N01(N01 + 1)
(25)

We introduce the following definitions for the change in the number of winners and losers
in each question regime xy when we move from x42 to x′42, namely

∆+
xy := N+

xy − (N+
xy)
′, ∆−xy := N−xy − (N−xy)

′.

Using this notation, we can write (25) as

S1 − S′1 =
1

N00 − 1

(
∆+

00 − ∆−00 −
N+

00 − N−00
N00

)
+

1
N01 + 1

(
∆+

01 − ∆−01 +
N+

01 − N−01
N01

)



Entropy 2023, 25, 824 16 of 21

and hence

|S1 − S′1| 6
1

N00 − 1

(
|∆+

00 − ∆−00|+
|N+

00 − N−00|
N00

)
+

1
N01 + 1

(
|∆+

01 − ∆−01|+
|N+

01 − N−01|
N01

)

The change from x42 = 00 to x′42 = 01 means that, when we move from the compu-
tation of S1 to the computation of S′1, we have one outcome less in regime 00 implying
∆+

00 > 0 and ∆−00 > 0. Depending on the table that Alice and Bob used, the change in row
42 may have eliminated a loser or a winner, so there are only two possibilities

(∆+
00 = 0 and ∆−00 = 1) or (∆+

00 = 1 and ∆−00 = 0),

which means that |∆+
00−∆−00| = 1. Similarly, as a result of the change, there is one additional

outcome for regime 01, implying ∆+
01 6 0 and ∆−01 6 0. The additional outcome maybe a

winner or a loser, so similarly, there are only two possibilities

(∆+
01 = 0 and ∆−01 = −1) or (∆+

01 = −1 and ∆−01 = 0),

which implies |∆+
01 − ∆−01| = 1. This simplifies the above estimate to

|S1 − S′1| 6
1

N00 − 1

(
1 +
|N+

00 − N−00|
N00

)
+

1
N01 + 1

(
1 +
|N+

01 − N−01|
N01

)

6
2

N00 − 1
+

2
N01

6
4
K

, (26)

because on the set Y , we have Nxy − 1 > K for all xy = 00, 01, 10, 11.
This line of reasoning is also valid for changes other than the specific change in i = 42

from 00 to 01. The fact that the definition of S1 has a minus sign in front of the expectation
value for regime xy = 11 does not pose difficulties. Therefore, we see that ci = 4/K
provides a general bound in Equation (21) and the proof of Theorem 2 is complete.

In contrast to Equation (12), Theorems 1 and 2 allow situations where the question
regimes do not occur with equal probability. The following Table 3 gives illustrative bounds
for these cases. Both Theorems can be useful depending on how the probabilities for the
question regimes are set. Theorem 2 can in principle still be improved by using the exact
multinomial distribution instead of the estimate made in Equation (23).

Table 3. The following table illustrates the bounds for the certainty that the CHSH game is not won
by chance over N rounds with threshold η assuming unequal probabilities for the four question
regimes. Columns (a) and (c) illustrate the bounds obtained from Theorem 1 and Columns (b) and
(d) the bounds from Theorem 2. The values in Columns (a) and (b) were computed for a weakly
asymmetric situation with p00 = 22% and p01 = p10 = p11 = 26%. The values in Columns (c) and (d)
were computed for a strongly asymmetric situation with p00 = 10% and p01 = p10 = p11 = 30%.

N η (a) (b) (c) (d)

500 0.5 negative 30.91% negative 4.04%
1000 0.5 12.71% 60.45% negative 12.35%
2500 0.5 92.91% 93.82% 69.61% 37.20%
5000 0.5 99.87% 99.75% 93.97% 66.35%

500 0.75 14.51% 57.42% negative 9.36%
1000 0.75 85.39% 87.98% 52.34% 26.32%
2500 0.75 99.92% 99.79% 93.37% 65.46%
5000 0.75 99.99% 99.99% 99.73% 91.58%
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4. Monte Carlo Simulations and Exploitable Biases

The probability Pr{Sobs
1 > 2 + η} can be estimated by performing Monte Carlo

simulations on a classical computer. For this, we assume an operationally well-defined
strategy that Alice and Bob use to produce their answers a, b and a well-defined mechanism
by which the questions x, y are generated. This allows the numerical estimation of bounds
without the need for the analytical arguments given in the previous section, but it is of
course dependent on specific assumptions regarding the operational procedures.

As discussed in Section 2.1, there are 16 elementary strategies available to Alice and
Bob, half of which produce L = 3, while the other half produce L = 1. If the question
regimes are fully generated at random by independent and unbiased coin tosses, i.e.,
P(xy) = 1/4 for all xy = 00, 01, 10, 11 in all rounds, and if Alice and Bob just pick randomly
from a set of elementary strategies, the probability density for Sobs

1 will approach the normal
distribution with a maximum in the range from −2 to +2. The position of the maximum
depends on how often Alice and Bob pick strategies with L = 3 versus strategies with
L = 1.

If Alice and Bob want to win and aim for a high number Sobs
1 while assuming unbiased

question regimes, they should use elementary strategies with L = 1 only. Assuming that
Alice and Bob only pick randomly from those elementary strategies and assuming that
the questions are fully generated at random by independent unbiased coin tosses, then a
typical probability distribution for Sobs

1 , as shown on the left-hand side of Figure 1, is the
result. Here, winning by chance is extremely unlikely if the threshold is set high enough.

If the question regimes are stochastically independent between game rounds but
not distributed equally, which may happen in applications of Bell correlations outside
physics [20], the chances of winning improve. If, for example, P(xy = 00) =: c > 0.25 and
P(xy = 01) = P(xy = 10) = P(xy = 11) = (1− c)/3 and Alice and Bob are aware of this
bias, they should only play elementary strategies with L = 1 that are sure to win in regime
xy = 00. Knowing about such a bias considerably improves the chances of winning, as
shown on the right-hand side of Figure 1.

Figure 1. Two probability distributions for Sobs
1 generated by a Monte Carlo simulation of 10,000 CHSH

games of N = 500 rounds each. The threshold of 2 + η = 2.25 is shown in red. (left) The graph
on the left-hand side was generated with Alice and Bob randomly picking elementary strategies
with L = 1, while the regimes xy were generated by independent and unbiased coin tosses. The
simulated probability is Pr{Sobs

1 > 2.25} = 4.5% with a maximum value of Sobs
1,max = 2.52 observed

in a single CHSH game. (right) The graph on the right-hand side has been generated with Alice and
Bob randomly picking elementary strategies that win in the regime xy = 00 as well as satisfy L = 1.
Here, all regimes xy were generated by independent, but biased coin tosses with P(xy = 00) = 0.7 and
P(xy = 01) = P(xy = 10) = P(xy = 11) = 0.1. The simulated probability is Pr{Sobs

1 > 2.25} = 14%
with a maximum value of Sobs

1,max = 2.86 observed in a single CHSH game.

The simulated probability for Sobs
1 > 2 + η remains substantially below the theoretical

bounds. This is consistent with what was reported by [27,31], because the bounds based on
Hoeffding–Azuma and McDiarmid inequalities are generally not very tight. In addition,



Entropy 2023, 25, 824 18 of 21

some simplifications were made in the proof of Theorem 2, for example, to avoid the use of
multinomial distributions.

Clearly, a bias with P(xy = 00) = c� 0.25 is easily detectable in the data. However,
in case the probability for question regimes varies over the game rounds, things become
more tricky. First, note that, for the results in the previous sections, it is not required that the
answers from Alice and Bob are stochastically independent over the game rounds. In fact,
Alice could simply decide that she will never give the same answer in three consecutive
rounds. In this case, a is not stochastically independent over the different game rounds,
but Theorems 1 and 2 can still be applied. The important assumption only concerns the
question regimes.

Systematic biases in random numbers generated from quantum processors do occur
in real implementations, so random numbers generated by a quantum computer may not
be that random in practice. In [38], various tests were used on random numbers generated
by a cloud quantum computer (IBM 20Q Poughkeepsie) and the authors concluded “As
a result, we observed that some qubits were more biased than others”. Errors and biases can
change over time and are difficult to correct, as can be seen in [14], who stated “However,
errors typically fluctuate over time” and [39] who stated “While some of the protocols extract
quantum randomness and discard deterministic components arisen due to quantum processes
implementation imperfections, the fidelity of such procedures is not ideal”. This is clearly an
important consideration when a Bell test is used together with a statistical confidence
interval to exclude the possibility of eavesdropping in real-life quantum communication.

We illustrate this problem by a simple scheme, in which the probabilities of the
question regimes change predictably between the game rounds. Here, we assume that there
is a recurring pattern in the random number generator, such that stochastic patterns repeat
every four rounds, as illustrated in Table 4.

Table 4. An example for a systematic cyclical bias in the random question regimes that repeats over
the round numbers n. The number k is understood to run through the natural numbers k = 1, 2, 3, . . . .

Round n P(xy = 00) P(xy = 01) P(xy = 10) P(xy = 11)

. . .
4k c (1− c)/3 (1− c)/3 (1− c)/3

4k + 1 (1− c)/3 c (1− c)/3 (1− c)/3
4k + 2 (1− c)/3 (1− c)/3 c (1− c)/3
4k + 3 (1− c)/3 (1− c)/3 (1− c)/3 c

. . .

This creates an exploitable pattern as the bias rotates over time through the question
regimes in a predictable manner. Note that, even in this situation, knowing the question
regime drawn in an earlier round still does not give predictive power about the question
regimes in later rounds, the predictive power just comes from knowing the round number.
As Alice and Bob know, for example, that in round number n, where n is divisible by 4, the
regime xy = 00 is more likely to occur, they can just agree to use elementary strategies that
maximize the winning probability in such rounds. Thus, it is easy to see that Alice and
Bob can exploit this cyclicality by playing appropriate elementary strategies in each game
round n simply by looking at n modulo 4. With a high number of c, Alice and Bob thus
obtain a good chance of producing values for Sobs

1 that can be well above 3.
Summing over the columns of Table 4, it is clear that all four question regimes

00, 01, 10, 11 will still occur with an equal probability of around 25% over the entire CHSH
game, so the bias only becomes visible when testing the subsets of rounds. Note that
Theorems 1 and 2 and related work are not applicable here, because pxy does not stay
constant over the game rounds.
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5. Discussion and Summary

Cheating, such as classical communication between the players of the CHSH game or
allowing for an undue influence in the generation of questions, can allow the generation of a
quantum-like Bell statistic with classical processes. The amount of cheating that is required
is not very large. The Toner–Bacon protocol [40] shows, for example, that when Alice and
Bob share two uniformly distributed random variables with values on the unit sphere
of R3, then sending a single bit can be enough: one bit of information from Alice to Bob
suffices to simulate the statistic of a local projective measurement on an entangled Bell pair
state. The exchange of one classical bit of information can do a lot in terms of generating
strong correlations [41], and in [42], the information to be shared between measurement
settings is discussed, illustrating that small amounts of shared classical information suffice
in order to break the Bell bound. However, this position [40–42] is based on the implicit
assumption that an arbitrarily large number of rounds is played and that the question
regimes (measurement settings) are produced by unbiased random number generators
with equal likelihoods. The practical requirement of having a finite number of game
rounds and the possibility of biases were not considered in these contributions. Biases
were considered elsewhere [43,44], but with a different focus. The present work addresses
statistical questions in a situation where the number of rounds is finite and where biases
may be present.

This has practical implications: when CHSH inequalities are used to certify that no
eavesdropping took place in quantum communication during a shorter time period, it is
natural to question the likelihood of whether any observed violations of CHSH inequalities
could have occurred by chance alone. In a pedagogical presentation of entanglement and
CHSH games, a similar question may arise: “How much luck is needed to win a CHSH game
without entangled particles?” The rehearsed opinion that the observed violation could have
only occurred with a high standard deviation (“a n-sigma violation”) is not a good answer
as the a priori assumption of a normal distribution can be dangerous. Good answers do
exist in the literature, as can be seen in, e.g., the review in [27], but these tend to be based
on highly technical tools and they focus on small biases in the random number generators
that provide the question regimes.

In the present work it is assumed that Alice and Bob do not have access to additional
resources (like entangled states) while playing the CHSH game. As it is well-known,
the availability of such resources (e.g. pairs of entangled qubits for all or some of the
rounds of the CHSH game) would give Alice and Bob a distinct advantage and recent work
has offered new possibilities for how to represent perfect or imperfect entangled states
mathematically [45–47]. Note, confidence intervals for the S-value that is achievable with
such additional resources over a finite number of game rounds may be computed as well.
There are interesting corresponding implications, which could be explored in future work.

In the present paper, we focus on an accessible development of bounds for the proba-
bility of being lucky in the form of

Pr{S1 6 2 + η} > 1− q

for a given threshold, η > 0. We discussed different forms of game play and provided three
formulae for a straightforward computation of q, namely Equations (12), (18) and (24). In
contrast to most of the literature, we also covered situations in which the probabilities for
different question regimes do not have to be more or less equal. Here, the chances for Alice
and Bob to win can improve considerably.

Our extension of the result in [26] is presented with a fully self-contained proof. We
did not consider multipartite games, which do not always allow a quantum advantage [48],
and where general problems, such as computing the maximum winning probability given
an arbitrary amount of entangled particles, can be very complex and even QMA-hard [49].

We analyzed different game strategies in Monte Carlo simulations. We would like
to point to the possibility of winning the game by exploiting systematic biases in the
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generation of question regimes. In such a situation, Alice and Bob can have a good chance
of producing S1 values substantially above 2 without entangled particles. Therefore, when
the security of quantum communication is based on the observed violations of CSHS
inequalities, it is important to check the question regimes for systematic biases.
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