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Abstract: Quantum secret sharing (QSS) is an important branch of quantum cryptography. Identity
authentication is a significant means to achieve information protection, which can effectively confirm
the identity information of both communication parties. Due to the importance of information
security, more and more communications require identity authentication. We propose a d-level
(t, n) threshold QSS scheme in which both sides of the communication use mutually unbiased bases
for mutual identity authentication. In the secret recovery phase, the sharing of secrets that only
the participant holds will not be disclosed or transmitted. Therefore, external eavesdroppers will
not get any information about secrets at this phase. This protocol is more secure, effective, and
practical. Security analysis shows that this scheme can effectively resist intercept–resend attacks,
entangle–measure attacks, collusion attacks, and forgery attacks.

Keywords: quantum secret sharing; identity authentication; mutually unbiased bases;
(t, n) threshold scheme

1. Introduction

Secret sharing is an important research field in cryptography. It has important ap-
plications in many aspects, such as network communication, signature checking, and
identity verification. In 1979, Shamir [1] proposed the first secret-sharing protocol based
on Lagrange interpolation formula. With the rapid development of quantum technology,
quantum secret sharing (QSS) has also made great progress. In 1999, Hillery et al. [2]
proposed the first QSS protocol using the Greenberger–Horne–Zeilinger (GHZ) state. Since
then, more and more relatively complete QSS protocols [3–17] have been proposed by
scholars. Like the (n, n) threshold QSS protocol [3–5], the secret is divided into n parts.
Only n participants can cooperate to recover the secret. However, due to practical needs
and consideration of flexibility, some (t, n) threshold QSS protocols [6–17] have received
great attention. The secret is also divided into n parts, but t participants can recover the
secret and fewer than t participants cannot recover the secret. In addition, to detect the ex-
istence of external attackers and check the integrity of internal participants, some verifiable
QSS protocols [11–17] have been proposed. They mainly include message authentication
(verify the correctness of the message) and identity authentication (verify the correctness of
identity). Identity authentication is a systematic process to verify the identity of legitimate
users, components and devices. Therefore, it is the security guarantee of various encryption
tasks. In the identity authentication scheme, the sender registers the secret information
as his identity information in the receiver’s database before communication. Afterwards,
the sender proves the secret identification information to the receiver, that is, his identity
information. The receiver can prove that the sender is a legitimate user before establishing
the communication channel by using an authentication scheme, so he avoids the occur-
rence of an illegal sender. In quantum cryptography, quantum secret sharing [15–17],
quantum key distribution [18–21], quantum secure direct communication [22,23], etc., all
require identity authentication. In real life, the importance of identity authentication is also
reflected everywhere.
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In 2013, Yang et al. [3] constructed an QSS using entangled state and quantum Fourier
transform (QFT). In 2015, Tavakoli [4] proposed a d-level QSS based on GHZ state and mu-
tually unbiased bases. The above two schemes are (n, n) threshold. In 2017, Song et al. [7]
proposed a d-level (t, n) threshold QSS based on Shamir’s secret-sharing scheme and the
Lagrange interpolation formula. However, restricted by private secret shares, the scheme
is infeasible. In 2020, Sutradhar et al. [8] proposed an QSS without credible participants.
Nevertheless, in the actual process, the reconstructor needs to compare secrets and the hash
value of secrets, so the reconstructor must be trustworthy. In 2020, Mashhadi [9] pointed
out the problems in the protocol of Song et al. [7] and gave an improvement scheme. In this
improved protocol, each participant applies the inverse quantum Fourier transform (IQFT)
on its own particle. Then, each participant measures and publishes the measurement results.
At this time, everyone can recover the original secret, but there is no identity authentication
process in the transmission of quantum states, and we cannot guarantee that the corre-
sponding operation is performed by the corresponding participant. In 2021, Hu et al. [17]
proposed a dynamic QSS using GHZ state in a high-dimensional quantum system. In this
protocol, each participant performs corresponding unitary operations according to its own
measurement results.

In this paper, we overcome the above problems. The innovation of this article is to
improve [8] by combining relevant knowledge. We mainly add identity authentication
content to make the protocol more secure and complete. Our protocol is a d-level (t, n)
threshold scheme that both parties can be mutually verified. Each participant can act as
a reconstructor to recover the secret. When a participant wants to recover the secret, he
can cooperate with participants in an authorized subset to obtain the secret. The direct
communication parties will conduct mutual identity authentication through mutually
unbiased bases. After passing the authentication, other participants use direct product
operation on their own particles and auxiliary particle passed by the reconstructor. Then,
the reconstructor measures the final secret after performing the IQFT. Finally, he verifies
whether the correct secret is obtained by comparing the secret and the hash value of the
secret published by the dealer.

The rest of the article is organized as follows. In Section 2, we give the preliminary
knowledge needed for this article. In Section 3, we propose a (t, n) threshold quantum
secret sharing scheme with identity authentication. In Section 4, we give the correctness
proof of the agreement. In Section 5, we analyze the security of the protocol. In Section 6,
we compare and analyze this protocol with some previous protocols. In Section 7, we give
a specific example to better understand the protocol. In Section 8, we summarize the full
text and draw conclusions.

2. Preliminaries

In this section, we introduce some basic knowledge needed in this article, including
quantum measurement, mutually unbiased bases, QFT, IQFT, and CNOT operation.

2.1. Quantum Measurement

Quantum measurement can be described based on a set of measurement operators {Mi}.
These measurement operators satisfy the completeness equation:

∑
i

M†
i Mi=1. (1)

When the quantum state |ϕ〉 is measured, the probability that the result is i is:

p(m) = 〈ϕ|M†
i Mi|ϕ〉. (2)
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After measurement, the quantum state collapses as follows:

|ϕ〉′= Mi|ϕ〉√
〈ϕ|M†

i Mi|ϕ〉
. (3)

Therefore, quantum measurement will change the original state of the quantum state.

2.2. Mutually Unbiased Bases

Let d be an odd prime number and Zd be a finite field. Suppose V1 = {|ui〉}d
i=1,

V2 = {|vj〉}d
j=1 are two sets of standard orthogonal bases on d-dimensional Hilbert space.

If they satisfy:

|〈ui|vj〉| =
1√
d

. (4)

Then these two groups of bases are called mutually unbiased bases. If any two sets of
bases in V = {V1, V2, · · · , Vm} are mutually unbiased, V is called mutual unbiased bases
set. Additionally, there are at most d + 1 elements in set V. Specifically, the calculation base
{|z〉}, z ∈ Zd, is one of them. The remaining d groups can be expressed as:

|ej
l〉 =

1√
d

d−1

∑
z=0

ωz(l+jz)|z〉, (5)

where l, j ∈ {0, 1, · · · , d− 1}, ω = e
2πi

d , j represents the sequence of bases, and l represents
vector sequence in a set of bases. They satisfy the following relation:

|〈ej
l |e

j′

l′ 〉| =
1√
d

, j 6= j′. (6)

Additionally, among mutually unbiased bases, the following unitary operation makes them
transform each other:

Xd =
d−1

∑
u=0

ωu|u〉, Yd =
d−1

∑
u=0

ωu2 |u〉, (7)

let
Ux,y = Xx

dYy
d . (8)

We have
Ux,y|ej

l〉 = |e
j+y
l+x〉. (9)

2.3. QFT, IQFT

The QFT in the d-dimensional system can be expressed as follows:

F|x〉 = 1√
d

d−1

∑
y=0

ωx·y|y〉. (10)

where ω = e
2πi

d , x, y ∈ Zd. Similarly, the IQFT can be expressed as:

F−1|x〉 = 1√
d

d−1

∑
y=0

ω−x·y|y〉. (11)
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It is easy to know that both discrete QFT and discrete IQFT are unitary transformations. In
addition, by

d−1

∑
q=0

ωsq =


0, s 6= 0 mod d,

d, s = 0 mod d,

(12)

We can obtain
F−1(F|x〉) = |x〉. (13)

2.4. CNOT Operation

CNOT is a two-qubit gate. In the d-dimensional system, it can be expressed as follows:

CNOT(|x1〉, |x2〉) = (|x1〉, |x1 ⊕ x2〉), (14)

where |x1〉 is control bit, |x2〉 is the target bit, x1, x2 ∈ Zd.

3. Proposed Protocol

In this section, we propose a quantum secret-sharing scheme with d-level and
(t, n) threshold. Participants can verify each other mutually. Dealer Alice distributes
secret shares among the set of participants B = {Bob1,Bob2,· · · ,Bobn}. At least t participants
can recover the secret. As the participants mutually verify, the protocol is more secure and
practical. The entire scheme consists of three stages, namely the secret-sharing stage, iden-
tity authentication stage, and secret-recovery stage. The continuous identity authentication
is included in the entire secret-recovery phase. Here, we use Figure 1 to briefly represent
the entire process. The specific scheme of the protocol is shown below.

Figure 1. The process of this scheme.

3.1. Secret-Sharing Phase

In this phase, The dealer Alice performs the following operations:
(I) Alice selects a binary symmetric polynomial F(x, y) of degree (t − 1) in the Zd.

The (t− 1) degree polynomial can be defined as:

F(x, y) = S + a10x + a01y + a20x2 + a02y2 + a11xy + · · ·+ at−1,t−1xt−1yt−1, (15)
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where Zd is a finite field, S is secret, d is an odd prime number, coefficients aij ∈ Zd, aij = aji,
i, j ∈ {0, 1, · · · , t− 1}.

(II) Alice calculates polynomials F(xi,y) (i = 1, 2, · · · , n), respectively, by (15) and
sends them to the corresponding participants Bobi through a secure classical channel,
where xi ∈ Zd is the public identity information of the corresponding participant Bobi with
xi 6= xj for i 6= j.

(III) According to the characteristics of binary symmetric polynomials, we define the
following two groups of constants:

ki,j = F(xi, xj) = F(xj, xi) = k j,i, (16)

ski,j = F(xi, xj) = F(xj, xi) = vk j,i. (17)

Remark 1. Here, these four values are the same. However, in the following text, different symbols
have different meanings. ki,j and k j,i represent the symmetry keys during encryption and decryption.
ski,j and vk j,i represent one’s own identity information, used to indicate one’s identity, which can be
understood as one’s own signature information.

(IV) Alice chooses a one-way hash function h(). Then, Alice discloses the hash algo-
rithm and hash value H = h(S) of the secret S.

3.2. Secret-Recovery Phase

Suppose Bob1 (reconstructor) wants to get the secret S. Then at least another
t − 1 participants need to be selected to form a qualified subset with him to jointly re-
cover the secret S. Let us suppose B1 = {Bob1, Bob2, · · · , Bobt} is a qualified subset from all
the qualified subsets. Each participant in the set has the ability to independently produce
a single photon. The corresponding participant will perform the following processes to
recover the secret:

(I) Each participant Bobi, i = (1, 2, · · · , t), calculates the shadow (Si) of the share
according to own polynomial and prepares computational basis state |Si〉 with d-level.

Si = F(xi, 0)
t

∏
j 6=i

xj

xj − xi
mod d. (18)

Remark 2. Here,
1

xj − xi
is the modular multiplicative inverse of the integer (xj − xi). According

to the recent literature, this calculation has a fast calculation method. We will not expand here as
readers can refer to [24].

(II) Bob1 applies QFT on the computational basis state |S1〉 and gets the result |φ1〉.

|φ1〉 = QFT(|S1〉) =
1√
d

d−1

∑
k=0

ωS1k|k〉. (19)

(III) Bob1 again prepares computational basis state |0〉 with d-level and performs
CNOT operation according to |φ1〉 and |0〉. |φ1〉 is the control bit and |0〉 is the target bit.
When the operation is completed, Bob1 obtains the entangled state |φ2〉.

|φ2〉 = CNOT(|φ1〉, |0〉) = CNOT(
1√
d

d−1

∑
k=0

ωS1k|k〉, |0〉) = 1√
d

d−1

∑
k=0

ωS1k|k〉H |k〉T . (20)

The subscript H and T here are used to distinguish two particles.
(IV) Bob1 and Bob2 mutually conduct identity authentication:
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Step 1. Bob1 prepares a d-level initial quantum state |e0
0〉, two random numbers c1, p1,

and opens p1. Bob1 performs the unitary transformation Up1,c1 on the initial quantum state
and obtains a new quantum state |Ψ1〉 = Up1,c1 |e0

0〉 = |e
c1
p1〉. Then according to own polyno-

mial F(x1, y), Bob1 can obtain sk1,2 = F(x1, x2). Subsequently, Bob1 performs the unitary
transformation Usk1,2,0 on |Ψ1〉 and obtains |Ψ1,2〉 = |ec1

p1+sk1,2
〉. Bob1 again determines a

random moment t1,2. Lastly, Bob1 sends messages Ek1,2(c1, t1,2), which has been encrypted,
and |Ψ1,2〉 to Bob2 through secure classical channel and quantum channel, respectively.

Step 2. After Bob2 receives the quantum state and encrypted information, he first
calculates vk2,1 = F(x2, x1) according to the own polynomial F(x2, y). Afterwards Bob2
performs the unitary transformation U−vk2,1,0 on |Ψ1,2〉 and obtains |Ψ1〉′ = |ec1

p1+sk1,2−vk2,1
〉.

Then, Bob2 obtains a number pair (c1, t1,2) = Dk2,1(Ek1,2(c1, t1,2)) by decrypting the received
classic information. Finally, Bob2 uses the basis {|ec1

l 〉}(l ∈ Zd) to measure |Ψ1〉′ to obtain
the measurement result (p1)

′ and compares (p1)
′ with the published random number p1.

If (p1)
′ = p1; then, Bob2 considers that all the information comes from Bob1. The identity

information of Bob1 is authenticated. Otherwise, Bob2 considers that the message does not
come from Bob1 or is destroyed in the middle of the process and terminates this agreement.

Step 3. After Bob2 confirms that the message originated from Bob1, he also prepares
a d-level initial quantum state |e0

0〉, two random numbers c2, p2, and opens p2. Then,
Bob2 performs the unitary transformation Up2,c2 on |e0

0〉 and obtains a new quantum state
|Ψ2,1〉 = Up2,c2 |e0

0〉 = |e
c2
p2〉. Bob2 decides another moment t2,1 and sends encrypted message

Ek2,1(c2, t2,1) to Bob1. Lastly, Bob2 is ready to send |Ψ2,1〉 to Bob1 at moment t2,1.
Step 4. Bob1 decrypts the encrypted classical information to obtain a random number

pair (c2, t2,1) = Dk1,2(Ek2,1(c2, t2,1)). After receiving the message particle from Bob2 at mo-
ment t2,1, Bob1 selects the basis {|ec2

l 〉}(l ∈ Zd) to measure |Ψ2,1〉 to obtain the measurement
result (p2)

′ and compares (p2)
′ with the published random number p2. If (p2)

′ = p2, Bob1
believes that all the information comes from Bob2 and Bob2 has received an own message.
So, Bob1 will send the auxiliary state |k〉T in his own hand to Bob2 through the secure
quantum channel at moment t1,2. The entire identity authentication process is shown
in Figure 2 below:

Remark 3. Here, secure quantum channel refers to a quantum channel that is not subject to
external interference. That is, an authenticated quantum channel. Participants can engage in
quantum direct communication.

Figure 2. Identity authentication process between participants in this scheme.
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(V) After Bob2 receives |k〉T at moment t1,2, he treats |k〉T as the control bit and |S2〉
as the target bit. Then, Bob2 performs controlled black box operation Ck on these two
quantum states, where Ck can be expressed as:

Ck : |k〉T |S2〉 → |k〉TUk|S2〉. (21)

U is a linear transformation and it satisfies U|S2〉 = ωS2 |S2〉. That is to say, |S2〉 is an
eigenvector of U with an eigenvalue of ωS2 . After performing the controlled black box
operation, Bob2 next conducts the direct product operation of |S2〉 and |k〉T . Then, the
whole quantum state system becomes |φ3〉.

|φ3〉 = (I ⊗ I ⊗ Ck)(
1√
d

d−1

∑
k=0

ωS1k|k〉H |k〉T |S2〉)

=
1√
d

d−1

∑
k=0

ωS1k|k〉H |k〉TUk|S2〉

=
1√
d

d−1

∑
k=0

ωS1k|k〉H |k〉TωS2k|S2〉

=
1√
d

d−1

∑
k=0

ω(S1+S2)k|k〉H |k〉T |S2〉.

(22)

(VI) Each participant, Bobi and Bobi+1, repeat the above mutual authentication and
operation process of Bob1 and Bob2. When Bob2 and Bob3 complete mutual authentication,
Bob2 will send the auxiliary state |k〉T in his own hand to Bob3 through the secure quantum
channel at moment t2,3. Bob3 also performs a similar controlled black box operation first.
Then, he performs the direct product operation on his quantum state |S3〉 and the whole
quantum system, and so on, until the last participant Bobt completes the direct product
operation. At this time, the whole quantum system becomes |φ4〉.

|φ4〉 =
1√
d

d−1

∑
k=0

ω
(

t
∑

i=1
Si)k
|k〉H |k〉T |S2〉|S3〉 · · · |St〉. (23)

(VII) When Bobt completes the direct product operation, Bobt completes the identity
authentication process with Bob1 in the same way. After completing the authentication oper-
ation, Bobt retransmits the auxiliary state |k〉T back to Bob1 through a secure quantum chan-
nel. After Bob1 receives the auxiliary state |k〉T again, he performs CNOT operation on
the two particles in his hand, where |k〉H is control bit and |k〉T is target bit. At this time,
the whole quantum system becomes |φ5〉.

|φ5〉 = (CNOT(
1√
d

d−1

∑
k=0

ω
(

t
∑

i=1
Si)k
|k〉H |k〉T))|S2〉|S3〉 · · · |St〉

=
1√
d

d−1

∑
k=0

ω
(

t
∑

i=1
Si)k
|k〉H |0〉T |S2〉|S3〉 · · · |St〉.

(24)

(VIII) Bob1 uses computational basis to measure the quantum state |k〉T which has
been handled by the CNOT operation. If the measurement result is |0〉, Bob1 believes
that his auxiliary particles have not been destroyed or replaced. Bob1 will continue to
perform the following steps. Otherwise Bob1 has reason to believe that the auxiliary state
is damaged or replaced during the transmission process, thus ending the entire agreement.
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(IX) Bob1 applies IQFT on his first quantum state |k〉H and measures the output to

obtain the final secret S′ =
t

∑
i=1

Si mod d.

(X) Bob1 calculates H′ = h(S′) according to hash function h() released by Alice and
compares it with public H = h(S). If H′ = H, S′, the secret obtained by Bob1 is the real
secret. If not, Bob1 has reason to believe that there is at least one dishonest participant, thus
terminating the agreement.

4. Correctness Analysis

In this section, we show the correctness of the protocol in the secret recovery phase
through two theorems.

Theorem 1. The sum of t shares of participants is the secret to be recovered.

Proof. According to the Lagrange interpolation formula, we have

t

∑
i=1

Si mod d = F(x1, 0)
t

∏
j=2

xj

xj − x1
+ · · ·+ F(xt, 0)

t−1

∏
j=1

xj

xj − xt
mod d

= F(0, 0)

= S.

(25)

Theorem 2. When Bob1 applies the IQFT on the first quantum state |k〉H in his hand and measures
the output result, he could gobtain the secret S.

Proof.

IQFT⊗ I(
1√
d

d−1

∑
k=0

ω
(

t
∑

i=1
Si)k
|k〉H |0〉T)

=(
1√
d

d−1

∑
k=0

ω
(

t
∑

i=1
Si)k

IQFT|k〉H)|0〉T

=(
1√
d

d−1

∑
k=0

ω
(

t
∑

i=1
Si)k

(
1√
d

d−1

∑
l=0

ω−lk)|l〉H)|0〉T

=(
1
d

d−1

∑
k=0

d−1

∑
l=0

ω
(

t
∑

i=1
Si−l)k

)|0〉T

=(
1
d

d−1

∑
k=0
|

t

∑
i=1

Si mod d〉H +
1
d

d−1

∑
l=0,l 6=

t
∑

i=1
Si

(
d−1

∑
k=0

ω
(

t
∑

i=1
Si−l)k

)|l〉H)|0〉T

=(|
t

∑
i=1

Si mod d〉H +
1
d

d−1

∑
l=0,l 6=

t
∑

i=1
Si

0|l〉H)|0〉T

=|
t

∑
i=1

Si mod d〉H |0〉T

=|F(0, 0)〉H |0〉T
=|S〉H |0〉T .

(26)
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5. Security Analysis

In this section, we analyze the security of our scheme against quantum attacks [25–29].

5.1. Intercept–Resend Attack

Suppose that there is an eavesdropper, Eve, who wants to steal secret informa-
tion by performing an intercept–resend attack. When Bobi communicates with Bobi+1,
there will be three quantum states interacting through the quantum channel. They are
|Ψi,i+1〉 = |e

ci
pi+ski,i+1

〉, |Ψi+1,i〉 = |e
ci+1
pi+1〉, and auxiliary state |k〉T . When Eve intercepts

|Ψi,i+1〉 and |Ψi+1,i〉, she needs to obtain information by measuring, but Eve does not know
the measurement basis ci and ci+1. If Eve arbitrarily chooses a set of bases to measure,
the probability of success is 1

d when d → ∞, 1
d → 0. Therefore, the possibility of success

is negligible. Even if Eve succeeds, |Ψi,i+1〉 and |Ψi+1,i〉 are also just the quantum states
needed for Bobi and Bobi+1 to verify their identities. These two quantum states have no
information about secrets. As for auxiliary state |k〉T , it is only the control bit in the secret
recovery process and also has no information about secrets. Therefore, the intercept–resend
attack is not successful.

5.2. Entangle–Measure Attack

In this attack, the eavesdropper Eve prepares an auxiliary state |e〉. By using uni-
tary transformation to entangle the auxiliary state |e〉 onto the transmission particle, Eve
measures the auxiliary state and compares it with the original result to obtain relevant
information about the secret. In our scheme, only particle |k〉T is transferred between
participants in the secret recovery phase. Therefore, suppose that when Bob1 transfers
particle |k〉T to Bob2, Eve performs the d-level CNOT operation to entangle the auxiliary
state |e〉 to the particle |k〉T . At this time, |φ2〉 becomes |φ2〉′.

|φ2〉′ = (CNOT(|k〉T , |e〉))|φ2〉 =
1√
d

d−1

∑
k=0

ωS1k|k〉H |k〉T |k⊕ e〉. (27)

When Bob2 completes its own operation and transfers particle |k〉T to Bob3, Eve performs
d-level CNOT operation again. Where particle |k〉T is the control bit and auxiliary state
|k + e〉 is target bit. At this time, |φ3〉 becomes |φ3〉′.

|φ3〉′ = (CNOT(|k〉T , |k⊕ e〉))|φ3〉

=
1√
d

d−1

∑
k=0

ω(S1+S2)k|k〉H |k〉T |S2〉|k⊕ k⊕ e〉

=
1√
d

d−1

∑
k=0

ω(S1+S2)k|k〉H |k〉T |S2〉|e〉.

(28)

Next, Eve obtains the result e by measuring the auxiliary state particle. She concludes
that the particles transmitted between participants are the same. The particle |k〉T has no
information about sharing the secret. She cannot obtain any information about the secret.
Therefore, the entangle–measure attack is not feasible.

5.3. Collusion Attack

In the collusion attack, some collusive participants want to obtain information about
others’ sharing of secrets through cooperation. Then, they can obtain the original secret.
In our protocol, the sharing of secrets is calculated by each participant Bobi through the
own share polynomial F(xi, y). Each participant only knows his own share. In addition,
the sharing of secrets will not be disclosed or transferred to other participants. As a
consequence, it is impossible for participants to obtain the others’ sharing of secrets. So
collusive attack is not feasible.
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5.4. Forgery Attack

Suppose the participant Bobi wants to perform a forgery attack. Then, in the identity
authentication phase, to prove his identity to Bobi−1 and Bobi+1, Bobi must use the correct
authentication information. He cannot use forged information, or the agreement will end
early. In the secret-recovery phase, on the one hand, if Bobi forges an auxiliary state |k〉T ′
and transmits it to Bobi+1, then the measurement result of Bob1 in (VIII) will not be |0〉.
Bob1 believes that the auxiliary state has been damaged and terminates the agreement
in advance. On the other hand, if Bobi uses his sharing of Si to forge a false computational
basis state |Si〉′, Bob1 will get the wrong secret S′ eventually. By comparing h(S′) 6= h(S),
Bob1 believes that at least one participant is dishonest and ends the agreement. Therefore,
our protocol can resist forgery attacks.

6. Scheme Comparison

In this section, we analyze the quantum resources needed by our protocol and compare
it with some previous protocols.

The protocol of Yang et al. [3] operates in d-dimensional space; it is a (n, n) threshold
scheme. The scheme needs (n − 1) message particles and performs n number of QFT
operations and n number of measure operations. It uses fewer quantum resources, but the
scheme is not flexible enough. This scheme can resist any computational attack, but it
cannot resist collusion attacks.

The protocol of Song et al. [7] operates in d-dimensional space, it is a (t, n) threshold
scheme. The secret reconstructor prepares t message particles and distributes (t− 1) num-
ber of them to the other participants. The reconstructor starts with an QFT. Until the other
participants complete the operation, the reconstructor performs an IQFT and measures
particles to obtain the secret. Finally, the reconstructor verifies it through the hash function.
This protocol can resist various common attacks. However, after some calculation and
analysis, due to the mutual entanglement between particles, simple IQFT cannot recover
the secret.

The protocol of Sutradhar et al. [8] is d level with (t, n) threshold. Using the Lagrange
interpolation formula, the reconstructor first applies QFT to a particle. After each par-
ticipant adds its share to the whole recovery process, the reconstructor uses the IQFT to
recover the secret and measures to obtain the secret. The whole secret recovery process
is repeated twice using two polynomials to restore the secret and the hash value of the
secret, respectively. Through this method, the reconstructor can verify the correctness of
the message. However, the protocol must require a trusted reconstructor, so the protocol
can not resist collusion attack and can resist other common attacks.

The protocol of Mashhadi et al. [9] is an improvement to the protocol of Song et al. [7].
The protocol points out the inadequacy of its entanglement and proposes an improved
scheme. Since the IQFT performed by the reconstructor cannot obtain the secret, t par-
ticipants are required to perform IQFT in the entanglement system and summarize the
measurement results to obtain the initial secret. Therefore, the protocol cannot resist
intercept–resend attacks and collusion attacks.

Our protocol is also d level with (t, n) threshold. The dealer uses the binary symmetric
polynomial to distribute the share polynomial. Each participant can use its own share
polynomial to calculate the secret share and complete the identity authentication process.
The protocol uses 2t number of message particles to complete the mutual authentication
process of both parties. Finally, the reconstructor restores the secret by performing IQFT
and obtains the secret through measurement. Although our protocol uses more quantum re-
sources, every step is necessary. The identity authentication process will make the protocol
more secure and reliable. Our protocol can also resist some attacks well. The comparison
of these protocols is shown in Table 1 below.
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Table 1. Comparison of parameters among our protocol and previous protocols.

Protocols Yang [3] Song [7] Sutradhar [8] Mashhadi [9] Our

(t, n)threshold N Y Y Y Y
QFT n 1 2 1 1
IQFT - 1 2 t 1

measurement
operation n 1 2 t 2t + 1

dimensional space d d d d d
message particle n− 1 t t + 1 t 3t + 1

hash function 2 2 2 2 2
intercept–resend - Y Y N Y

entangle–measure - Y Y Y Y
collusive attack N Y N N Y
forgery attack - Y Y Y Y

identity authentication N N N N Y

7. Example

In this section, in order to better understand our protocol, we give a quantum secret
sharing scheme with (4,6) threshold. In this protocol, t = 4, n = 6, d = 17, S = 2.

7.1. Secret-Sharing Phase

Alice performs the following operations:
(I) Alice selects a binary symmetric polynomial F(x, y) of degree 3 in the Z17.

F(x, y) =2 + 7x + 7y + 3x2 + 3y2 + 9xy + 4x3 + 4y3 + 5x2y + 5xy2

+ 10x3y + 10xy3 + 8x2y2 + 3x3y2 + 3x2y3 + 15x3y3,
(29)

where secret S = 2.
(II) Alice calculates polynomials F(xi,y) (i = 1, 2, · · · , 6), respectively, by Equation (29)

and sends them to the corresponding participants Bobi through a secure channel, where
xi = i. Here, the polynomial obtained by each Bobi is:

Bob1 : F(1, y) = 16 + 14y + 2y2 + 15y3;

Bob2 : F(2, y) = 9 + 6y + y2 + 3y3;

Bob3 : F(3, y) = 5 + 9y + y2 + 7y3;

Bob4 : F(4, y) = 11 + 15y + 3y2 + 15y3;

Bob5 : F(5, y) = 16y + 8y2 + 15y3;

Bob6 : F(6, y) = 14 + 4y + 12y3.

(30)

(III) According to the characteristics of binary symmetric polynomial, constants have
the following relationship: ski,j = vk j,i = ki,j = k j,i = F(xi, xj) = F(xj, xi). According to the
selected binary symmetric polynomial and the identity information of each participant, we
can obtain:

sk1,2 = vk2,1 = k1,2 = k2,1 = F(x1, x2) = F(x2, x1) = 2;

sk2,3 = vk3,2 = k2,3 = k3,2 = F(x2, x3) = F(x3, x2) = 15;

sk3,4 = vk4,3 = k3,4 = k4,3 = F(x3, x4) = F(x4, x3) = 12;

sk4,1 = vk1,4 = k4,1 = k1,4 = F(x4, x1) = F(x1, x4) = 10.

(31)

(IV) Alice chooses a one-way hash function h(). Then, Alice discloses the hash algo-
rithm and hash value H = h(2) of the secret S = 2.
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7.2. Secret-Recovery Phase

Suppose Bob1(reconstructor) wants to get the secret S. Bob1 chooses Bob2, Bob3, and
Bob4 to help him recover the secret. Each participant has the ability to independently
produce a single photon.

(I) Each participant Bobi, i = (1, 2, 3, 4), calculates the shadow (Si) of the share
according to the own polynomial F(xi, y).

Bob1 : S1 = F(1, 0) · 2
2− 1

· 3
3− 1

· 4
4− 1

mod 17 = 13. (32)

Similarly, S2 = 14, S3 = 3, S4 = 6. Then, they separately prepare a 17-level computational
basis state |13〉, |14〉, |3〉, and |6〉.

(II) Bob1 applies QFT on the computational basis state |13〉 and obtains the result |φ1〉.

|φ1〉 = QFT(|13〉) = 1√
17

16

∑
k=0

ω13k|k〉. (33)

(III) Bob1 again prepares computational basis state |0〉 with 17-levels and performs
CNOT operation according to |φ1〉 and |0〉. |φ1〉 is the control bit and |0〉 is the target bit.
When the operation is completed, Bob1 obtains the entangled state |φ2〉.

|φ2〉 = CNOT(|φ1〉, |0〉) = CNOT(
1√
17

16

∑
k=0

ω13k|k〉, |0〉) = 1√
17

16

∑
k=0

ω13k|k〉H |k〉T . (34)

(IV) Bob1 and Bob2 mutually conduct identity authentication:
Step 1. Bob1 prepares a 17-level initial quantum state |e0

0〉, 2 random numbers c1 = 6,
p1 = 8, and opens p1. Bob1 performs the unitary transformation Up1,c1 = U8,6 on the initial
quantum state and obtains a new quantum state |Ψ1〉 = U8,6|e0

0〉 = |e6
8〉. Then, according

to the own polynomial F(1, y), Bob1 can obtain sk1,2 = F(1, 2) = 2. Subsequently, Bob1
performs the unitary transformation U2,0 on |Ψ1〉 and obtains |Ψ1,2〉 = U2,0|e6

8〉 = |e6
10〉.

Bob1 again determines a random moment t1,2 = 9. Lastly, Bob1 sends message Ek1,2(6, 9),
which has been encrypted, and |Ψ1,2〉 to Bob2 through secure classical channel and quantum
channel, respectively.

Step 2. After Bob2 receives the quantum state and encrypted information, he first
calculates vk2,1 = F(2, 1) = 2 according to the own polynomial F(2, y). Afterwards, Bob2
performs the unitary transformation U−2,0 on |Ψ1,2〉 and obtains |Ψ1〉′ = U−2,0|e6

10〉 =
|e6

10−2〉 = |e6
8〉. Then, Bob2 obtains a number pair (6, 9) = Dk2,1(Ek1,2(6, )) by decrypting the

received classic information. Finally, Bob2 uses the basis {|e6
l 〉}(l ∈ Z17) to measure |Ψ1〉′

to obtain the measurement result (p1)
′ and compares (p1)

′ with the published random
number p1 = 8. If (p1)

′ = 8, then Bob2 considers that all the information comes from Bob1.
The identity information of Bob1 is authenticated. Otherwise, Bob2 considers that the mes-
sage does not come from Bob1 or is destroyed in the middle of the process and terminates
this agreement.

Step 3. After Bob2 confirms that the message originated from Bob1, he also prepares
a 17-level initial quantum state |e0

0〉, 2 random numbers c2 = 5, p2 = 12, and opens p2.
Then, Bob2 performs the unitary transformation Up2,c2 = U12,5 on |e0

0〉 and obtains a new
quantum state |Ψ2,1〉 = U12,5|e0

0〉 = |e5
12〉. Bob2 decides another moment t2,1 = 7 and sends

encrypted message Ek2,1(5, 7) to Bob1. Lastly, Bob2 is ready to send |Ψ2,1〉 to Bob1 at moment
t2,1 = 7.

Step 4. Bob1 decrypts the encrypted classical information to obtain a random num-
ber pair (5, 7) = Dk1,2(Ek2,1(5, 7)). After receiving the message particle from Bob2 at
moment t2,1 = 7, Bob1 selects the basis {|e5

l 〉}(l ∈ Z17) to measure |Ψ2,1〉 to obtain the
measurement result (p2)

′ and compares (p2)
′ with the published random number p2 = 12.

If (p2)
′ = p2 = 12, Bob1 believes that all the information comes from Bob2 and Bob2 has
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received an own message. So, Bob1 will send the auxiliary state |k〉T in his own hand to
Bob2 through the secure quantum channel at moment t1,2 = 9.

(V) After Bob2 receives |k〉T at moment t1,2 = 9, he treats |k〉T as the control bit and
|S2〉 = |14〉 as the target bit. He performs controlled black box operation Ck on these
two quantum states. After performing the controlled black box operation, Bob2 next conducts
the direct product operation on |S2〉 = |14〉 and |k〉T. Then the whole quantum state system
becomes |φ3〉.

|φ3〉 = (I ⊗ I ⊗ Ck)(
1√
17

16

∑
k=0

ω13k|k〉H |k〉T |14〉)

=
1√
17

16

∑
k=0

ω13k|k〉H |k〉TUk|14〉

=
1√
17

16

∑
k=0

ω13k|k〉H |k〉Tω14k|14〉

=
1√
17

16

∑
k=0

ω(13+14)k|k〉H |k〉T |14〉.

(35)

(VI) Each participant Bobi and Bobi+1 repeat the above mutual authentication and
operation process of Bob1 and Bob2. When Bob2 and Bob3 complete mutual authentication,
Bob2 will send the auxiliary state |k〉T in his own hand to Bob3 through the secure quantum
channel at moment t2,3 = 15. Bob3 also performs a similar controlled black box opera-
tion first. Then, he performs the direct product operation on his quantum state |S3〉 = |3〉
and the whole quantum system, and so on, until the last participant Bob4 completes the
direct product operation. At this time, the whole quantum system becomes |φ4〉.

|φ4〉 =
1√
17

16

∑
k=0

ω(13+14+3+6)k|k〉H |k〉T |14〉|3〉|6〉

=
1√
17

16

∑
k=0

ω2k|k〉H |k〉T |14〉|3〉|6〉.
(36)

(VII) When Bob4 completes the direct product operation, Bob4 completes the identity
authentication process with Bob1 in the same way. After completing the authentication
operation, Bob4 retransmits the auxiliary state |k〉T back to Bob1 through a secure quantum
channel. After Bob1 receives the auxiliary state |k〉T again, he performs a CNOT operation
on the two particles in his hand, where |k〉H is control bit and |k〉T is target bit. At this time,
the whole quantum system becomes |φ5〉.

|φ5〉 = (CNOT(
1√
17

16

∑
k=0

ω2k|k〉H |k〉T))|14〉|3〉|6〉

=
1√
17

16

∑
k=0

ω2k|k〉H |0〉T |14〉|3〉|6〉.
(37)

(VIII) Bob1 uses computational basis to measure the quantum state |k〉T which has
been handled by CNOT operation. If the measurement result is |0〉, Bob1 believes that his
auxiliary particles have not been destroyed or replaced. Bob1 will continue to perform the
following steps. Otherwise Bob1 has reason to believe that the auxiliary state is damaged
or replaced during the transmission process, thus ending the entire agreement.
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(IX) Bob1 applies IQFT on his first quantum state |k〉H and measures the output to
obtain the final secret S′ = 2.

IQFT⊗ I(
1√
17

16

∑
k=0

ω2k|k〉H |0〉T)

=(
1√
17

16

∑
k=0

ω2kIQFT|k〉H)|0〉T

=(
1√
17

16

∑
k=0

ω2k(
1√
17

16

∑
l=0

ω−lk)|l〉H)|0〉T

=(
1

17

16

∑
k=0

16

∑
l=0

ω(2−l)k|l〉H)|0〉T

=(
1

17

16

∑
k=0
|2〉H +

1
17

16

∑
l=0,l 6=2

(
16

∑
k=0

ω2−l)k)|l〉H)|0〉T

=(|2〉H +
1

17

16

∑
l=0,l 6=2

0|l〉H)|0〉T

=|2〉H |0〉T .

(38)

(X) Bob1 calculates H′ = h(2) according to hash function h() released by Alice and
compares with public H = h(S). If H′ = H, S′, the secret obtained by Bob1 is the real
secret. If not, Bob1 has reason to believe that there is at least one dishonest participant, thus
terminating the agreement.

8. Conclusions

In this article, using QFT, IQFT, mutually unbiased bases, and other relevant knowl-
edge, we propose a quantum secret-sharing scheme that both sides of the communication
can mutually verify the identity. Each participant holds his own share which will neither be
disclosed nor transferred. Only at the secret-recovery stage, each participant will directly
integrate his information into the whole quantum system, which avoids being stolen. Any
participant has reason to recover the secret and only the reconstructor obtains the secret
and is responsible for it. Since only t participants can recover the secret, the protocol is
more flexible and practical. After our analysis, the protocol can resist intercept–resend
attacks, entanglement–measurement attacks, collusion attacks, and forgery attacks, so it is
safe enough.
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