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Abstract: In this paper, we are concerned with polynomials that are orthogonal with respect to
the singularly perturbed Freud weight functions. By using Chen and Ismail’s ladder operator
approach, we derive the difference equations and differential-difference equations satisfied by the
recurrence coefficients. We also obtain the differential-difference equations and the second-order
differential equations for the orthogonal polynomials, with the coefficients all expressed in terms of
the recurrence coefficients.
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1. Introduction

Orthogonal polynomials are of great importance in Random Matrix Theory (RMT),
integrable systems, numerical analysis, representation theory, etc. It is well known that
classical orthogonal polynomials (Hermite, Laguerre and Jacobi) are orthogonal with
respect to a weight function w(x) that satisfies the Pearson equation

d
dx

(σ(x)w(x)) = τ(x)w(x), (1)

where σ(x) is a polynomial of degree ≤ 2 and τ(x) is a polynomial of degree 1. Semi-
classical orthogonal polynomials have a weight w(x) that satisfies the Pearson Equation (1),
where σ(x) and τ(x) are polynomials with deg σ(x) > 2 or deg τ(x) 6= 1 (see, e.g., ([1],
Section 1.1.1)).

A motivation of this paper is the fact that the recurrence coefficients of semi-classical
orthogonal polynomials are usually related to the solutions of the Painlevé equations. For
example, Chen and Its [2] proved that the recurrence coefficients of orthogonal polynomials
with a singularly perturbed Laguerre weight are expressed in terms of a particular Painlevé
III equation. Filipuk, Van Assche and Zhang [3] showed that the recurrence coefficients
of a class of semi-classical Laguerre polynomials are related to the Painlevé IV equation.
Basor, Chen and Ehrhardt [4] established the relation between the recurrence coefficients of
time-dependent Jacobi polynomials and the Painlevé V equation. See [5–11] and also the
recent monograph of Van Assche [1] for more information.

A Freud weight is a weight function of the form ([12], Section 18.32)

w(x) = exp(−Q(x)), x ∈ R,

where Q(x) is real, even, nonnegative and continuously differentiable. Of special interest
are the cases Q(x) = x2m, m = 1, 2, 3, . . .. In a seminal paper [9], Magnus studied the
relations between the Painlevé equations and many semi-classical orthogonal polynomials,
in which there are two examples of the one-parameter Freud weights:

w(x) = e−x4−tx2
, w(x) = e−x6−tx2

, x ∈ R,
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with t ∈ R a parameter, and Magnus obtained a series of differential and difference equa-
tions satisfied by the recurrence coefficients of the corresponding orthogonal polynomials.
See also [3,7,13,14].

In this paper, we consider the singularly perturbed Freud weight

w(x; t) := e−x2m− t
x2 , x ∈ R (2)

with t ≥ 0, m = 1, 2, 3, . . . . When t > 0, the factor e−
t

x2 induces an infinitely strong zero at
the origin. This is a semi-classical weight since it satisfies the Pearson Equation (1) with
σ(x) = x3, τ(x) = −2mx2m+2 + 3x2 + 2t.

Orthogonal polynomials with singularly perturbed Gaussian, Laguerre and Jacobi
weights have been studied in [2,5,15]. We mention that the weights with an essential singu-
larity at the origin, such as (2), play an important role in many mathematical and physical
problems, such as the study of statistics for zeros of the Riemann zeta function [16], the
calculation of finite temperature expectation values in integrable quantum field theory [17],
the study of the Wigner time-delay distribution [18–20], etc.

Let Pn(x; t), n = 0, 1, 2, . . . be the monic polynomials of degree n orthogonal with
respect to the weight (2), i.e.,∫ ∞

−∞
Pj(x; t)Pk(x; t)w(x; t)dx = hj(t)δjk, j, k = 0, 1, 2, . . . . (3)

Since the weight w(x; t) is even, we have Pn(−x; t) = (−1)nPn(x; t) ([21], p. 21). Specifically,
Pn(x; t) has the expansion

Pn(x; t) = xn + p(n, t)xn−2 + · · · , n = 0, 1, 2, . . . , (4)

where p(n, t) is the sub-leading coefficient of Pn(x; t), and p(0, t) = p(1, t) = 0.
It is well known that the orthogonal polynomials satisfy the three-term recurrence

relation ([21], pp. 18–21)

xPn(x; t) = Pn+1(x; t) + βn(t)Pn−1(x; t), (5)

with the initial conditions P0(x; t) = 1, β0(t)P−1(x; t) = 0. Using (3)–(5), we have two
alternative expressions of βn(t):

βn(t) = p(n, t)− p(n + 1, t),

βn(t) =
hn(t)

hn−1(t)
. (6)

See also [22,23] for more information about orthogonal polynomials.
From Chen and Ismail [24] (see also [25] and ([22], Chapter 3)), our orthogonal poly-

nomials satisfy the following differential-difference equations:

P′n(x) = −Bn(x)Pn(x) + βn An(x)Pn−1(x), (7)

P′n−1(x) = (Bn(x) + v′(x))Pn−1(x)− An−1(x)Pn(x), (8)

where v(x) := − ln w(x) is the potential and

An(x) :=
1
hn

∫ ∞

−∞

v′(x)− v′(y)
x− y

P2
n(y)w(y)dy, (9)

Bn(x) :=
1

hn−1

∫ ∞

−∞

v′(x)− v′(y)
x− y

Pn(y)Pn−1(y)w(y)dy. (10)
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Note that we do not display the t-dependence of many quantities for simplicity.
By the definitions (9) and (10) and with the aid of the three-term recurrence relation (5),

it can be shown that An(x) and Bn(x) satisfy the compatibility conditions

Bn+1(x) + Bn(x) = xAn(x)− v′(x), (11)

1 + x(Bn+1(x)− Bn(x)) = βn+1 An+1(x)− βn An−1(x). (12)

Multiplying by An(x) on both sides of (12) and using (11) to eliminate xAn(x), we have the
following identity after taking a telescopic sum:

B2
n(x) + v′(x)Bn(x) +

n−1

∑
j=0

Aj(x) = βn An(x)An−1(x). (13)

Finally, eliminating Pn−1(x) from (7) and (8), we obtain the second-order differential
equation satisfied by the orthogonal polynomials:

P′′n (x)−
(

v′(x) +
A′n(x)
An(x)

)
P′n(x) +

(
B′n(x)− Bn(x)

A′n(x)
An(x)

+
n−1

∑
j=0

Aj(x)

)
Pn(x) = 0, (14)

where use has been made of (13) to simplify the coefficient of Pn(x).
From the point of view of RMT, the weight (2) can be used to define a singularly

perturbed Freud unitary ensemble with probability distribution

p(x1, x2, . . . , xn)
n

∏
k=1

dxk =
1

Zn
∏

1≤i<j≤n
(xi − xj)

2
n

∏
k=1

e
−x2m

k −
t

x2
k dxk,

where Zn is the partition function and can be expressed as a Hankel determinant generated
by the weight (2) by using Andréief or Heine’s identity. See [26–28] for more information
about this topic. In this respect, there are many problems to be considered, including the
large n asymptoics of the partition function and the gap probabilities of the ensemble. We
will leave these problems to a future investigation. We mention that Claeys, Krasovsky
and Minakov [29] recently studied the asymptotics of the partition function and gap
probabilities of a certain Freud random matrix ensemble. In addition, construction of the
quadrature formulas related to the weight (2) as in [30] may be an interesting problem.

The main purpose of this paper is to derive the differential and difference equations
for the recurrence coefficient βn and also the orthogonal polynomials with respect to the
singularly perturbed Freud weight (2) by using Chen and Ismail’s method [24,25].

2. The m = 1 Case

In this section, we consider the simplest case (m = 1) and the weight function
now reads

w(x; t) = e−x2− t
x2 , x ∈ R

with t ≥ 0. It is also called the singularly perturbed Gaussian weight and has been studied
by Min, Lyu and Chen [15] (see also [31]). One of the main results in [15] is that the authors
establish the relation between the recurrence coefficient and the Painlevé III′ equation (see
Theorem 3 below). The following results in Lemma 1 and Lemma 2 are obtained in [15].

Lemma 1. For this problem, we have

An(x) = 2 +
Rn(t)

x2 , (15)
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Bn(x) =
rn(t)

x
+

[1− (−1)n]t
x3 , (16)

where Rn(t) and rn(t) are the auxiliary quantities defined by

Rn(t) :=
2t
hn

∫ ∞

−∞

1
y2 P2

n(y)w(y)dy,

rn(t) :=
2t

hn−1

∫ ∞

−∞

1
y3 Pn(y)Pn−1(y)w(y)dy.

Substituting (15) and (16) into (11) and (13), we have the following.

Lemma 2. The auxiliary quantities Rn(t), rn(t) and the recurrence coefficient βn satisfy the
following relations:

Rn(t) = rn+1(t) + rn(t), (17)

βn =
n + rn(t)

2
, (18)

−2(−1)nt rn(t) = βnRn(t)Rn−1(t), (19)

r2
n(t) + 2[1− (−1)n]t +

n−1

∑
j=0

Rj(t) = 2βnRn−1(t) + 2βnRn(t). (20)

Theorem 1. The recurrence coefficient βn satisfies the nonlinear second-order difference equation

βn(2βn+1 + 2βn − 2n− 1)(2βn + 2βn−1 − 2n + 1) + 2(−1)nt(2βn − n) = 0.

Proof. From (18) and (17), we have

rn(t) = 2βn − n, (21)

Rn(t) = 2βn+1 + 2βn − 2n− 1. (22)

Substituting (21) and (22) into (19), we establish the theorem.

Theorem 2. The recurrence coefficient βn satisfies the differential-difference equation

tβ′n(t) = βn(βn−1 − βn+1 + 1).

Proof. Taking a derivative with respect to t in the orthogonality condition

hn(t) =
∫ ∞

−∞
P2

n(x, t)e−x2− t
x2 dx, n = 0, 1, 2, . . . ,

we find
2t

d
dt

ln hn(t) = −Rn(t).

Using (6), we have
2tβ′n(t) = βn(Rn−1(t)− Rn(t)).

Substituting (22) into the above, we obtain the desired result.
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Theorem 3. The auxiliary quantity Rn(t), related to the recurrence coefficient βn by

Rn(t) = 2βn+1 + 2βn − 2n− 1,

satisfies a particular Painlevé III′ equation ([32], (2)):

R′′n(t) =
(R′n(t))2

Rn(t)
− R′n(t)

t
+

(2n + 1)R2
n(t)

4t2 − (−1)n

t
+

R3
n(t)
4t2 −

4
Rn(t)

.

Proof. This is obtained by eliminating rn(t) from the coupled Riccati equations satisfied by
Rn(t) and rn(t). See [15] for details.

Theorem 4. The orthogonal polynomials Pn(x) satisfy the differential-difference Equations (7) and (8), and
the second-order differential Equation (14) with

An(x) = 2 +
2βn+1 + 2βn − 2n− 1

x2 , Bn(x) =
2βn − n

x
+

[1− (−1)n]t
x3 , (23)

n−1

∑
j=0

Aj(x) = 2n +
4βn(βn+1 + βn + βn−1 − n)− n2 − 2[1− (−1)n]t

x2 , (24)

and v′(x) = 2x− 2t
x3 .

Proof. Substituting (22) and (21) into (15) and (16), we have the expressions of An(x) and
Bn(x) in (23). From (15) and (20), we find

n−1

∑
j=0

Aj(x) = 2n +
∑n−1

j=0 Rj(t)

x2 = 2n +
2βn

(
Rn−1(t) + Rn(t)

)
− r2

n(t)− 2[1− (−1)n]t
x2 .

Substituting (22) and (21) into the above, we obtain (24).

3. The m = 2 Case

In this section, we consider the m = 2 case and the weight function is

w(x; t) = e−x4− t
x2 , x ∈ R

with t ≥ 0. It is easy to see that the potential is

v(x) = − ln w(x) = x4 +
t

x2 .

It follows that
v′(x) = 4x3 − 2t

x3 ,

and
v′(x)− v′(y)

x− y
= 4x2 + 4xy + 4y2 +

2t
xy3 +

2t
x2y2 +

2t
x3y

. (25)

Lemma 3. We have

An(x) = 4x2 + 4(βn + βn+1) +
Rn(t)

x2 , (26)

Bn(x) = 4xβn +
rn(t)

x
+

[1− (−1)n]t
x3 , (27)
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where Rn(t) and rn(t) are the auxiliary quantities given by

Rn(t) :=
2t
hn

∫ ∞

−∞

1
y2 P2

n(y)w(y)dy,

rn(t) :=
2t

hn−1

∫ ∞

−∞

1
y3 Pn(y)Pn−1(y)w(y)dy.

Proof. Substituting (25) into the definition of An(x) in (9) and using the parity of the
integrand, we obtain

An(x) = 4x2 +
4
hn

∫ ∞

−∞
y2P2

n(y)w(y)dy +
2t

x2hn

∫ ∞

−∞

1
y2 P2

n(y)w(y)dy. (28)

By the three-term recurrence relation (5), we have

y2P2
n(y) = (Pn+1(y) + βnPn−1(y))2 = P2

n+1(y) + β2
nP2

n−1(y) + 2βnPn+1(y)Pn−1(y).

It follows that
1
hn

∫ ∞

−∞
y2P2

n(y)w(y)dy = βn + βn+1, (29)

where use has been made of (6). Inserting (29) into (28) gives (26).
Similarly, substituting (25) into the definition of Bn(x) in (10), we have

Bn(x) = 4xβn +
2t

xhn−1

∫ ∞

−∞

1
y3 Pn(y)Pn−1(y)w(y)dy +

2t
x3hn−1

∫ ∞

−∞

1
y

Pn(y)Pn−1(y)w(y)dy.

It is easy to see that

1
hn−1

∫ ∞

−∞

1
y

Pn(y)Pn−1(y)w(y)dy =

{
0, n = 0, 2, 4, . . . ,

1, n = 1, 3, 5, . . .

=
1− (−1)n

2
. (30)

Then, we arrive at (27). The proof is complete.

Theorem 5. The recurrence coefficient βn satisfies the nonlinear fourth-order difference equation

βn
[
4βn−2βn−1 + 4(βn−1 + βn)

2 + 4βnβn+1 − 2n + 1
][

4βn−1βn + 4(βn + βn+1)
2 + 4βn+1βn+2 − 2n− 1

]
+2(−1)nt

[
4βn(βn−1 + βn + βn+1)− n

]
= 0. (31)

Proof. Substituting (26) and (27) into (11), we find

Rn(t) = rn(t) + rn+1(t). (32)

Similarly, substituting (26) and (27) into (13), we obtain the following four identities:

n + rn(t)− 4βn(βn−1 + βn + βn+1) = 0, (33)

βnRn−1(t)Rn(t) + 2(−1)ntrn(t) = 0, (34)

r2
n(t)− 8(−1)ntβn − 4βn(βn−1 + βn)Rn(t)− 4βn(βn + βn+1)Rn−1(t) +

n−1

∑
j=0

Rj(t) = 0, (35)
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[1− (−1)n]t + 2βnrn(t)− βn(Rn−1(t) + Rn(t))− 4βn(βn−1 + βn)(βn + βn+1) +
n−1

∑
j=0

(β j + β j+1) = 0. (36)

From (33) and (32), we can express rn(t) and Rn(t) in terms of the recurrence coeffi-
cient βn:

rn(t) = 4βn(βn−1 + βn + βn+1)− n, (37)

Rn(t) = 4βn−1βn + 4(βn + βn+1)
2 + 4βn+1βn+2 − 2n− 1. (38)

Substituting (37) and (38) into (34), we obtain (31).

Theorem 6. The recurrence coefficient βn satisfies the differential-difference equation

tβ′n(t) = βn
[
1 + 2βn−1(βn−2 + βn−1 + βn)− 2βn+1(βn + βn+1 + βn+2)

]
.

Proof. Taking a derivative with respect to t in the equality

hn(t) =
∫ ∞

−∞
P2

n(x; t)e−x4− t
x2 dx,

we find
2t

d
dt

ln hn(t) = −Rn(t)

and then
2tβ′n(t) = βn(Rn−1(t)− Rn(t)).

Substituting (38) into the above gives the desired result.

Theorem 7. The orthogonal polynomials Pn(x) satisfy the differential-difference Equations (7) and (8), and
the second-order differential Equation (14) with

An(x) = 4x2 + 4(βn + βn+1) +
4βn−1βn + 4(βn + βn+1)

2 + 4βn+1βn+2 − 2n− 1
x2 , (39)

Bn(x) = 4xβn +
4βn(βn−1 + βn + βn+1)− n

x
+

[1− (−1)n]t
x3 , (40)

n−1

∑
j=0

Aj(x) = 4nx2 + 16βn

[
βn−1(βn−2 + βn−1 + 2βn + βn+1) + (βn + βn+1)

2 + βn+1βn+2

]
−8nβn − 4[1− (−1)n]t− [4βn(βn−1 + βn + βn+1)− n]2 − 8(−1)ntβn

x2

+
4βn(βn−1 + βn)

[
4βn−1βn + 4(βn + βn+1)

2 + 4βn+1βn+2 − 2n− 1
]

x2

+
4βn(βn + βn+1)

[
4βn−2βn−1 + 4(βn−1 + βn)2 + 4βnβn+1 − 2n + 1

]
x2 , (41)

and v′(x) = 4x3 − 2t
x3 .

Proof. Substituting (38) and (37) into (26) and (27), we obtain (39) and (40), respectively.
From (26), we have

n−1

∑
j=0

Aj(x) = 4nx2 + 4
n−1

∑
j=0

(β j + β j+1) +
∑n−1

j=0 Rj(t)

x2 . (42)
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Using (36) and (35), we find
n−1

∑
j=0

(β j + β j+1) = −[1− (−1)n]t− 2βnrn(t) + βn(Rn−1(t) + Rn(t)) + 4βn(βn−1 + βn)(βn + βn+1), (43)

n−1

∑
j=0

Rj(t) = −r2
n(t) + 8(−1)ntβn + 4βn(βn−1 + βn)Rn(t) + 4βn(βn + βn+1)Rn−1(t). (44)

Inserting (43) and (44) into (42), and eliminating Rn(t), Rn−1(t) and rn(t) by (38) and (37),
we obtain (41). This completes the proof.

In the m = 2 case, we find that the expressions of An(x) and Bn(x) include the terms
of the recurrence coefficient βn, which is different from the m = 1 case. This leads to the
result that βn and rn(t) do not have a simple relation as in the m = 1 case by using the
compatibility conditions. Thus, we cannot derive the coupled Riccati equations for the
auxiliary quantities Rn(t) and rn(t), and the second-order differential equations for Rn(t)
and rn(t). Therefore, the relation between our problem and the Painlevé equations is not
clear in the m = 2 case. A similar phenomenon arises in the next m = 3 case; see also [33].

4. The m = 3 Case

In this section, we consider the weight function

w(x; t) = e−x6− t
x2 , x ∈ R (45)

with t ≥ 0. We have

v(x) = − ln w(x) = x6 +
t

x2 .

It follows that
v′(x) = 6x5 − 2t

x3 ,

and
v′(x)− v′(y)

x− y
= 6x4 + 6x3y + 6x2y2 + 6xy3 + 6y4 +

2t
xy3 +

2t
x2y2 +

2t
x3y

. (46)

Lemma 4. We have

An(x) = 6x4 + 6x2(βn + βn+1) + 6R∗n(t) +
Rn(t)

x2 , (47)

Bn(x) = 6x3βn + 6xr∗n(t) +
rn(t)

x
+

[1− (−1)n]t
x3 , (48)

where R∗n(t), Rn(t), r∗n(t) and rn(t) are the auxiliary quantities given by

R∗n(t) =
1
hn

∫ ∞

−∞
y4P2

n(y)w(y)dy,

Rn(t) =
2t
hn

∫ ∞

−∞

1
y2 P2

n(y)w(y)dy,

r∗n(t) =
1

hn−1

∫ ∞

−∞
y3Pn(y)Pn−1(y)w(y)dy,

rn(t) =
2t

hn−1

∫ ∞

−∞

1
y3 Pn(y)Pn−1(y)w(y)dy.

Proof. Substituting (46) into (9) and (10) and noting that formulas (29) and (30) still hold
for the weight (45), we obtain the desired results.
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Theorem 8. The recurrence coefficient βn satisfies the nonlinear sixth-order difference equation

βn
[
6βn−2βn−1(βn−3 + βn−2 + 2βn−1 + 2βn) + 6βnβn+1(2βn−1 + 2βn + βn+1 + βn+2)

+18βn−1βn(βn−1 + βn) + 6β3
n−1 + 6β3

n − 2n + 1
][

6βn−1βn(βn−2 + βn−1 + 2βn + 2βn+1)

+6βn+1βn+2(2βn + 2βn+1 + βn+2 + βn+3) + 18βnβn+1(βn + βn+1) + 6β3
n + 6β3

n+1 − 2n− 1
]

+2(−1)nt
[
6βn−1βn(βn−2 + βn−1 + 2βn + βn+1) + 6βn(βn + βn+1)

2 + 6βnβn+1βn+2 − n
]
= 0.

Proof. Substituting (47) and (48) into (11), we find

R∗n = r∗n + r∗n+1, (49)

Rn = rn + rn+1. (50)

Similarly, substituting (47) and (48) into (13), we obtain the following six identities:

r∗n − βn(βn−1 + βn + βn+1) = 0, (51)

n + rn + 12βnr∗n − 6βn(R∗n−1 + R∗n)− 6βn(βn−1 + βn)(βn + βn+1) = 0, (52)

βnRn−1Rn + 2(−1)ntrn = 0, (53)

r2
n − 12(−1)ntr∗n − 6βn(Rn−1R∗n + R∗n−1Rn) +

n−1

∑
j=0

Rj = 0, (54)

2rnr∗n − 2(−1)ntβn − 6βnR∗n−1R∗n − (βn−1 + βn)βnRn − (βn + βn+1)βnRn−1 +
n−1

∑
j=0

R∗j = 0, (55)

[1− (−1)n]t + 6(r∗n)
2 + 2βnrn − 6(βn−1 + βn)βnR∗n − 6(βn + βn+1)βnR∗n−1− βn(Rn−1 + Rn) +

n−1

∑
j=0

(β j + β j+1) = 0. (56)

From (51) and (49), we can express r∗n and R∗n in terms of the recurrence coefficient,

r∗n = βn(βn−1 + βn + βn+1), (57)

R∗n = βn−1βn + (βn + βn+1)
2 + βn+1βn+2. (58)

It follows from (52) and (50) that rn and Rn can also be expressed in terms of βn,

rn = 6βn

[
βn−1(βn−2 + βn−1 + 2βn + βn+1) + (βn + βn+1)

2 + βn+1βn+2

]
− n, (59)

Rn = 6βn−1βn(βn−2 + βn−1 + 2βn + 2βn+1) + 6βn+1βn+2(2βn + 2βn+1 + βn+2 + βn+3)

+18βnβn+1(βn + βn+1) + 6β3
n + 6β3

n+1 − 2n− 1. (60)

Substituting (59) and (60) into (53), we establish the theorem.

Remark 1. The expressions of r∗n and R∗n in (57) and (58) can also be obtained by using the
three-term recurrence relation and the orthogonality from their definitions in Lemma 4.

Theorem 9. The recurrence coefficient βn(t) satisfies the differential-difference equation
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tβ′n(t) = βn
[
3βn−2βn−1(βn−3 + βn−2 + 2βn−1 + βn) + 3βn−1(βn−1 + βn)

2 − 3βn+1(βn + βn+1)
2

−3βn+1βn+2(βn + 2βn+1 + βn+2 + βn+3) + 1
]
.

Proof. Taking a derivative with respect to t in the equality

hn(t) =
∫ ∞

−∞
P2

n(x; t)e−x6− t
x2 dx

gives

2t
d
dt

ln hn(t) = −Rn(t)

and then
2tβ′n(t) = βn(Rn−1(t)− Rn(t)).

Substituting (60) into the above gives the desired result.

Theorem 10. The orthogonal polynomials Pn(x) satisfy the differential-difference Equations (7) and (8),
and the second-order differential Equation (14) with

An(x) = 6x4 + 6x2(βn + βn+1) + 6
[

βn−1βn + (βn + βn+1)
2 + βn+1βn+2

]
+

6βn−1βn(βn−2 + βn−1 + 2βn + 2βn+1) + 6βn+1βn+2(2βn + 2βn+1 + βn+2 + βn+3)

x2

+
18βnβn+1(βn + βn+1) + 6β3

n + 6β3
n+1 − 2n− 1

x2 , (61)

Bn(x) = 6x3βn + 6xβn(βn−1 + βn + βn+1) +
[1− (−1)n]t

x3

+
6βn

[
βn−1(βn−2 + βn−1 + 2βn + βn+1) + (βn + βn+1)

2 + βn+1βn+2
]
− n

x
, (62)

n−1

∑
j=0

Aj(x) = 6nx4 − 6x2[(1− (−1)n)t + 6(r∗n)
2 + 2βnrn − 6(βn−1 + βn)βnR∗n − 6(βn + βn+1)βnR∗n−1

−βn(Rn−1 + Rn)
]
− 6
[
2rnr∗n − 2(−1)ntβn − 6βnR∗n−1R∗n − (βn−1 + βn)βnRn

−(βn + βn+1)βnRn−1
]
−

r2
n − 12(−1)ntr∗n − 6βn(Rn−1R∗n + R∗n−1Rn)

x2 , (63)

where r∗n, R∗n, rn and Rn are given by (57), (58), (59) and (60), and v′(x) = 6x5 − 2t
x3 .

Proof. Inserting (58) and (60) into (47) and inserting (57) and (59) into (48), we obtain (61)
and (62), respectively. From (47), we have

n−1

∑
j=0

Aj(x) = 6nx4 + 6x2
n−1

∑
j=0

(β j + β j+1) + 6
n−1

∑
j=0

R∗j +
∑n−1

j=0 Rj

x2 .

Eliminating ∑n−1
j=0 (β j + β j+1), ∑n−1

j=0 R∗j and ∑n−1
j=0 Rj by using (56), (55) and (54), we obtain (63).

Remark 2. From (63), we see that ∑n−1
j=0 Aj(x) can be expressed in terms of the recurrence coeffi-

cients βn−3, βn−2, βn−1, βn, βn+1, βn+2, βn+3. We do not write the explicit expression since it is
very long.
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5. Conclusions

In this paper, we study the singularly perturbed Freud weights (2), the associated
orthogonal polynomials and the recurrence coefficients in the m = 1, 2, 3 cases. We derive
the differential and difference equations for the recurrence coefficients and the orthogonal
polynomials in the three cases. It can be seen that for increasing m, the order of the
difference equations increases by 2 in each case. We can use our method to consider the
higher-order singularly perturbed Freud weights. However, one can imagine that the
results for the differential and difference equations will be more and more complicated.
Finally, we find that the recurrence coefficient is related to the Painlevé III equation when
m = 1, but it is not clear whether there is any connection to the Painlevé equations when
m ≥ 2.
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