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Abstract: In this paper, it is rigorously proven that since observational data (i.e., numerical values of
physical quantities) are rational numbers only due to inevitably nonzero measurements errors, the
conclusion about whether Nature at the smallest scales is discrete or continuous, random and chaotic,
or strictly deterministic, solely depends on experimentalist’s free choice of the metrics (real or p-adic)
he chooses to process the observational data. The main mathematical tools are p-adic 1-Lipschitz
maps (which therefore are continuous with respect to the p-adic metric). The maps are exactly the
ones defined by sequential Mealy machines (rather than by cellular automata) and therefore are causal
functions over discrete time. A wide class of the maps can naturally be expanded to continuous real
functions, so the maps may serve as mathematical models of open physical systems both over discrete
and over continuous time. For these models, wave functions are constructed, entropic uncertainty
relation is proven, and no hidden parameters are assumed. The paper is motivated by the ideas
of I. Volovich on p-adic mathematical physics, by G. ‘t Hooft’s cellular automaton interpretation
of quantum mechanics, and to some extent, by recent papers on superdeterminism by J. Hance,
S. Hossenfelder, and T. Palmer.

Keywords: automaton; letter-to-letter transducer; sequential Mealy machine; p-adic 1-Lipschitz map;
interpretation of quantum mechanics; Planck’s scale; experimenter’s free choice

1. Introduction

The main goal of the current paper is to prove some of results which were announced
without proofs in [1], namely, to prove rigorously mathematical statements which show
that an experimentalist’s conclusions about whether Nature on the smallest of scales is
discrete or continuous [2], random and chaotic, or strictly deterministic [3] solely depends
on the experimentalist’s free choice of the metrics he chooses to process the measurement
data which basically are rational numbers due to inevitably nonzero measurement errors. It
should be stressed that the said statements are not types of free-will theorems in quantum
mechanics since the statements are about how the data obtained during experiments are
postprocessed rather than about how an experimentalist chooses the measurement setting
during experiments. This is a crucial difference between results of the current paper and,
for example, a Conway–Kochen strong free will theorem [4]. In order to distinguish between
these two faces of experimentalist’s freedom, in this paper, the two terms "free choice" and “free will”
are used, and they are not interchangeable.

There is some resemblance between the meanings of terms used in the invariant
set theory [3,5] (within which a p-adic metric is briefly mentioned) and in the current
paper; however, the current paper discusses a mathematical model for postprocessing of
measurement data rather than broader physical theories.

The paper is inspired by the ideas of I. Volovich who, in collaboration with
V. Vladimirov in the 1980s laid the cornerstone of contemporary p-adic mathematical physics [6].
The paper is motivated also by the ideas of G. ‘t Hooft who initiated the development of
the cellular automaton interpretation of quantum mechanics [7] which is based on a suggestion
that on some basic level there is no intrinsic randomness in nature.
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More formally, the paper introduces a wide class of functions, each of which can be regarded as
a continuous (and sometimes as a chaotic, having positive entropy) real function over continuous real
time with respect to real metric and which simultaneously is strictly deterministic (and a nonchaotic,
having zero entropy) causal function over discrete time with respect to the p-adic metric for every
p > 1. By the common definition, causal functions are the mappings which can be performed
by automata but only those automata which are the so-called letter-to-letter transducers (or,
sequential Mealy machines whose sets of states are not necessarily finite) over a p-letter
alphabet rather than by cellular automata on which G. ‘t Hooft’s interpretation is based.
These classes of automata differs both from algorithmic and physical points of view. From
the algorithmic point of view, letter-to-letter transducers can be judged as the least powerful
computers compared to cellular automata which are the most powerful ones. Any algorithm
(i.e., any general recursive function) can be implemented on a suitable cellular automaton
since the class of all cellular automata is Turing-complete [8,9], whereas algorithms which
can be implemented by the transducers are necessarily primitive recursive functions, and
moreover, constitute a small class of primitive recursive functions; see the end of Section 3.3.
From a physical point of view, the sequential machines are models of open systems whereas
cellular automata are models of isolated systems. In contrast to a sequential machine, a
cellular automaton updates its states according only to a fixed local rule which does not
depend on input, whereas the next state of a sequential machine depends both on input
information and on a current state; the sequential machine produces output information
which also depends both on input information and on the current state. Throughout this
paper, the term automaton refers to a sequential Mealy machine with a potentially infinite number
of states; for a formal definition of the latter machine see Definition 2 . In what follows,
types of automata different from the said Mealy machines are mentioned with respective
adjectives, e.g., “cellular automaton” and “push-down automaton”.

The paper is organised as follows:

• In Section 2, we recall a formal definition of causal function over discrete time (cf.,
Definition 1). The very term “causality” is based on the notion of time; this is why
in the paper, “time” as a measurable physical entity is a central theme: time may be
either discrete (e.g., Planck time) or continuous (e.g., real time) at respective “ends of
scale”. In this paper, we generally advocate that these cases are indistinguishable by
measurements and actually are subject to an experimentalist’s free choice of metric
with respect to which he processes the numerical values of the experimental physical
data. After the formal definition of causality over discrete time, we introduce as
postulates statements of I. Volovich on indistinguishability using measurements of
physical quantities between rational and irrational values and of G. ‘t Hooft on the
nonexistence of randomness in Nature; then, we formalise the notion a “physical law”
as a function which is consistent with these postulates, cf., Conditions 1.

• In Section 3, we review some notions and facts from p-adic analysis and from automata
theory which will be needed further in the paper.

• In Section 4, we introduce one of the main notions of the paper; that is, the real causal
functions which are the functions that are continuous both with respect to a real metric
and to the p-adic metric; i.e., causal functions which reside simultaneously in two
worlds, Archimedean and non-Archimedean. The main results described in these
sections are as follows:

– Theorem 5 completely describes the class of functions that satisfy
Conditions 1; i.e., those which are completely consistent both with Volovich
postulates and with ‘t Hooft causality postulate. We interpret this theorem to be
a manifestation of the observer’s freedom to conclude whether Nature on the
smallest of scales is discrete or continuous since the conclusion depends solely on
the observer’s free choice of metric with respect to which the observer processes
the measured numerical data.

– In Section 4.4, we argue that the observer’s conclusion as whether Nature is basi-
cally random and chaotic or totally predictable and deterministic also depends
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solely on the observer’s free choice of metric with respect to which the observer
processes the measured numerical data; namely, we show that maps which are
chaotic with respect to the real metric are strictly deterministic and predictable
with respect to p-adic metric, irrespective to which common definition of chaos
is used.

– In Section 4.5, we argue that Conditions 1 may be too restrictive from the physical
point of view and relax the conditions, letting them hold only for some prime
p rather than for all primes. This way we introduce a notion of a p-consistent
function, show that the class of p-consistent functions is much wider than the
class of completely consistent ones (Theorem 7), prove hologram-like property
(Theorem 8) which shows that global behaviour of p-consistent functions is
completely defined by their local behaviour, and then prove that wide classes of
physically important functions (such as continuous real functions, real functions
that vanish at infinity, n-th power integrable functions, wave functions) can be
uniformly approximated by infinitely differentiable p-consistent functions; see
Theorem 9. This theorem is yet one more piece of evidence supporting the notion
that observer’s conclusion on discreteness, continuity, and reversibility of time
solely depends on the observer’s free choice of metric. Finally, in this subsection,
we prove Theorem 10 which yields that smooth p-consistent functions related to
systems having a finite number of states are necessarily affine; this theorem may
demonstrate where the linearity of operators used in quantum theory is rooted.

• In Section 5, we argue that “continuous” and “discrete” models of physical world
“meet each other in the middle of the scales”, and the wave function is the “meeting
point”. The specifics of this section are as follows:

– In Section 5.1, we formalise what is meant by “measurements at each end of the
scale” by introducing two observers, Big-endian and Little-endian, that perform
measurements at respective ends, macro and micro.

– In Section 5.2, we introduce a p-adic model of the instrument which measure
and indicates time, a p-adic clock, and a respective notion of p-adic time, which is
time by the Little-endian’s clock. Then, we outline (Theorem 11), which proves
that there exists a unique clock which is the same for Little-endian and for Big-
endian, the universal clock. We argue that the known effect in quantum theory of
indistinguishability of which of two event happens earlier than does another one
may be rooted in the fact that p-adic time cannot be ordered,i.e., that in contrast to
the ring of integers Z, the ring Zp of p-adic integers cannot be ordered. Therefore,
the existence or nonexistence of the “time arrow” is again subject to free choice of
the metric by the experimentalist.

– Section 5.3 describes the base on which the construction of wave function is
founded. The section describes, in formal terms, the process of finding cluster
points for experimental points in Euclidean space and constructing a smooth line
(or surface) on which these cluster points fall. In the subsection, we mostly refer to
results which were published earlier in [10,11] and interpret these as the models
of physical systems having either discrete or continuous spectra. Based on these
results, we argue that chaos is either immanent to continuous time models or
emerges as a result of sufficiently long evolution of a physical system in discrete
time models.

– In Section 5.4, we construct two types of wave functions, the sharp one for Little-
endian, with respect to discrete time, and the fuzzy one for Big-endian, with re-
spect to continuous time. The fuzzy wave function can be approximated by sharp
wave functions with any desirable accuracy, so this is again a subject to the free
choice of the experimentalist regarding the type of wave function which depends
on the experimentalist’s free choice of metric. We show then in (Theorem 18),
that under a reasonable finiteness assumption, the fuzzy 1-dimensional wave
function is actually a sharp N-dimensional wave function over discrete 2-adic
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time. Here, as an extra mathematical tool, we use β-expansions of numbers; the
β-expansions were originally introduced in [12,13].

– In Section 5.5, we formally derive a time-energy uncertainty relation in entropic
form. Here, we use yet one more extra mathematical tool, the theory of prefix
codes. All necessary notions, results, and proper references of this theory are
given in the subsection. We stress that no hidden variables are assumed, and the
uncertainty relation holds both for the Big-endian and for the Little-endian.

• We conclude in Section 6. Here, we state that basically the results of the paper may be
treated as information–theoretic and remark that the paper highlights J. Wheeler’s “it
from bit” doctrine [14] since the final results on wave functions, especially Theorem 18,
show that “it” is “from bit” indeed: both sharp and fuzzy wave functions actually turn
out to be 2-adic 1-Lipschitz functions, i.e., automata functions over the alphabet {0, 1}.

2. Formalisation

I. V. Volovich, in his numerous papers, books, talks, etc., has stated, many times, the
following postulates (further referred to as Volovich postulates) on which p-adic mathematical
physics is founded:

(i) Only rational numbers can be observed; irrational numbers cannot.
(ii) Distances smaller than Planck length cannot be measured.
(iii) Fundamental physical laws should be invariant with respect to a change of num-

ber field.

According to Ostrowski’s theorem, every nontrivial absolute value on the rational
numbers Q is equivalent to either the usual real absolute value or a p-adic absolute value
(c.f., e.g., [15] [Theorem 10.1]). Then, to ensure the limits of convergent sequences over a
field belong to the field; the mentioned number fields must be the fields Qp of p-adic numbers
or the field R of real numbers since these fields are the only completions of the field Q with
respect to absolute values on Q. Of course, the fields can be complete extensions of the
fields Qp and R like, e.g., the fields of complex p-adic numbers Cp or a field of “ordinary”
complex numbers C, but Qp and R are the only “smallest“ fields which satisfy the third
Volovich postulate.

G. ‘t Hooft in his book The Cellular Automaton Interpretation of Quantum Mechanics [7]
makes the following claim (further referred to as the ‘t Hooft causality postulate) which is
fundamental for the cellular automaton interpretation of quantum mechanics:

It may well be that, at its most basic level, there is no randomness in Nature, no
fundamentally statistical aspect to the laws of evolution. Everything, up to the
most minute detail, is controlled by invariable laws. Every significant event in
our universe takes place for a reason, it was caused by the action of physical law,
not just by chance. This is the general picture conveyed by this book.

To be consistent with this postulate, a physical system must be causal; that is, the
“effect”, which is the reaction of the system to a “cause”, i.e., to an impact the system has
been exposed, must be a function of the “cause” and of the ”state“ of the system. However,
the very notion of causality is based on the notion of “time” which must be a totally ordered
set since the “effect” cannot happen earlier than can the “cause” whose function the “effect”
is. It is impossible to experimentally distinguish rational numbers from real numbers (cf.
Volovich first postulate); therefore it is reasonable to assume that “time” is a totally ordered
countable set. It is well known that any totally ordered countable set T is order-isomorphic
to a subset of Q (c.f., e.g., [16]) with respect to the natural order ≤ on Q. Time T is called
continuous if the ordering of elements in T is dense; i.e., given t1, t2 ∈ T there exists t3 ∈ T
such that t1 < t3 < t2. Time T is called discrete, and if given any t1, t2 ∈ T, there is not more
than a finite t3 ∈ T such that t1 < t3 < t2.

”Continuous” physical models are based on the assumption that any temporal/spatial
interval can be divided into smaller intervals ad infinitum. The “discrete” models assume
that spacetime should somehow be “quantized” at the smallest of scales; i.e., there exist
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the smallest spatial/temporal intervals which can not be divided into smaller ones, [2]. In
the latter case, it would be reasonable to try to construct a mathematical theory assuming
that total amount of these “indivisible” values can be increased ad infinitum. In the both
cases, as well as in respective physical theories, the ”infinity“ simply stands for a value
which is extremely small (or extremely large) compared to a given value so that calculations
involving the notion of infinity result in values which agree with respective measured
values up to a small real number, the error. Therefore, if theories of either type adequately
describe physical reality at respective “ends of scale” , the theories must ”meet one another
somewhere in the middle of the scale”.

The discreteness implies that the indivisible intervals are respective units:, i.e., take
values of 1; moreover, both “cause” and “effect” are sequences of “elementary causes” and
”elementary effects“ which happen at discrete time instants 0, 1, 2, . . ..

Actually, the "time unit" is the longest temporal interval within which it is impossible
for an observer to determine whether any two events are simultaneous or not; i.e., which
of the two events happens earlier/later than another one does. In other words, an “event”
is like a film consisting of frames where each frame is a static picture, but the sequence
of the pictures produces a movie on a screen which the audience of the cinema sees as
dynamical process. Thus, the “elementary event” (“elementary cause”, “elementary effect”)
is an event that lasts exactly one time unit similar to a momentary splash for which the
moment when it begins is undistinguishable from the moment when it finishes.

We recall a notion of causal function over discrete time in terms of general system
theory, c.f., e.g., [17,18].

Definition 1 (Causality over discrete time). Causal functions over discrete time
N0 = {0, 1, 2, . . .} are exactly the functions f which satisfy the following conditions:

(i) The domain (the “causes”) and range (the “effects”) of f are, accordingly, all sequences
a = (ai)i∈N0 and b = (bi)i∈N0 over respective sets A, the “elementary causes”, and B,
the “elementary effects”;

(ii) If f (a) = (bi)i∈N0 , then bi does not depend on ai+1, ai+2, . . ., for all i ∈ N0.

In other words, the function f is causal if and only if there exists a sequence (ϕ
f
i )

∞
i=0 of maps

ϕ
f
i : Ai+1 → B, (i ∈ N0), such that

f (a) = (ϕ
f
i (a0, . . . , ai))i∈N0 (1)

It is reasonable to assume that both sets A of “elementary causes” and B of “elementary
effects” contain at least two elements and, moreover, that the sets are finite since no physical
objects are known which have been proven to be infinite in some natural meaning: Infinity
is a mathematical rather than a physical notion which is used in mathematical calculations in order
to find good estimates of physical values since the values can be measured with a nonzero error
only. From this finiteness assumption, it follows that the causal functions are exactly the
mappings which are produced by a special class of automata, the letter-to-letter transducers (or,
sequential machines) which transform input sequences a = (ai)i∈N0 of elementary causes into
output sequences b = (bi)i∈N0 of elementary effects so that (ii) is satisfied (cf., e.g., [19], a classical
monograph on automata theory). Note that condition (ii) is just a Lipschitz condition with
a constant 1 with respect to the natural non-Archimedean metric d on sequences. The
metric d can be defined as follows: given two sequences, c = (ci)i∈N0 and c′ = (c′i)i∈N0 ,
over the same finite set, d(c, c′) = p−n, where n = max{i ∈ N : ci = c′i} if such n exists,
and d(c, c′) = 0 if ci = c′i for all i ∈ N0 (here p > 1 is arbitrary real number). In this
paper, we mostly consider the case when A and B are a finite p-element set Fp where p
is a prime number (the latter restriction is more a technical one imposed in order to not
overload statements). This way, we may assume that Fp is a finite p-element field and that
the infinite sequences (ci)i∈N0 (where ci ∈ Fp) constitute the space Zp of p-adic integers
under a natural one-to-one correspondence between the infinite sequences and canonical
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representations of p-adic integers ∑∞
i=0 ci pi. In the case when p > 1 is not a prime number,

the sequences also may be put in one-to-one correspondence with the space Zp of p-adic
integers since the latter spaces are defined for all p = 2, 3, 4, . . ., and not necessarily only
for prime p; see, e.g., [20].

Physical models, loosely speaking, describe functions f which are “physical laws”
that express dependencies of physical quantities on other physical quantities; therefore, if
time is one of these quantities, it is reasonable to assume causality, i.e., the functions f are
causal. Let us express more formally the conditions the functions f must meet in order to
be consistent both with Volovich postulated and ‘t Hooft causality postulate.

In order to be consistent with Volovich postulates, the following conditions should
be satisfied.

• As only rational numbers can be measured, the functions f , i.e., the closed forms of
physical laws which can be experimentally verified, must be mappings of rational numbers
to rational numbers; i.e., the functions f must take rational values when values of variables
are rational.

• In order to study functions f when values of variables are “very large” or ”very small”
with respect to some reasonable metric, one has to expand the laws from the field of
rational numbers Q to a bigger field which is complete with respect to that metric;
therefore, this bigger field can only be the field of real numbers R and/or p-adic fields
Qp for primes p = 2, 3, 5, 7, 11, . . .; however, in order to be invariant with respect to the
change of the number field, a restriction to Q of any such expansion of f to a bigger field
F ⊃ Q must be the same irrespective to which field F was used for in the expansion, whether
F = R or F = Qp.

Further, to be consistent also with the ‘t Hooft causality postulate, the functions f
should be causal; however, as it has been argued before, the "time" with respect to which the
functions are causal must be order-isomorphic to a subset of Q. However, since, according
to the Volovich postulates, no temporal interval smaller than Planck’s time can be measured,
the temporal intervals can only be multiples of Planck’s time; therefore, the “time“ over
which the functions f are causal must be order-isomorphic to a subset of Z. Thus, up
to order isomorphism, the time scale is either N0 = {0, 1, 2, . . .} or Z = {0,±1,±2, . . .}
depending on whether the “beginning of time”’ exists or does not exist. According to
the contemporary physical picture of the universe, it is reasonable to assume that the
“beginning of time” exists; thus, the time scale must be N0, up to order isomorphism.
However, causal functions over the discrete time N0 can be treated as p-adic 1-Lipschitz
functions whose domain and range are p-adic integers Zp rather than the whole field Qp,
c.f., the reasoning which follows Definition 1; thus, as the “common part" of Zp and R
(which we further denote via Zp ∩Q) are rational p-adic integers, i.e., the irreducible fractions,
whose denominators are coprime to p, to be consistent with Volovich postulates, the causal
functions must take values from Zp ∩Q rather than from the whole Q; moreover, the
functions must be expandable to the whole field R since Zp ∩Q is a dense subset of R.
Finally, we can specify the formal properties the functions f must share in order to be
consistent both with Volovich postulates and with the ‘t Hooft causality postulate, as
follows:

Condition 1 (Complete consistency). A (univariate) continuous real function f : R → R
which is consistent with both Volovich postulates and the ‘t Hooft causality postulate must share the
properties listed below.

(i) For every prime p, the restriction f |N0 must be a causal function over discrete time N0;
i.e., the restriction f |N0 must satisfy a p-adic Lipschitz condition with a constant 1. That
is, for all m, n ∈ N0, there must hold the inequality

dp( f |N0(m), f |N0(n)) ≤ dp(m, n),

where dp is the p-adic metric.
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(ii) Since N0 is a dense subset in Zp, by (i), for every prime p, there exists a unique extension
of f |N0 to the function fp : Zp → Zp which satisfies a Lipschitz condition with a constant
of 1 with respect to the p-adic metric dp. Therefore, to be invariant with respect to the
change of the field, the function f : R→ R must act on the set Zp ∩Q of all p-adic rational
integers exactly as the function fp does; that is, for every prime p, the restriction f |Zp∩Q
on rational p-adic integers Zp ∩Q must coincide with the restriction fp|Zp∩Q on Zp ∩Q:

f |Zp∩Q(r) = fp|Zp∩Q(r), for all r ∈ Zp ∩Q.

Note 1. Condition 1 (ii) immediately implies that f (Zp ∩Q) ⊂ Zp ∩Q for all prime p; thus,
necessarily

f (Z) ⊂
⋂

p prime

(Zp ∩Q) = Z.

The questions which immediately arise are whether there exist functions f which
satisfy the conditions, and if such functions do exist, what are these functions. In Section 4,
we show that functions which meet Conditions 1 do exist and constitute a class of all polynomials
over Q of a special type (the class contains, e.g., all polynomials over Z); see Theorem 5.
Moreover, the functions turn out to be causal with respect to all finite alphabets and not
necessarily with respect to p-symbol alphabets for prime p. This implies in particular that
the answer to the commonly asked question about p-adic mathematical physics concerning what p
should be chosen by an experimenter in order to make the theory consistent with the observations is
as follows: the choice of p is absolutely free if causality, discreteness at Planck’s scale, and invariance
with respect to the change of the number field are assumed.

We stress that the functions f which satisfy Conditions 1 are causal for all p-symbol
alphabets and for all prime p, and hence, for all finite alphabets. In our view, the latter
property appears to be too restrictive (and somewhat nonphysical, cf., the reasoning
concerning the finiteness assumption above) since Planck’s scale includes a finite number
of physical quantities (time, length, etc.) rather than an infinite number. Thus, it is
reasonable to assume that Conditions 1 hold only for a finite set of primes; this implies that
the functions f are causal with respect to finite alphabets, the prime power decompositions
of the number of elements of which include only powers of primes from that set. The study
of this class of functions can be reduced to cases containing only one prime, p. We show
that if in the statement of Conditions 1, a prime p is fixed and that “for every prime p” is
replaced by “for the prime p” then there exist functions f that satisfy the Conditions, which are
continuous real functions on R but which are not rational functions over Z; i.e., are not of the form
u(x)/v(x) where u(x), v(x) ∈ Z[x] are polynomials with integer coefficients; see Theorem 7.
Note also that under such a restatement of the Conditions, f (Z) is not necessarily a subset of
Z but only a subset of Zp ∩Q, cf., Note 1.

3. Preliminaries

We review some notions and facts from p-adic analysis and from automata theory
which will be needed further in the paper.

3.1. A Few Words about Words

An alphabet is just a finite nonempty set A; further in the paper, typically
A = {0, 1, . . . , p − 1}, where p > 1 is an integer (mostly, but not always, p is a prime).
Elements of A are called symbols, or letters. By this definition, a word of length n over alphabet
A is a finite sequence (stretching from right to left) αn−1 · · · α1α0, where αn−1, . . . , α1, α0 ∈ A.
The number n is called the length of the word w = αn−1 · · · α1α0 and is denoted via Λ(w).
The empty word φ is a sequence of length 0; that is, the one that contains no symbols. Given
a word w = αn−1 · · · α1α0, any word v = αk−1 · · · α1α0, k ≤ n, is called a prefix of the word
w, whereas any word u = αn−1 · · · αi+1αi, 0 ≤ i ≤ n − 1 is called a suffix of the word
w. Every word αj · · · αi+1αi where n − 1 ≥ j ≥ i ≥ 0 is called a subword of the word



Entropy 2023, 25, 830 8 of 49

w = αn−1 · · · α1α0. Given words a = αn−1 · · · α1α0 and b = βk−1 · · · β1β0, the concatenation
ab is the following word (of length n + k):

ab = αn−1 · · · α1α0βk−1 · · · β1β0.

Given a word w, its k-times concatenation is denoted via (w)k

(w)k = ww . . . w︸ ︷︷ ︸
k times

.

We denote using W = W(A) the set of all nonempty words over A = {0, 1, . . . , p − 1}
and using Wφ the set of all words including the empty word φ. In the sequel, the set
of all n-letter words over the alphabet A, we denote as Wn; thus, W = ∪∞

n=1Wn. To
every word w = αn−1 · · · α1α0, we put into the correspondence a non-negative integer
num(w) = α0 + α1 · p + · · ·+ αn−1 · pn−1. Thus, num maps the set W of all the nonempty
finite words over the alphabet A onto the set N0 = {0, 1, 2, . . .} of all non-negative integers.
We will also consider a map ρ of the set W into the real unit half-open interval [0, 1); the
map ρ is defined as follows: given w = βr−1 . . . β0 ∈W, put

ρ(w) = num(w) · p−Λ(w) =
β0 + β1 p + · · ·+ βr−1 pr−1

pr = 0.βr−1 . . . β0 ∈ [0, 1). (2)

We also use the notation 0.w for 0.βr−1 . . . β0.
Along with finite words, we also consider one-side infinite words over the alphabet A;

these are the infinite sequences of the form . . . α2α1α0 where αi ∈ A, i ∈ N0. In this paper,
we may write one-side infinite words either stretching from left to right or from right to
left when convenient, i.e., both α0α1α2 . . . and . . . α2α1α0 denote the same word. For finite
words, we may also use both notations, left and right, and the order of indices of letters in
the word shows which of the two notations is used. For infinite words, notions of prefix,
suffix, and subwords are defined in the same way as they are for finite words; note that
suffixes is are always infinite words whilst prefixes and subwords are always finite words.
Let an infinite word w be eventually periodic; that is, let

w = . . . βt−1βt−2 . . . β0βt−1βt−2 . . . β0αr−1αr−2 . . . α0

for αiβ j ∈ A; then, the subword βt−1βt−2 . . . β0 is called a period of the word w, and
the suffix αr−2 . . . α0 is called the preperiod of the word w. Note that a preperiod may
be an empty word, while a period cannot. We ultimately write the periodic word w as
w = (βt−1βt−2 . . . β0)

∞αr−1αr−2 . . . α0.

3.2. p-adic Integers

We briefly recall some very basic facts about p-adic integers referring the reader to
any monograph on p-adic analysis (e.g., to [20]) for deeper introduction to the subject. Let
p > 1 be an integer. A p-adic integer z ∈ Zp can be uniquely represented by a canonical form
z = ∑∞

i=0 ζi pi, where ζi ∈ {0, 1, . . . , p− 1}, (i = 0, 1, 2, . . .). Thus, to every infinite sequence
z = (ζi)

∞
i=0, we put into a correspondence a p-adic integer represented by a respective

canonical form. The sequences z may also be treated as (one-side) infinite words over the
alphabet {0, 1, . . . , p− 1}; thus, we now can expand a mapping num to the set Wp of all
infinite sequences over {0, 1, . . . , p− 1} so that num(z) = ∑∞

i=0 ζi pi ∈ Zp. The so defined
mapping num : Wp → Zp is one-to-one; thus, in what follows, we will not distinguish when
necessary between p-adic integers, (one-side) infinite sequences over {0, 1, . . . , p− 1}, and
infinite words over the alphabet {0, 1, . . . , p− 1}.

The sequences z which contain only finitely many nonzero terms correspond to non-
negative integers from N0 = {0, 1, 2, . . .} represented by their base-p expansions; the
sequences z which contain only finitely many terms not equal to p − 1 correspond to
negative integers −N = {−1,−2,−3, . . .}. The sequences z which are ultimately periodic
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correspond to rational p-adic integers z ∈ Zp ∩Q; i.e., to rational numbers which can be
represented by irreducible fractions u/v whose denominators v are coprime to p. Any
z ∈ Zp ∩Q can be represented as z = c + d/(pt − 1) where c ∈ Z = {0,±1,±2, . . .}, t ∈ N,
d ∈ {0, 1, . . . , pt − 2}.

The rational p-adic integers constitute a subring Zp ∩Q of Zp which is a dense subset
of Zp with respect to the p-adic metric. The metric is induced by the p-adic absolute value
|z|p which is equal to p− ordp z, where ordp z is the length of the longest zero-prefix (the
prefix which consists of zeros only) of z if z 6= 0, and |0|p = 0 by definition.

Given n ∈ N = {1, 2, 3, . . .} and a canonical expansion z = ∑∞
i=0 αi pi for z ∈ Zp, we

further denote z mod pn = ∑n−1
i=0 αi pi ∈ N0. The mapping mod pn : z 7→ z mod pn can be

treated as a ring epimorphism of Zp onto the residue ring Z/pnZ, under a natural represen-
tation of elements of the residue ring by the least non-negative residues {0, 1 . . . , pn − 1}.
Given n ∈ N, the base-p expansion of n is a finite word over Fp whose length is blogp nc+ 1.
As the base-p expansion of 0 is a one-letter word (namely, 0), in what follows, we assume
that blogp 0c = 0. We stress that when considering words corresponding to numbers, for
numbers 0, 1, 2, . . ., we distinguish their base-p expansions from their canonical p-adic
representations: the latter are treated as infinite words rather than as finite words. We
also stress that the mapping num : W→ N0 is a surjection but not one-to-one, whereas the
mapping num : Wp → Zp is one-to-one. In what follows, it always will be clear from the
context what domain of num is considered.

A probability measure µ on Zp can be defined as follows: elementary µ-measurable
sets are balls Bp−r (a) = {b ∈ Zp : b ≡ a (mod pr))} ⊂ Zp, where a ∈ Zp, r ∈ N; put
µ(Bp−r (a)) = p−r. As the balls are simultaneously open and closed in topology induced
by the p-adic absolute value | · |p and as every two balls are either disjoint or one of them
contains another one, the balls constitute a base of sigma-algebra which define a sigma-
additive measure µ on Zp. Actually, this measure µ is a Haar measure normalised so that
µ(Zp) = 1. The measure µ is a Borel measure; that is, every open subset is µ-measurable
(hence, every closed subset is µ-measurable as well). The measure µ is regular; that is, for
any µ-measurable subset A ⊂ Zp

µ(A) = sup{µ(S) : S ⊂ A, S is closed in Zp} = inf{µ(S) : S ⊃ A, S is open in Zp}

Thus, Zp is a totally disconnected compact metric space whose metric is induced by the
p-adic absolute value | · |p and a probability space with respect to the measure µ. Note
that the probability measure agrees with the metric; i.e., any function Zp → Zp that is
continuous with respect to the metric is measurable: f−1(S) is µ-measurable once S ⊂ Zp
is µ-measurable. Also note that the p-adic metric dp(a, b) = |a− b|p (where a, b ∈ Zp) is
non-Archimdean; that is, the triangle inequality holds for that metric in a stronger form:

|a− b|p ≤ max{|a− c|p, |c− b|p}, for all a, b, c ∈ Zp

In a similar way, the metric and probability measure can be defined for spaces
Zn

p = Zp × · · · ×Zp︸ ︷︷ ︸
n

, but in this paper, this n-dimensional space is mentioned only briefly

in appropriate places; in order not to overload the exposition, we limit our “working space”
to Zp.

3.3. Systems, Transducers, Automata, Sequential Machines

Terminology in automata theory is somewhat diverse; in order to avoid a misunder-
standing of the basic notions, we state them below.

Definition 2 (System, transducer, automaton, sequential machine). A (discrete) system (or a
system with discrete time N0 = {0, 1, 2, . . .}) is a 5-tuple A = 〈I, S,O, S, O〉 where

• I is a nonempty finite set, the input alphabet;
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• O is a nonempty finite set, the output alphabet;
• S is a nonempty (possibly, infinite) set of (epistemic) states;
• S : I× S→ S is a state transition function;
• O : I× S→ O is an output function.

The system is called autonomous if neither S nor O depend on input letters (that is, if S : S→ S,
O : S → O); otherwise, the system is called nonautonomous. A subsystem A′ of A is a system
〈I, S′,O, S, O〉 such that ∅ 6= S′ ⊂ S and S(χ, s′) ∈ S′ for all χ ∈ I, s′ ∈ S′. A subsystem is called
minimal if it has no subsystems other than itself. An initial automaton (or in other terminology,
a letter-to-letter transducer [21], a Mealy sequential machine [19], an initial synchronous
automaton [22]) A(s0) is a system where one of the states, s0 ∈ S, is fixed; s0 is called the initial
state.

In what follows, the term automaton stands for an initial automaton; the subsystems
of the automata are also called subautomata. A noninitial state s ∈ S is called reachable (or,
accessible) if there exists a finite sequence χ0, χ1, . . . , χN−1 ∈ I such that S(χN−1, sN−1) = s,
where si = S(χi−1, si−1), i = 1, 2, . . . , N − 1; i.e., if there exists a path from the initial state s0
to s of finite length N.

An automaton A determines a unique map fA : . . . χ2χ1χ0 7→ . . . ξ2ξ1ξ0 from the set
W(I) of all (one-side) infinite words over the alphabet I to the set W(O) of all (one-side)
infinite words over the alphabet O, as follows: at time instant i = 0, the automaton, being in
the state s0, accepts the first input letter χ0, updates its state to a newer state s1 = S(χ0, s0),
and produces an output letter ξ0 = O(χ0, s0); at the next time instant i = 1, the automaton
accepts χ1, updates its state to s2 = S(χ1, s1), and produces an output letter ξ1 = O(χ1, s1)
etc. Therefore, ξi = ϕi(χ0, . . . , χi), where ϕi : Ii → O is a uniquely determined sequence
of maps. The mapping fA is called an automaton function of the automaton A; clearly, the
mapping is causal. It is well known that the converse is also true: every causal mapping
f : I → O is an automaton function of a suitable automaton A f (see, e.g., [19] [Chapter IV,
Theorem 8.2]). This is why for the rest of this paper we use the terms causal function,
automaton map, automaton function, automatic function, and 1-Lipschitz function as synonyms.

For instance, take a prime number p and consider an automaton whose input (re-
spectively, output) alphabet is m-tuple (α1, . . . , αm) ∈ Fm

p = I (respectively, n-tuple from
Fn

p = O); then, the automaton function is a map Zm
p → Zn

p which satisfies a Lipschitz condition
with a constant 1 (further, 1-Lipschitz for brevity) with respect to the p-adic metric which is
defined by the p-adic absolute value |(z1, . . . , zk)|p = max{|z1|p, . . . , |zk|p} on Zk

p (here
zj = ∑∞

i=0 αji pi ∈ Zp, αji ∈ Fp, j = 1, 2, . . . , k). Moreover, every 1-Lipschitz map f : Zm
p → Zn

p
is an automaton function of a suitable automaton A f . Note that it is convenient sometimes to
consider automata whose input/output alphabets’ cardinalities #I, #O are multiplicatively
dependent (i.e., such that #I, #O are powers of some integer p > 1) as automata having
multiple inputs/outputs; i.e., to consider the 1-Lipschitz map f : Zm

p → Zn
p as an automaton

function of an automaton having m input channels and n output channels, each channel
over a p-symbol alphabet. That is, the automaton function in this case is a multivariate
map over infinite words over a p-symbol alphabet. In what follows, we will refer to such a
case as to multivariate.

It is clear that a composition of automaton functions is an automaton function of an
automaton which is a sequential composition of respective automata. For automata (and
for their functions), the Cartesian product and Kronecker product can also be defined, but
we do not need these constructions within the scope of the current paper.

Given f , the automaton A f is not unique in the meaning of Definition 2:. There are
infinitely many different automata (i.e., the ones whose sets of epistemic states are different,
whose state transition functions are different, whose output functions are different) whose
automaton function is f . Therefore, an observer can only make guesses about the “internal
structure“ of the system by observing pairs of “causes and effects”, i.e., pairs (z, f (z)), z ∈ ZM;
moreover, the equivalent states are indistinguishable for the observer. However, given f there
exists a unique automaton whose automaton function is f and whose set of states S is
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the “smallest”. Call the two states si, sj ∈ S of the automaton A equivalent; if whenever
si, sj are taken as initial states, the word mappings performed by either of the two initial
automata are equal to one to another; i.e., if the input words are equal one to another, then
the corresponding output words are also equal one to another. Factorising the state set of
the automaton A by the equivalence relation, we obtain an automaton having no equivalent
nonequal states whose automaton function is fA. An automaton function fA is called finite
if it can be produced by an automaton whose set of states is finite; that is, the factor set by
the equivalence relation is finite.

It is convenient to represent automata by their state transition diagrams (or Moore
diagrams), which are directed graphs (the digraphs) whose vertices are states and whose
arrows are state transitions, with the arrows labelled by input letter|output letter. Given an
automaton function f : Zm

p → Zn
p, there exists an automaton whose automaton function is f

and whose state transition diagram is an infinite tree such that each vertex (i.e., a state) has
exactly pm outgoing arrows which go to pm different vertices, cf., Figure 1 which depicts a
state transition diagram of an automaton whose automaton function is f : Z2 → Z2.
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Figure 1. State transition diagram of a 2-adic automaton. Label α|β of the arrow that goes from the
state si to the state sj means that if the automaton is in the state si and obtains α as the input symbol,
it changes its state to sj and produces β as the output symbol.

The automaton function of the automaton whose state transition diagram is depicted
by Figure 1 is f (z) = z + 1 (z ∈ Z2), the 2-adic odometer. The reduced state transition
diagram (which is obtained by factorisation with the equivalence relation defined earlier)
is a digraph having only two vertices, cf., Figure 2. The automaton whose state transition
diagram is depicted as in Figure 2 has the same automaton function f (z) = z + 1 on Z2;
thus, the function f is a finite automaton function since it is produced by an automaton
having only two states. Note that a finite automaton is minimal if and only if its state transition
diagram is a strongly connected digraph; i.e., given any two vertices, there is a path connecting
the vertices. The 2-adic odometer, therefore, has the only minimal subautomaton, the one
whose set of states consists of the only state s1.

Recall that a path in a digraph is a (finite or infinite) sequence of arrows −→a 0,−→a 1, . . .
such that for every pair −→a j,

−→a j+1 of the arrows there is a state s such that the arrow −→a j
goes to s and −→a j+1 goes from s. In a state transition diagram of an automaton having
input alphabet A, to every path there corresponds a word χ0χ1 . . . over A where χj are
input letters, the ones which occupy the first positions in the label α|β of the arrow: if
A = {0, 1, . . . , p − 1} then to every path −→a 0

−→a 1 . . . that starts from the initial state s0,
there corresponds the p-adic integer χ0 + χ1 p + · · · χk−1 pk−1 + · · · where χj|· is a label
which marks the arrow −→a j, j = 0, 1, 2, . . .. Simply speaking, the word χ0χ1 . . . is an input
word such that when an automaton is fed by that word, the automaton updates it states
s0 → s1 → s2 → · · · where sj is a state from which the arrow −→a j starts and sj+1 is a state
to which the arrow −→a j goes; thus, the states sj, sj+1 are connected by the arrow −→a j which
goes from sj to sj+1 and which is labelled as χj|·.
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Figure 2. Reduced state transition diagram of the 2-adic odometer
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The statement of the following proposition is well known; see, e.g., [10]:

Proposition 1 (Finite and nonfinite automata functions). Both addition + : Z2
p → Zp and

multiplication · : Z2
p → Zp are automata functions; addition is a finite automaton function, whereas

multiplication is not. A constant map f : Zp → Zp is a finite automaton function if and only
if f (z) = const ∈ Zp ∩Q for all z ∈ Zp. An affine map f (z) = az + b, (z ∈ Zp) is a finite
automaton function if and only if a, b ∈ Zp ∩Q.

Automata functions of automata whose input/output alphabets are Fp can be explicitly
represented via Mahler series. Recall that if p > 1 is an integer (which is not necessarily
a prime), then every function f : N0 → Zp (or, respectively, f : N0 → Z) has the only
Mahler expansion; that is, has a unique representation via the so-called Mahler (interpolation)
series [20]:

f (x) =
∞

∑
i=0

ai

(
x
i

)
, (3)

where ai ∈ Zp (respectively, ai ∈ Z), i = 0, 1, 2, . . ., and(
x
i

)
=

x(x− 1) · · · (x− i + 1)
i!

for i = 1, 2, . . .; (
x
0

)
= 1,

by definition. The following reciprocity relations hold:

ai =
i

∑
j=0

(−1)j
(

i
j

)
f (i− j), i = 0, 1, 2, . . . (4)

The function f : Zp → Zp represented by series (3) is continuous with respect to the p-adic
metric if and only if ai tends p-adically to 0 as i tends to infinity.

To represent functions of several variables, one may use interpolation series of the
following form:

f (x1, . . . , xn) = ∑
(i1,...,in)∈Nn

0

ai1,··· ,in

(
x1

i1

)(
x2

i2

)
· · ·
(

xn

in

)
; (5)

Here, ai1,...,in ∈ Zp. As the map f : Zn
p → Zp is an automaton function (of the automaton

having n inputs and one output over a p-symbol alphabet Fp), the following Theorem 1
completely describes the automaton functions. Note that blogp ic is the smallest integer
which does not exceed logp i; thus, blogp ic is reduced by 1 number of digits in the base-p
expansion of i ∈ N0; thus, blogp 0c = 0.

Theorem 1 ([23] [Theorem 3.53]). A function f : Zn
p → Zp represented by the Mahler expan-

sion (5) is 1-Lipschitz (with respect to the p-adic metric) if and only if

|ai1,...in |p ≤ p−ν(i1,...,in),
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where ν(i1, . . . , in) = max{blogp ikc : k = 1, 2, . . . , n}.
In particular, a univariate function f : Zp → Zp represented by the Mahler expansion (3) is

1-Lipschitz if and only if
|ai|p ≤ p−blogp ic

for all i = 1, 2, . . .. In other words, a function f : Zp → Zp is automatic if and only if it can be
represented as

f (x) =
∞

∑
i=0

ci p
⌊

logp i
⌋(

x
i

)
, (6)

for suitable ci ∈ Zp; i = 0, 1, 2, . . ..

Note 2. The series (6) converges uniformly on Zp. Given a 1-Lipschitz function f : Zp → Zp, the
representation (2) is unique.

There are explicit representations of automaton functions in other terms (e.g., via van
der Put series, digital derivatives) which are not needed within the scope of the paper; an
interested reader is referred to an expository paper [24]. Additionally, it is worth noting
that Moore sequential machines are initial automata whose output function depends only on
states, cf. Definition 2, but it is well known that the latter machines are equivalent to Mealy
machines in the following meaning: under the assumption that an output of a Moore machine at
initial state is an empty symbol (i.e., no output), then the classes of causal functions represented
by Mealy machines and by Moore machines coincide; however, to represent a causal function
via a state transition diagram of a Moore machine, one needs more states compared to the
diagram of the respective Mealy machine. This is why in the rest of the paper, the example
state transition diagrams are given for Mealy machines although, from a physical point
of view, it might be more natural to deal with Moore machines since they appear to be
defined on Markov chains whilst Mealy machines are not, as the output of Moore machines
formally depends only on states rather than on arrows reaching the states; however, this
view is misleading since Mealy machines do exactly what Moore machines do.

Finally, automaton functions is the concept which illuminates the sharp difference
between the two approaches, the ‘t Hooft’s one based on cellular automata and ours based
on letter-to-letter transducers: the class of functions computed by the transducers is much smaller
than the class of functions computed by cellular automata. To exemplify this, consider one
more type of transducer, the letter-to-word transducer (or, asynchronous initial automata, [22])
whose output function is I× S→Wφ rather than I× S→ O and where Wφ is the set of all
finite words (including the empty word φ) over the output alphabet O, c.f., Definition 2.
In the case when I = {0, 1, . . . , p − 1}, an asynchronous initial automaton, produces a
map Zp → Zp that can be constructed by an analogy with the synchronous case; then,
the maps Zp → Zp, which are automaton functions of nondegenerate synchronous initial
automata, constitute the class of all functions that are continuous with respect to the p-
adic metric, c.f., [22] [Theorem 2.4]. Therefore, these functions are defined by the maps
N0 → N0 as N0 is dense in Zp with respect to the p-adic metric. The automata functions
of initial synchronous automata are all of the form (6), so if f is an automaton function

of a synchronous automaton such that f : N0 → N0, then necessarily ci p
⌊

logp i
⌋
∈ Z for

all i ∈ N0 as the value of ai for every i can be calculated by using (4). Therefore, from
the algorithmic point of view, f is a primitive recursive function. In a similar way, it can
be shown that the functions N0 → N0 which are automaton functions of nondegenerate
asynchronous automata are also a primitive recursive function since they can be uniquely
expanded to continuous p-adic functions Zp → Zp and thus are of the form (3). However,
a class of cellular automata is Turing-complete; therefore, the automaton functions of
cellular automata (which can be defined for these automata as well) constitute the class
of all general recursive functions; hence, they are not even everywhere defined on N0, let
alone p-adic continuity or 1-Lipschizness. In other words, one may say that the class
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of automata functions of initial synchronous automata is the smallest class of automata
functions, whereas the class of automata functions of cellular automata is the largest one.

3.4. On the Dynamics of Causal Functions

Here, we briefly recall some facts about the dynamics of automaton functions follow-
ing [23]; i.e., on the dynamics of the p-adic 1-Lipschitz functions. The dynamics arises
quite naturally since the automaton function of a sequential composition of automata is a
composition of automaton functions. In addition, we recall from [25] a few general notions
and facts from dynamical system theory which will be needed in subsequent steps.

A map F : S→ Y from a measure space S into a measure space Y endowed with proba-
bility measures µ and ν, respectively, is said to be measure-preserving if µ(F−1(S)) = ν(S) for
each measurable subset S ⊂ Y; in the case when S = Y and µ = ν, a measure-preserving
map F is said to be ergodic if given a measurable subset S such that F−1(S) = S, either
µ(S) = 1 or µ(S) = 0; the map F is called weak mixing if for any two measurable sets A, B,
there exists a sequence nk → ∞ over N0 such that µ(F−nk (A) ∩ B)→ µ(A)µ(B) as k→ ∞.
If nk = k, the weak mixing is called strong mixing. Weak mixing implies ergodicity but is
a stronger condition than is ergodicity: the map F is weak mixing if and only if the map
(x, y) 7→ (F(x), F(y)) of S× S into S× S is ergodic.

Example 1 (Trivial although important). Let S be a finite set, #S = N, which is endowed with a
uniform probability measure µ: given A ⊂ S, #A = M, we put µ(A) = M

N . A transformation f
on S is measure-preserving if and only if f is bijective, i.e., if f is a permutation on S. The map f is
ergodic if and only if this permutation consists of a single cycle, i.e., if it is transitive on S.

Definition 3 (Topological transitivity). Given a topological space X and a continuous mapping
f : X → X, the mapping f (as well as the respective dynamical system) is called topologically
transitive if there exists a dense orbit of f ; that is, if there exists x ∈ X such that the set of iterations
{ f i(x) i ∈ N0} is everywhere dense in X. A dynamical system is called minimal if every orbit
is dense.

There is another (generally, nonequivalent to the above) definition of topological
transitivity: the map f is called topologically transitive if for every pair of nonempty open
sets U, V ⊂ X, there exists a non-negative integer ` such that f `(U) ∩V 6= ∅. However, as
in the sequel we deal with spaces X = Zn

p, n ∈ N, the two definitions are equivalent since
the spaces have no isolated points and are separable and of second category.

Definition 4 (Unique ergodicity). A mapping f : S → S is called uniquely ergodic if there
exists a unique f -invariant probability measure µ on S; i.e., such that f is ergodic with respect to µ.

Proposition 2 ([25] [Corollary 4.3.6]). A minimal isometry of a compact metric space is uniquely er-
godic.

Given a 1-Lipschitz function f : Zp → Zp, a map f mod pk : z 7→ f (z) mod pk is a
well-defined map of the residue ring Z/pkZ into itself, cf., Section 3.2. This map is called
an induced function modulo pk. The function induced modulo pk by a 1-Lipschitz function
F : Zn

p → Zn
p can be defined by analogy.

Definition 5 (Bijectivity and transitivity modulo pk). A 1-Lipschitz function F : Zn
p → Zn

p is
said to be a bijective modulo pk (respectively, a transitive modulo pk) whenever the induced
function F mod pk : (Z/pkZ)n → Z/pkZ)n is bijective (respectively, transitive).

In what follows, if the measure is not specified explicitly, measure preservation and
ergodicity are defined with respect to the Haar probability measure on Zn

p, cf., Section 3.2.
The following Theorem and Proposition are proven in [23] [Chapter 4].
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Theorem 2 (Main ergodic theorem for 1-Lipschitz p-adic dynamics). A 1-Lipschitz function
F : Zn

p → Zn
p is measure-preserving (or, accordingly, ergodic) if and only if it is bijective, ( or,

accordingly, transitive) modulo pk for all k = 1, 2, 3, . . ..

Proposition 3. A function F : Zn
p → Zn

p is measure-preserving and 1-Lipschitz if and only if it is
an isometry of Zn

p onto itself. A measure-preserving 1-Lipschitz function F is ergodic if and only if
it has a dense orbit; moreover, all orbits of ergodic 1-Lipschitz function F : Zn

p → Zn
p are dense.

The space Zn
p is a probability space and a metric (and thus topological) space. There-

fore, for a continuous function Zn
p → Zn

p, one can define a metric entropy (related to the
probability) and a topological entropy (related to the topology). In general, given F, these
entropies may differ. However, for 1-Lipschitz functions F, both entropies coincide and are 0.
Indeed, it is known that if G : X→ X is an isometry of a compact metric space X onto itself,
then the topological entropy of G is 0, cf., e.g., [26] [Exercise 6.3]. Yet, the variational princi-
ple for the topological entropy necessitates that the topological entropy of a continuous
transformation G of a compact metric space X is a supremum of all metric entropies of G
with respect to G-invariant measures on X, cf., [26] [Theorem 6.8.1]; this proves the claim.
Moreover, from Proposition 3 it follows that given a 1-Lipschitz ergodic map F : Zp → Zp,
the map F × F : (x, y) 7→ (F(x), F(y)) of Z2

p to Z2
p is never ergodic since an orbit which

starts from (z, z) ∈ Z2
p is never dense in Z2

p, so F is never weak mixing.
We summarize as follows:

• A function F : Zn
p → Zn

p is measure-preserving and 1-Lipschitz if and only if it is
isometric.

• A 1-Lipschitz function F : Zn
p → Zn

p is isometric if and only if it is bijective; i.e., if and
only if the respective automaton is time-reversible: an automaton A whose automaton
function is F is called time-reversible if there exists an automaton B whose automaton
function is G and such that G = F−1, i.e., the composition G(F) is an identity map
Zn

p → Zn
p. The time-reversibility is also called automaton weak invertibility, [27].

• All 1-Lipschitz functions Zn
p → Zn

p have zero topological entropy (thus, zero metric
entropy).

• All 1-Lipschitz ergodic maps F : Zn
p → Zn

p are uniquely ergodic.
• None of the 1-Lipschitz ergodic maps F : Zn

p → Zn
p is weak mixing.

• Every orbit of every 1-Lipschitz ergodic map F : Zn
p → Zn

p is dense.

When n = 1 the following is true [28] [Theorem 6]:

Theorem 3. Let f : Zp → Zp be surjective and 1-Lipschitz. The following propositions are
equivalent:

(i) f is minimal;
(ii) f is conjugate to the translation τ : x 7→ x + 1 on Zp;
(iii) f is uniquely ergodic;
(iv) f is ergodic.

In subsequent steps, we will need the following sufficient conditions of measure-
preservation/ergodicity for 1-Lipschitz functions Zp → Zp, [23] [Lemma 4.41]:

Lemma 1. Given a 1-Lipschitz function f : Zp → Zp and p-adic integers c, d, c 6≡ 0 (mod p),
the function g(x) = d + cx + p · f (x) is 1-Lipschitz measure-preserving and the function
h(x) = c + x + p · ∆ f (x) is 1-Lipschitz ergodic. (Here, ∆ is a difference operator
∆ f (x) = f (x + 1)− f (x) by definition.)

4. Completely Consistent Functions

Causal functions over discrete time N0 = {0, 1, 2, . . .} from Section 2 are the maps
f from the set W(I) of all infinite words over a finite alphabet I to the set W(O) of all
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infinite words over a finite alphabet O which are 1-Lipschitz with respect to standard
non-Archimedean metric d on the words, d( f (u), f (v)) ≤ d(u, v), or, which is the same
if and only if words f (u) and f (v) have a common prefix of length at least k whenever
respective words u and v have a common prefix of length k.

As a composition of automaton functions is an automaton function, the following
example introduces an important class of functions which are automaton functions for
every p (by Proposition 1) and, moreover, which at the same time can be considered as
continuous real functions.

Example 2 (Polynomials over Z are automata functions). A polynomial map f : z 7→ f (z)
where f (x) ∈ Z[x] is an automaton function; f is never a finite automaton function if deg f ≥ 2.

That is, as the set Zp ∩Q of all rational p-adic integers is dense both in Zp with respect
to the p-adic metric on Zp for every p and with respect to usual real metric on R, the
map induced by a polynomial f ∈ Z[x] is well-defined both on Zp for all p and on R; i.e.,
the map f : z 7→ f (z), (z ∈ Zp ∩Q), can be uniquely extended both to continuous maps
f : u 7→ f (u), (u ∈ Zp), for all p, and to a continuous map f : y 7→ f (y), (y ∈ R). This
is because any polynomial map is a composition of additions and multiplications, and
these operations are well-defined and continuous both on all Zp and on R with respect to
corresponding metrics and agree on Zp ∩Q.

4.1. Universally Causal Functions

The maps f : N0 → Z defined by polynomials over Z are examples of functions which
we call universally causal; these are the functions which, loosely speaking , are causal with
respect to all finite alphabets A and B such that #A = #B = r for whatever r ∈ {2, 3, 4, . . .}
is taken. Here is a formal definition.

Definition 6 (Universally causal functions). A causal function f : (ai)
∞
i=0 7→ (ϕ

f
i (ai))

∞
i=0

whose domain is all sequences a = (ai)
∞
i=0 over A and whose codomain is all sequences

b = (bi)
∞
i=0 over B (see Section 1) is called universally causal if #A = #B = r > 1, and

there exist bijections α : A ↔ {0, 1, . . . , r − 1} and β : B ↔ {0, 1, . . . , r − 1} such that the in-
duced map f̃ : Zr → Zr defined by f̃ : ∑∞

i=0 α(ai)ri 7→ ∑∞
i=0 β(ϕ

f
i (a0, . . . , ai))ri, c.f., (1), satisfies

the following conditions:

(i) f̃ (N0) ⊂ Z, where N0, the rational non-negative integers, are all r-adic integers whose
canonical r-adic representations contain only a finite number of nonzero terms; and Z, the
rational integers, are either non-negative rational integers or negative rational integers.
The latter are all r-adic integers whose canonical r-adic representations contain only a finite
number of terms other than (r− 1)ri.

(ii) f̃ (m) ≡ f̃ (n) (mod q) once m ≡ n (mod q), where m, n, q ∈ N0, q > 1.

The class of universally causal functions is much wider than than that of functions
defined by polynomials over Z. Actually, up to the bijections α, β, the universally causal
functions constitute a class of the so-called pseudo-polynomials, Ref. [29] or universal func-
tions [30]; these are maps g : N0 → Z which satisfy (ii) from Definition 6.

Theorem 4 (On pseudo-polynomials). A map g : N0 → Z is a pseudo-polynomial if and only if
g can be represented as

g(z) = c0 +
∞

∑
i=1

ci · lcm{1, 2, . . . , i} ·
(

z
i

)
= c0 +

∞

∑
i=1

ci · eψ(i) ·
(

x
i

)
, (7)

where ci ∈ Z, lcm{1, 2, . . . , i} is the least common multiple of the numbers 1, 2, . . . , i, and
ψ(i) = ∑q≤i, q primeblogq ic ln q is the second Chebyshev function, i = 1, 2, . . . (recall that
ψ(i) = i + o(i)).
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In the literature, often only the functions of the form (7) which are not polynomials
are called pseudo-polynomials, but in the current paper, we call pseudo-polynomials all
functions of that form. The class of pseudo-polynomials is wide and is a subject of study for
a number theorists, who focus mostly on Ruzsa’s conjecture, which is about the sufficient
conditions for when a pseudo-polynomial is a polynomial; see, e.g., [31]. Classical examples
of pseudo-polynomials which are not polynomials are ∑∞

i=0 xi and ∑∞
i=0(−1)ixi, where xi is

the i-th falling factorial power, xi = x(x− 1) · · · (x− i + 1), if i > 0 and x0 = 1.

Note 3. The following is noteworthy.

• Even if all but a finite number of ci in (7) are 0, i.e., if g is a polynomial, then g is not necessarily
a polynomial with integer coefficients, although g is polynomial over Q. For instance, put
c4 = 1 and put ci = 0 for i 6= 4.

• If all but a finite number of ci are 0, the function g is well-defined on R; that is, f can be
uniquely expanded to a map R→ R which is continuous with respect to the real metric.

• For every p > 1, the map g can be uniquely expanded to 1-Lipschitz (thus, automatic) map
Zp → Zp, cf., (6) from Theorem 1.

4.2. The Main Theorem on Complete Consistency

Therefore, polynomials of the form (7) satisfy Conditions 1 for every prime p. It
turns out that the converse statement is also true. Note that a function which satisfies the
conditions for all prime p must be universally causal, i.e., it must be a pseudo-polynomial;
however, the only pseudo-polynomials which are well-defined on R are polynomials since
if an infinite number of ci in (7) are nonzero then the series diverges at; for example, z = −1
as the common term at z = −1 is (−1)ici · lcm{1, 2, . . . , i} and thus does not go to 0 as
i → ∞. However, this argument does not prove the converse claim since, for instance, if
g is a pseudo-polynomial which is not a polynomial, then the composition g(z2) is also
a pseudo-polynomial, but the map z 7→ g(z2) is well-defined on Z. Nonetheless, the
following theorem holds true.

Theorem 5 (Functions which satisfy Conditions 1). A continuous function f : R→ R satisfies
Conditions 1 if and only if f is a polynomial of the form (7); i.e., when all but a finite number of ci
in (7) are zero.

Proof. According to Theorem 4, every polynomial g over Q of the form (7) satisfies (i) from
Conditions 1, cf., (ii) of Definition 6. Therefore, g also satisfies (ii) from Conditions 1 since
g(Q) ⊂ Q as g is a polynomial over Q.

To prove the converse claim, note that the map u : Zp → Zp is 1-Lipschitz if and only
if ∆iu(z)/i ∈ Zp for all z ∈ Zp and all i ∈ N, cf., [23] [Proposition 3.38] or [32] [Proposition
3.1]. Here, ∆ is the (forward) difference operator, i.e., ∆1u(z) = ∆u(z) = u(z + 1)− u(z),
∆i+1u(z) = ∆(∆iu(z)). Therefore, we have the following:

∆i f (z)
i
∈ Z, for all z ∈ Z, i ∈ N. (8)

Further, from (ii) of Conditions 1, it follows (by Note 1) that 1
h · ( f (z+ h)− f (z)) = q(z, h) ∈

Q for all z, h ∈ Q and h 6= 0 since z, h ∈ Zp ∩Q for all but not more than a finite number of
primes p. However, f (z + h) = ∑∞

i=0 (
h
i)∆

i f (z) where the series converges p-adically for all
but not more than a finite number of primes p as ∆i f (z) tends p-adically to 0 according to
Theorem 1; cf., (i) of Conditions 1. Thus, the series converges to some q′(z, h) ∈ Q by (ii) of
Conditions 1, and, therefore, the series converges in R to that rational number q′(z, h). We
have

1
h
( f (z + h)− f (z)) =

1
h

∞

∑
i=1

(
h
i

)
∆i f (z) =

∞

∑
i=1

(
h− 1
i− 1

)
∆i f (z)

i
, (9)
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where the series in the right hand part converges in R to the rational number q(z, h) ∈ Q;

therefore, the absolute value |(h−1
i−1)

∆i f (z)
i | must tend to 0 in R as i → ∞. Represent the

following: (
h− 1
i− 1

)
=

(
h
1
− 1
)(

h
2
− 1
)
· · ·
(

h
i− 1

− 1
)

From here, it follows that∣∣∣∣(h− 1
i− 1

)∣∣∣∣ ≥ ∣∣∣∣1− h
i− 1

∣∣∣∣i−1
> 0 for all i = 2, 3, . . . ; −1 < h < 0

As for −1 < h < 0 rational, it holds

lim
i→∞

∣∣∣∣1− h
i− 1

∣∣∣∣i−1
= e−h > 0,

from the convergence of the series in the right hand part of (9), and it it follows necessarily

that limi→∞
∆i f (z)

i = 0; therefore, according to (8), given z ∈ Z, then ∆i f (z) = 0 for
all sufficiently large i. In particular, ∆i f (0) = 0 for all sufficiently large i. As f (x) =

∑∞
i=0 (

x
i )∆

i f (0) and, in view of Conditions 1 (i), the series in the right hand part converges
p-adically in Zp, then, according to Note 2, we finally conclude that f is a polynomial over
Q; hence, a polynomial of the form (7).

Definition 7 (Totally consistent functions). Further in the paper, functions described by Theo-
rem 5 are called totally consistent; C(R) denotes the class of all totally consistent functions.

Note 4. In view of Theorem 1, the statement of Theorem 5 holds true for continuous real functions
Rm → Rn as well. The proof is a minor modification of the proof of the said theorem and thus is
omitted.

Note 5. From the proof of Theorem 5, it follows that relaxation of Conditions 1 to functions f whose
domain contains a real interval rather than coincides with the whole R does not widen the class of
functions.

4.3. The Free Choice of Discreteness/Continuity

We stress once again that in the measurement of values of physical quantities, the rational p-
adic integers Zp ∩Q are indistinguishable from rational numbers Q since every real number can be
approximated by a rational p-adic integer with any desirable accuracy. Note also that polynomials
over Z are totally consistent; cf. Example 2. The theorem by M. I. Chlodovsky states that a
continuous real-valued function on a real interval which does not contain integers can be
uniformly approximated by polynomials over Z [33,34]. Therefore, according to Theorem 5,
any continuous real function on the real interval [α, β] where 0 < α < β < 1 can be uniformly
approximated (with respect to a real metric) by completely consistent functions, i.e., by functions
from Call primes(R). On the other hand, Theorems 1 and 5 imply that any p-adic 1-Lipschitz
function f : Zp → Zp can be uniformly approximated (with respect to the p-adic metric) by
completely causal functions, regardless of which prime p is taken.

Indeed, according to (6), the function f can be represented by the Mahler expansion
f (z) = ∑∞

i=0 bi p
blogp ic

(z
i) where bi ∈ Zp. According to Theorem 5, given n ∈ N, we must

find a polynomial g(x) = c0 + ∑∞
i=1 ci · lcm{1, 2, . . . , i} · (x

i ) where all ci ∈ Z such that
f (z) ≡ g(z) (mod pn) for all z ∈ Zp. As lcm{1, 2, . . . , i} = ∏(q) qmi,q where qmi,q is the
largest power of a prime q that does not exceed i, then mi,q = blogq ic, and therefore

ci · lcm{1, 2, . . . , i} = ci p
blogp icai where ai = lcm{1, 2, . . . , i}/pblogp ic is in Z and is coprime

to p. Hence, given bi ∈ Zp, a congruence bi ≡ ciai (mod pn) has an integer solution ci ∈ Z.
Put ci = 0 for all i such that blogp ic ≥ n, and let c0 ∈ Z be the least non-negative residue
of b0 ∈ Zp modulo pn. Then, the so-defined polynomial g is the one we need.
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All the considerations already outlined in this paper may be taken as evidence in
favour of the following plausible statement which answers the question to which the whole
book [2] is devoted:

Interpretation 1 (Observer’s free choice of discreteness/continuity). Due to the inevitable
nonzero error in the measurements of values of physical quantities, an observer’s conclusion whether
Nature on the smallest of the scales is discrete or continuous completely depends on the observer’s
free choice of metric with respect to which the observer processes the measured numerical data.
Moreover, the very ”degree of the discreteness“, the number p, is subject to observer’s free choice.

4.4. The Free Choice of Chaoticity/Predictability

The next important question which should be addressed is related to the ‘t Hooft
causality postulate and can be posed as follows: Can an observer determine through nu-
merical observational data whether Nature on the smallest of scales is random or absolutely
predictable? In what follows, the second term is understood as causality, i.e., if an observer
probes a system by exposing it to some impacts, reactions of the system coincide whenever
impacts coincide up to a precision of measurement equipment; that is, the same causes imply
same effects, so the behaviour of the system is completely predictable since a cause results
in a unique effect within the measurement precision. The randomness means that the “same”
causes may result in different effects. Specifically, causes whose numerical values are indistin-
guishable in measurement since the values coincide up to the precision of measurement
equipment may result in effects which are distinguishable by measurement, i.e., differences
of numerical values of respective effects exceed the measurement error. This is why we
treat what follows randomness as chaos in a broad meaning since the definitive feature of
chaos is its extreme sensitivity to negligible distortions/perturbations.

Recall that there are many nonequivalent mathematical notions of chaos; see, e.g.,
the expository paper [35]. One of the most common of these definitions is in the work of
R. L. Devaney [36] [Definition 8.5] which reads as follows:

Definition 8 (Devaney’s chaos on metric spaces). Let F : X→ X be a continuous function on
a metric space X equipped with a metric d. The function F is said to be chaotic if it satisfies the
following three conditions:

(i) Sensitive dependence on initial conditions: There is δ > 0 such that, for any x ∈ X
and any neighbourhood A ⊂ X of x, there exists y ∈ A and n ∈ N0 such that
d(Fn(x), Fn(y)) > δ.

(ii) Topological transitivity: Given any pair of open subsets U, V ⊂ X, there exists k ∈ N
such that Fk(U) ∩V 6= ∅.

(iii) Density of periodic points: The set of all periodic points of F is dense in X (a point
x ∈ X is called periodic if Fk(x) = x for some k ∈ N).

It is known that conditions (i)–(iii) are not independent. In [37], it is proven that sensitive
dependence on the initial conditions is a redundant element in Devaney’s definition because
it follows from topological transitivity and denseness of the periodic points; in [38], it
is shown by construction of counter examples, that neither topological transitivity nor
denseness of the periodic points follow from the remaining two properties. In [39], it is
proven that chaos, according to Devaney’s definition, may exist in bounded but noncompact
spaces without any nonperiodic orbits. For bounded metric spaces, however, the following
theorem is true:

Theorem 6 (C. Knudsen, [39]). Let F, X, d be as that in Definition 8; let X be bounded; let
f = F|Y be a restriction of F to a dense subset Y of X. Then, we obtain the following:

• F : X→ X is topologically transitive, if and only if f : Y→ Y is topologically transitive;
• F : X→ X exhibits sensitive dependence on the initial conditions, if and only if f : Y→ Y

exhibits sensitive dependence on the initial conditions.



Entropy 2023, 25, 830 20 of 49

The following definition of chaos on a bounded metric space is from Knudsen.

Definition 9 (Knudsen’s chaos on bounded metric spaces [39]). Let F be a continuous trans-
formation of a bounded metric space X. If F has a dense orbit in X and if F exhibits sensitive
dependence on the initial conditions, then F is said to be chaotic.

We stress that to the best of our knowledge, all definitions of chaos on metric spaces
contain sensitive dependence on initial conditions as an inherent property; other conditions
vary, but the sensitive dependence condition is always present, [40]. For other various
types of chaos on compact metric spaces X, see [35]. We only mention that a continuous
map F : X → X is called topologically chaotic if topological entropy of F is positive. The
topological chaos implies Li-Yorke chaos, which is yet one more widely known type of
chaos, for whose definition the reader is referred to [35]. In addition, positive topological
entropy implies distributional chaos of type DC2, [41]. Chaos can also be defined in terms
of measure-preserving transformations of measure spaces rather than of metric spaces;
see [41].

The “chaos-like” behaviour may also be expressed in terms of “blending capability”
which we first illustrate by an example taken from [42]. If in a cocktail shaker of volume 1
there are 10 shares of gin and 90 shares of vermouth then, after ergodic shaking, in every
volume V of the shaker there will be 10 shares of gin and 90 shares of vermouth on average,
whereas after strong-mixing shaking, in every V there will be approximately 10 shares of gin
and 90 shares of vermouth; after weak-mixing shaking, in every V with the exception of some
rare instants there will be 10 shares of gin and 90 shares of vermouth. Formally, a measure-
preserving transformation F is by definition strong mixing if limn→∞ µ(F−n(A) ∩ B)) =
µ(A)µ(B) for every µ-measurable subsets A, B. Thus, if µ is a probability measure, the
strong-mixing transformation, after being applied a sufficiently large number of times,
makes any two “events” A, B “independent” in the probabilistic meaning. As mentioned in
Section 3.4, a 1-Lipschitz measure-preserving map can be neither strong nor weak mixing;
only the ergodicity is possible.

Finalising the considerations of chaos, we claim that 1-Lipschitz functions F : Zn
p →

Zn
p are deterministic and nonchaotic with respect to chaos of any type. Indeed, due to the 1-

Lipschizness, these functions exhibit no sensitive dependence on initial conditions, and
their topological entropy is zero; hence, any metric entropy is zero; cf. Section 3.4. Moreover,
as measure-theoretical chaos is defined only for measure-preserving maps, and as a 1-
Lipschitz map F : Zn

p → Zn
p preserves the Haar probability measure if and only if it is

an isometry, it can be easily shown that F is chaotic with respect to no type of measure-
theoretic chaos defined in [41]. One may say, therefore, that totally consistent functions
(see Definition 6) are the best candidates to be called superdeterministic. The latter term also
must not be treated in the meaning which is common for physical theories [5] but rather as
a mathematical notion to stress the “extremely nonchaotic” behaviour of the functions.

On the other hand, one may also say that totally consistent functions are similar to
Ianus Bifrons: being deterministic with respect to a p-adic metric for every p, the totally
consistent functions can nevertheless be chaotic if considered as real functions on a real interval. Let
us consider an illustrative example.

A well-known “canonical” example of real chaotic maps, the logistic map
L(x) = 2x(1 − x), maps a real closed interval [0, 1] to [0, 1]. The map L has positive
entropy log 2. On the other hand, L is a polynomial with integer coefficients; hence, it is a
totally consistent function, thus its entropy as a p-adic 1-Lipschitz map z 7→ 2z(1− z) (both
topological and metric with respect to Haar probability measure) is 0, and L : Zp → Zp is
not sensitive to initial conditions. The map L on Z2 is not measure-preserving with respect
to the Haar probability measure on Z2; it has the only point of attraction (namely, 0) to
which all orbits converge; thus, L is not topologically transitive on Z2.

However, the map L is ergodic on the 3-adic sphere S1/27(0) of radius 1/27 centred at
0 since 0 is a fixed point of L and L′(0) = 2 is a generator of the group of units modulo 9;
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see [23] [Theorem 4.79] or [43] [Theorem 5.7]. Specifically, the sphere S1/27(0) is a disjoint
union of two 3-adic balls B1/81(27) and B1/81(54), the sphere is invariant under the action
of L on Z3, and the sphere is measurable with respect to the Haar probability measure on
Z3. Thus, the probability measure on Z3 induces a probability measure on S1/9(0) with
respect to which the action of L on the sphere is measure-preserving and ergodic. The
set of all rational 3-adic numbers from S1/27(0) which lie in the real closed interval [0, 1]
is dense in [0, 1] with respect to the real metric. Therefore, as 3-adic rational integers are
indistinguishable from real numbers by measurement due to inevitable nonzero error, the
map L can be judged as measure-preserving and ergodic.

Now consider the map L on the 3-adic sphere S1/27(1). The sphere is a disjoint union
of balls B1/81(28) and B1/81(55). The sphere is invariant under the action of L on Z3 and
is measurable with respect to the probability measure on Z3. The map L on S1/27(1) is
measure-preserving with respect to the induced probability measure but is not ergodic by the
criterion of ergodicity on p-adic spheres (see [23] [Theorem 4.79] or [43] [Theorem 5.7])
since L′(1) = −2 is not a generator of the group of units modulo 9. The set S1/27(1) ∩ [0, 1]
is dense in [0, 1] with respect to the real metric; therefore, by the reasoning similar to that as
above, the map L can be judged as measure-preserving but not ergodic.

Finally, the map L : Zp → Zp is measure-preserving for no p as L is not a bijective modulo
p; cf. Theorem 2. However, the set Zp ∩Q∩ [0, 1] is also dense both in Zp and in [0, 1] with
respect to the p-adic and to the real metrics accordingly, so the values of the map L that
takes on Zp ∩Q∩ [0, 1] define a unique map both on [0, 1] and on Zp for every p. However,
an observer’s measurement data may only be rational numbers due to the inevitable
nonzero measurement error, and any rational number from [0, 1] can be approximated with
arbitrarily high accuracy (with respect to the real metric) by numbers from Zp ∩Q∩ [0, 1]
regardless of whichever p is taken. In other words, numbers from Zp ∩Q∩ [0, 1] (as well
as from S1/27(1) ∩ [0, 1], or from S1/27(0) ∩ [0, 1]) are indistinguishable from numbers in
Q∩ [0, 1] and from numbers in [0, 1] by measurements due to nonzero measurement error,
but the choice of metric (and of the dense subset) with respect to which the measured
numbers are processed is crucial for the observer’s conclusion whether the obtained data
are completely random or satisfy a strictly deterministic law.

All these facts can be judged as evidence in favour of the following assertion.

Interpretation 2 (Observer’s free choice of determinism/randomness). Due to the inevitable
nonzero error in measurements of values of physical quantities, an observer’s conclusion as to
whether Nature on the smallest of the scales is superdeterministic or random completely depends
on the observer’s free choice of metric with respect to which the observer processes the measured
numerical data.

4.5. p-Consistent Functions

In view of the finiteness assumption (cf. the text which follows Definition 1), Conditions 1
may appear to be too restrictive since according to physical reasons, the number of “ele-
mentary causes” and “elementary effects” cannot be arbitrarily large; therefore, it does not
exceed some p. This is a motivation to introduce the following class of causal functions,
the (univariate) p-consistent functions: given a prime p, we denote via Cp(R) the class of
all continuous (with respect to the usual metric on R) functions f̆ : R → R such that the
following conditions are satisfied:

(i) f̆ (Zp ∩Q) ⊂ Zp ∩Q;
(ii) There exists a p-adic 1-Lipschitz function f : Zp → Zp such that the following are

obtained:

• f (Zp ∩Q) ⊂ Zp ∩Q
• f (z) = f̆ (z) for every z ∈ Zp ∩Q

The multivariate p-consistent functions Rm → Rn can be defined similarly.
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Loosely speaking, the functions from Cp(R) “are living simultaneously in two worlds”,
the Archimedean one and the non-Archimedean one: any f̆ ∈ Cp(R) defines a unique
1-Lipschitz (i.e., automaton) function f : Zp → Zp since Zp ∩Q is dense in Zp with respect
to p-adic metric, and vice versa, any f defines a unique continuous real function f̆ : R→ R
since Zp ∩Q is dense in R with respect to the real metric (this is why in what follows, we
use the same symbol f for f̆ as well).

The functions from Cp(R) may suit the best for physical modelling of causal depen-
dencies both at the macro- and micro- scales since values of f ∈ Cp(R) on, e.g., N0, completely
define the function f on R.

From this definition, it immediately follows that any function from Cp(R) can be rep-
resented via a Mahler series (6) where all ci are in Zp ∩Q; the series converges both on R and
on Zp with respect to the real and, accordingly, to the p-adic metric. It would be interesting to
find necessary and sufficient conditions on the coefficients ci when the series (6) defines a
Cp(R)-function. The general conditions are not yet known, but nevertheless it is clear that
the class Cp(R) is rich; for instance, it contains not only polynomials over Zp ∩Q but also
some rational functions.

Example 3. Given polynomials u, v ∈ Z[x] such that v(z) 6≡ 0 (mod p) for all z ∈ Zp and
v(x) 6= 0 for all x ∈ R, the rational function f (x) = u(x)/v(x) is in Cp(R). The rational
functions f are differentiable with respect to both the p-adic metric and the real metric;
moreover, f̆ ′ = f ′ everywhere on Zp ∩Q and f ′ ∈ Cp(R); c.f., [44] or [23] [Section 3.10.2].

For k ∈ N, we denote as Ck
p(R) (respectively via C∞

p (R)) the subclass of all functions
which are k-times (respectively, infinitely many times) differentiable with respect to both
p-adic and real metric, whose derivatives are also in Cp(R). Put C0

p(R) = Cp(R). It is
natural to ask, therefore, whether there exist functions in Cp(R) which are not rational functions.
The answer is affirmative.

Theorem 7. There exist functions in C∞
p (R) which are not rational functions.

Proof. The theorem can be proven by employing ideas from [45,46]. The set Zp ∩Q is
countable; let us enumerate its elements as z1, z2, . . .. Define by simultaneous induction
a sequence of functions g0, g1, g2, . . . and integers m0 < m1 < m2 < · · · as follows: put
g0(x) = 0, m0 = 1. For n ≥ 1, consider the following polynomial over the ring Zp ∩Q:

hn(x) =
n

∏
i=1

(ri − x) = an,0 + an,1x + · · ·+ an,n−1xn−1 + (−1)nxn.

Put

gn(x) =
pnhn(x)

(p2n + 1)d|an,0|+ |an,1|mn−1 + |an,n−1|mn−1
n−1 + mn

n−1ep

where | · | is the real absolute value and drep for r ∈ R is the smallest ` ∈ N such that r ≤ `
if ` 6≡ 0 (mod p), or drep = ` + 1 if ` ≡ 0 (mod p). Then, gn(x) is a polynomial over
Zp ∩Q and ‖gn(c)‖ < p−n for every c ∈ C whose complex absolute value ‖c‖ ≤ mn−1.

Now, if n is even, let mn be first integer larger than mn−1 such that ∑n
i=0 gi(mn) ≥ 2. If

n is odd, let mn be the first integer larger than mn−1 such that ∑n
i=0 gi(mn) ≤ −2. Since the

leading coefficient of hn(x) is (−1)n, these conditions are always true if mn is large enough.
After defining all gn(x), put g(x) = ∑∞

i=1 gi(x). Then, the following is true:

• The sum g(x) = ∑∞
i=1 gi(x) converges uniformly in the open complex disk Dmn(0) of

radius mn centred at 0 for all n ∈ N because, except for the first n terms, every term
gi(c) is bounded absolutely by p−i, and the sum of these converges.

• Because the uniform convergence in an open subset of C preserves analyticity, the
function g is analytic on every Dmn(0) and so also on the whole C.

• g(Zp ∩Q) ⊂ Zp ∩Q since for every z = zk ∈ Zp ∩Q, all gj(z) = 0 for j ≥ k.
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• In the sequence (g(mk))
∞
k=1, the terms having odd indices k are less than −1, whereas

the terms having even indices k are greater than 1 since ∑n
i=0 gi(mn) ≥ 2 for even n

and ∑n
i=0 gi(mn) ≤ −2 for odd n, and the remaining terms in g(mn) cannot change

the whole sum for more than 1.

Thus, the function g is well-defined on the whole R; g is a continuous function with
respect to the real metric, and according to the intermediate value theorem, the function g
has a zero between mn and mn+1 for all sufficiently large n ∈ N. Therefore, g has infinitely
many zeroes in R and thus cannot be of the form u(x)/v(x), where u(x), v(x) ∈ Z[x]. The
function g according to this construction is a complex analytic function which is analytic
on the whole C; thus, the restriction of g on R is a function R→ R which is infinitely many
times differentiable everywhere in R, and each derivative is continuous with respect to real
metric and thus is uniquely defined by its values on Zp ∩Q, as Zp ∩Q is dense in R with
respect to the real metric.

On the other hand, given a, b ∈ Zp ∩ Q, a 6= b, there are unique k, n ∈ N such
that a = zk, b = zn with respect to the numeration of numbers in Zp ∩ Q. If n > k,
then g(a) = ∑n−1

i=0 gi(a), g(b) = ∑n−1
i=0 gi(b); therefore, |g(a) − g(b)|p ≤ |a − b|p since

∑n−1
i=0 gi(x) is a polynomial over Zp ∩Q; thus, a unique continuation of g to the whole

Zp is a p-adic 1-Lipschitz function. Let ḡk = g mod pk be a polynomial over N0 obtained
by the reduction modulo pk of the function g (it is clear that then deg ḡk ≤ k via the
construction of g). Then, the function g : Zp → Zp can be uniformly approximated by the
polynomials ḡk with respect to the p-adic sup-norm which is defined as follows: Given
a p-adic 1-Lipschitz functions u : Zp → Zp, the p-adic sup-norm is max{|u(z)|p : z ∈ Zp}.
Therefore the function g : Zp → Zp is a B-function, the Stone–Weierstrass completion of the
polynomials over N0 with respect to the said p-adic sup-norm; thus, g is infinitely many
times differentiable with respect to the p-adic metric, all derivatives are B-functions, and
thus the derivatives are uniquely defined by their values on Zp ∩Q, as Zp ∩Q is dense
in Zp with respect to the p-adic metric; see [44] [Proposition 4.4.] or [23] [Section 3.10.2,
Proposition 3.59].

Therefore, g is infinitely many times differentiable both on R and on Zp, and the values
of the derivatives both with respect to the real and to the p-adic metric coincide on Zp ∩Q.
This finally proves that g is a C∞

p (R)-function.

The Cp(R)-functions exhibit a sort of “hologram-likeness”. The values a Cp(R)-function
takes on arbitrarily small real interval, completely define the function on R and on Zp. Recall that
a complete hologram can be restored from a small piece of a holography plate.

Theorem 8 (Hologram-likeness of Cp(R)-functions). Let f , g ∈ Cp(R) and let (α, β) ⊂ R be
any open interval; then f = g if and only if f (x) = g(x) for all x ∈ (α, β) ⊂ R (equivalently, for
all x ∈ (α, β) ∩Zp ∩Q).

Proof. For n ∈ N, d ∈ {1, . . . , pn− 2} put zn,d = d
1−pn ; then, zn,d ∈ (−1, 0) ⊂ R, d ∈ Zp ∩Q.

If d = ξ0 + ξ1 p + · · · ξn−1 pn−1 is the base-p expansion of z then

zn,d = ξ0 + ξ1 p + · · · ξn−1 pn−1 + ξ0 pn + ξ1 pn+1 + · · · ξn−1 p2n−1 + · · · (10)

is a p-adic canonical form of zn,d as (1 − pn)−1 = 1 + pn + p2n + p3n + · · · ∈ Zp; cf.,
Section 3.2. From 10, it immediately follows that the set Z of all these zn,d is dense in Zp.
Therefore, f = g on Zp if and only if f = g on Z, but f = g on Zp if and only if f = g on R.

Let α, β ∈ Zp ∩Q, α < β. Put γ = −1 if α − β ≤ −1; let γ = 1
1−pt be such that

0 > γ > α− β if α− β > −1 for a suitable t ∈ N. It is clear from what we have already
proven that f (x) = g(x) for all x ∈ R if and only if f (x) = g(x) for all x ∈ (γ−1(β− α), 0),
as (γ−1(β− α), 0) ⊃ (−1, 0).
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Interpretation 3 (“Causality” vs. “locality”). The proof of Theorem 8 shows that the “local”
behaviour of Cp(R)-functions completely defines their “global” behaviour. Given values of Cp(R)-
function takes on an arbitrarily small neighbourhood of an arbitrary point, the values the function
takes at all other points can be “restored uniquely”. If the points of R are treated as “positions” and
values of the function as “measurement data” of a physical system to which the function is ascribed,
then the data an observer obtains by probing a system in a given position let him completely
predict values of physical quantities obtained by measurements at all other positions.

This property of Cp(R)-functions is especially important since various classes of real
functions can be approximated by Cp(R)-functions.

Theorem 9 (Approximations of real functions by Cp(R)-functions).

(i) Any continuous function g : [a, b]→ R can be uniformly approximated on [a, b] ⊂ R by
C∞

p (R)-functions.
(ii) Any continuous function g : [a, b]→ R can be uniformly approximated on [a, b] ⊂ R by

C∞
p (R)-functions which are automaton functions of time-reversible automata.

(iii) Any continuous function g : [a, b] → R can be uniformly approximated by ergodic au-
tomata functions from C∞

p (R).
(iv) Any continuous function g : R → R that vanishes at infinity can be uniformly approx-

imated on R by C∞
p (R)-functions. (recall that a continuous function g : R → R

vanishes at infinity, if, for every ε > 0, there exists a compact set K ⊂ R such that
|g(x)| < ε for all x ∈ R \ K).

(v) Any continuous function g : R → R that vanishes at infinity can be uniformly ap-
proximated on R by C∞

p (R)-functions which are automaton functions of time-reversible
automata.

(vi) Any square-integrable function g : R → R (and moreover, any function g : R → R
that is integrable with its n-th power for some n ∈ N) can be uniformly approximated
by C∞

p (R)-functions which are automaton functions of time-reversible automata.

Proof. The class C∞
p (R) contains all polynomial functions over Z. Chlodovsky theo-

rem yields that a continuous real-valued function, which is defined on a real interval
that does not contain an integer, can be uniformly approximated by polynomials over
Z [33,34]. If the interval [a, b] contains integers, take α, β ∈ Zp ∩Q such that the interval
[a′, b′] = [αa + β, αb + β] contains no integers (e.g., take m ∈ N such that |b− a| < pm − 1
and put α = 1/(pm − 1)). Given a continuous function g : [a, b] → R, the function
g(α−1(x − β)) can be uniformly approximated by polynomials ui(x) ∈ Z[x] on [a′, b′]
by Chlodovsky’s theorem; thus, the function g can be uniformly approximated by poly-
nomials ui(αx + β)) on [a, b]. However, ûi(x) = ui(αx + β) is a polynomial over Zp ∩Q in
variable x since α, β ∈ Zp ∩Q; thus, ûi ∈ C∞

p (R). This proves claim (i).

To prove claim (ii), consider the function g̃(x) = g(x)−x
p . In view of (i), since g̃(x) is

continuous on [a, b], g̃ can be uniformly approximated by C∞
p (R)-functions ui; thus, g can

be uniformly approximated by functions x + pui(x) which are also in C∞
p (R). However,

given any 1-Lipschitz function u : Zp → Zp, the function z + pu(z) is 1-Lipschitz measure-
preserving according to Lemma 1. Thus, the C∞

p (R)-functions x + pui(x) are automata
functions of time-reversible automata.

To prove claim (iii), note that the function g can be uniformly approximated by
polynomials wj(x) over Zp ∩ Q; c.f., the proof of (i). Then, the difference equation
wj(x)−x−1

p = ∆w̃j(x) has a solution w̃j(x) which is a polynomial since
wj(x)−x−1

p is. These
w̃j(x) can be uniformly approximated by polynomials uji(x) over Zp ∩Q; c.f., the proof of
(i). Therefore, g can be uniformly approximated by polynomials over Zp ∩Q of the form
1 + x + p · ∆u(x) which are all ergodic according to Lemma 1.
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To prove claim (iv), consider functions of the form ru(x)
1+pv(x)2 where r ∈ Zp ∩ Q,

u(x), v(x) ∈ Z[x], and deg u(x) ≤ deg v(x). All these functions vanish at infinity, are
C∞

p (R)-functions (c.f., Example 3) and separate points. Therefore, the R-algebra A gener-
ated by the set A of all these functions satisfies conditions of the Stone–Weierstrass theorem
for locally compact spaces, i.e., the algebra is dense with respect to the topology of the
uniform convergence in the Banach algebra of all real-valued continuous functions on R
which vanish at infinity. However, the set A is dense in A.

In order to prove claim (v), note that in view of the proof of claim (iv), it suffices to
approximate uniformly on R the functions of the form h(x) = ru(x)

1+pv(x)2 , where r ∈ Zp ∩Q,
u(x), v(x) ∈ Z[x], and 1 ≤ deg u(x) ≤ deg v(x), by C∞

p (R)-functions which are automa-

ton functions of time-reversible automata. Represent h(x) = x
1+pv(x)2 +

pũ(x)
p(1+pv(x)2)

, then

ũ(x) ∈ Zp[x], deg ũ(x) ≤ deg v(x). Given ci ∈ Zp ∩Q, the function x
1+pv(x)2 + ci ·

pũ(x)
1+pv(x)2

vanishes at infinity; moreover, this function is a C∞
p (R)-function, and it is a measure-

preserving 1-Lipschitz function Zp → Zp since it is bijective modulo p, and its derivative
modulo p vanishes nowhere; c.f., [44] [Corollary 3.3] or [23] [Theorem 4.45]. Taking a
sequence (ci)

∞
i=0 over Zp ∩Q that converges to 1/p in R, we conclude that the function h(x)

can be uniformly approximated on R by C∞
p (R)-functions which are measure-preserving

1-Lipschitz functions Zp → Zp; that is, automaton functions of time-reversible automata.
It is well known that functions which are integrable with their n-th powers, for some

n ∈ N, can be uniformly approximated by Schwartz functions; but the latter are smooth
and vanish at infinity. With (v), this proves claim (vi) and the theorem.

Example 4. Wave function Ψ(x, t) vanishes at infinity since it must satisfy the condition
limt→±∞ Ψ(x, t) = 0; see, e.g., [47] [Section 1.4]. Thus, wave functions can be uniformly
approximated by automaton functions of time-reversible automata.

Interpretation 4 (Observer’s free choice of arrow of time). Due to the inevitable nonzero error
in measurements of values of physical quantities, an observer’s conclusion on the direction of “arrow
of time” completely depends on the observer’s free choice of metric with respect to which the observer
processes the measured numerical data: according to claims (ii) and (v)–(vi) of Theorem 9, “causes”
can be recovered from “effects”, with any desirable accuracy. The “entropic arrow of time” also
depends on the choice of metric since the value of entropy does as well; c.f., Section 4.4.

Theorem 10 (On finite automata C1
p(R)-functions). Let a finite automaton function f ∈ C1

p(R);
i.e., let f be differentiable both over R and over Zp; let f ′ ∈ Cp(R). Then, f is an affine function
over Zp ∩Q; i.e., f (x) = ax + b for suitable a, b ∈ Zp ∩Q. Vice versa, all these affine functions
are finite automaton functions from C∞

p (R).

Proof. Given a 1-Lipschitz function f for n ∈ N0, k ≥ blogp nc + 1, consider functions
fn,k : Zp → Zp which are defined as follows:

fn,k(z) =
1
pk

(
f (n + pkz)− ( f (n) mod pk)

)
=

f (n + pkz)− f (n)
pk − f (n)− f (n) mod pk

pk =
f (n + pkz)− f (n)

pk − fn,k(0), (11)

for all z ∈ Zp. The function f is an automaton function of a finite automaton if and only if the
collection F of function fn,k (where n ∈ N0, k ∈ N = {1, 2, 3, . . .}, k ≥ blogp nc+ 1) contains
only a finite number of pairwise distinct functions. Note that fn,k is the automaton function
that corresponds to the automaton A(s(nk)) = 〈Fp, S,Fp, S, O, s(nk)〉, where s(nk) ∈ S is
the state the automaton A = A f = 〈Fp, S,Fp, S, O, s0〉 reaches after it has been fed by the
input word nk (of length pk) that corresponds to the base-p expansion of n (so the word nk
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may contain some leading zeros that correspond to higher order digits of the expansion).
That is, there are N, K ∈ N such that for every n ∈ N0, k ∈ N, one finds ň ≤ N, ǩ ≤ K such
that fn,k(z) = fň,ǩ(z) for all z ∈ Zp.

Take zk = h
p2k−1

where h ∈ N. Note that zk ∈ Zp ∩Q and that limk→∞ pkzk = 0 both
with respect to real metric and to the p-adic metric. Then,

fn,k(zk)

zk
=

f (n + pkzk)− f (n)
pkzk

− f (n)− f (n) mod pk

pkzk
, (12)

where limk→∞
f (n+pkzk)− f (n)

pkzk
= f ′(n) both with respect to the real metric and to the p-adic

metric. Thus, from (11) it follows that limp
k→∞( fn,k(u)− fn,k(0)) = u f ′(n) for every u ∈ Zp,

n ∈ N0. However, f ′(n) is a derivative at n ∈ N0 both with respect to the real metric and
to the p-adic metric; however, f ′(n) may take only a finite number of values due to the
finiteness of the number of pairs n, k which enumerate pairwise distinct fn,k. Therefore,
f ′(z) may take not more than a finite number of values on Zp since any z ∈ Zp is a p-adic
limit of some sequence over N0, and f ′ is a continuous function Zp → Zp according the
conditions of the theorem. Hence, f ′ may take not more than a finite number of values on
Zp ∩Q and thus on R since Zp ∩Q is dense in R and since f ′ is a continuous real function
according the conditions of the theorem. Therefore, the derivative f ′ is a constant function
over R and thus over Zp ∩Q and over Zp; that is, f (x) = ax + b for some a, b ∈ Zp ∩Q.
Proposition 1 proves the converse claim of the theorem.

Note 6. The theorem remains true for multivariate Cp(R)-maps F : Zm
p → Zn

p as well: affine maps
over Zp ∩Q are the only maps which satisfy the multivariate version of Theorem 10. This can be
proven by a similar argument, the details of which are omitted.

Interpretation 5 (Finiteness implies linearity). This result may serve as a sort of hint as to why
the mathematical formalism of quantum mechanics is the theory of linear operators over Hilbert
space. As all “real-world” systems have a finite number of states, then when the duration of the
temporal interval measured in the smallest (say, Planck) time units becomes comparable to the
number of states, the finiteness reveals itself as the linearity.

5. In the Middle of the Scales

In Section 1, we conjectured that if both “continuous” and “discrete” theories ade-
quately describe physical reality at respective “ends of the scale”, the theories must “meet
one another somewhere in the middle of the scale”. In this Section, we argue that the “meeting
point in the middle of the scale” is the wave function. To do this, we first need to formalise
the notion of an observer; actually, we will consider observers of two kinds, each for the
respective ends of the scale.

5.1. Observation and Measurement at the Ends of the Scale

To begin with, let us introduce two types of observers, the Big-endian and the Little-
endian. The names of the two observers are more related to big-end and little-end orders the
bytes of representation of a number are read in computer science and less with Gulliver’s
Travels by Jonathan Swift. Given a large non-negative number having a very long base-p
expansion, the Big-endian is capable of observing only the highest order digits of the
expansion, i.e., he knows the order of magnitude of the number and (up to a nonzero
error) a mantissa since the Big-endian is not able to see the rightmost digits of the numbers.
Conversely, the Little-endian sees the rightmost digits of the number, starting with the
smallest order digit, but has no idea what are the leftmost digits and the order of magnitude
of the number (although he assumes that the order is finite but very large). One may
call the Big-endian a macro-observer and the Little-endian a micro-observer. However,
both observers measure observable values which are rational p-adic integers. As already
mentioned, real numbers are indistinguishable during measurements from rational p-adic
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integers Zp ∩ Q due to the inevitable nonzero measurement error with respect to real
metrics. This is why we assume that numerical values of observable are in Zp ∩Q, and the
Little-endian sees the first terms of the canonical p-adic expansion of the observable value,
whereas Big-endian sees the highest order digits of the base-p expansion of the same value
as of a real number. We explain this more formally.

It is known (see, e.g., [10]) that z ∈ Zp ∩Q if and only if z can be represented as
z = c + d

pt−1 for some t ∈ N and d ∈ {1, 2, . . . , pt − 1}, c ∈ Z, or, if and only if the p-adic
canonical representation of z is eventually periodic

z = α0 + α1 p + · · ·+ αr−1 pr−1 + (β0 + β1 p + · · ·+ βt−1 pt−1)pr+

(β0 + β1 p + · · ·+ βt−1 pt−1)pr+t + (β0 + β1 p + · · ·+ βt−1 pt−1)pr+2t + · · · (13)

for suitable αj, βi ∈ {0, 1, . . . , p− 1}, r ∈ N0, t ∈ N (the sum α0 + α1 p + · · ·+ αr−1 pr−1 is
absent in the above expression once r = 0). In this case, the base-p representation of the
fractional part of z as of a real number is as follows:

z mod 1 = 0.(β̂t−1−r̄ β̂t−2−r̄ . . . β̂0 β̂t−1 β̂t−2 . . . β̂t−r̄)
∞ mod 1, (14)

where β̂ = p− 1− β for β ∈ {0, 1, . . . , p− 1}, and r̄ is the least non-negative residue of r
the modulo t if t > 1 or r̄ is zero otherwise.

To illustrate what Big-endian observations and Little-endian observations are, let r = 1,
t � 1, α0 = 1, βt−2 = βt−1 = 0; thus, both “-endians” measure physical quantity z that
takes values in [0, 1]. Then, as none of the observers is able to measure the value z with
a nonzero error, the Big-endian will obtain only the digits β̂t−2, β̂t−3, . . . , β̂t−n for some
n < t; meanwhile, the Little-endian will obtain β0, β1, . . . , βm for some m < t− 1. Thus,
the only information about z which possibly is common for both observers is the values
βt−`, βt−`−1, . . . , βk for some k > 0, ` > 1. The two observers may communicate with each
other and thus make only common guesses about what z is. Moreover, both do not know
what t is; therefore, as t� 1 , the only thing that both observers may know for sure is that
1 ≥ z ≥ 1− 1/p. Note that there are no “hidden variables” in this scenario since both observers
may unboundedly increase the precision of their measurement despite neither being able
to measure quantities with a nonzero error.

5.2. p-adic Clocks

In this section, we introduce a p-adic model of the instrument which measure and
indicates time, a p-adic clock; then, we prove that there exist only one clock, which is the
same for all Little-endians and Big-endian, the universal clock.

A timekeeping element of the contemporary physical clock is a harmonic oscillator of
a particular frequency, which is assumed to be a positive integer showing the number of
periods per unit interval; therefore, the shortest time interval which can be measured is
a reciprocal of the frequency. In order to measure the value of time elapsed, one merely
counts the number of periods from one moment of time to another and represents this
non-negative integer in some base, say, p, where p is the frequency of the oscillator. In what
follows, we assume that p is a prime as to not overload the exposition with unimportant
technical details. Thus, a model of such clock can be represented using the p-adic odometer, a
dynamical system f = τp : z 7→ z+ 1 on the space of p-adic integers Zp. If the initial point is
x0 ∈ Zp, e.g., x0 = 0, put f 0(x0) = x0, f 1(x0) = f (x0) = x1, . . . , f i(x0) = f ( f i−1(x0)) = xi,

and then the base-p expansion of xi represents the time elapsed, i = ∑
blogp ic+1
j=0 χi

j · pj, where

χi
j = δj(i) ∈ {0, 1, . . . , p− 1} is the j-th digit of the base-p expansion of i. In loose terms,

the p-adic clock is simply a counter whose face consists of windows; at each time moment
i, each j-th window shows δj(i). It is convenient to assume that the number of windows is
infinite to have the time elapsed be unrestricted; thus, we obtain the dynamical system τp
on Zp. Note that the initial state x0 may be taken arbitrarily and not necessarily as x0 = 0;
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then, to get the base-p representation of time elapsed since the initial moment, one has to
perform subtraction xi − x0 in Zp. The p-adic clock is depicted in Figure 3. To the right,
the content of the registry is similar to a standard representation of time in decimal (rather
than p-ary) fractions of a second (millisecond, microsecond, nanosecond, ...) with Planck
time at the rightmost position; meanwhile, to the left are decimal multiples of a second
(petasecond, exasecond, ...).
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Speaking loosely, the registry in Figure 3 is like a face of a mechanical counter consist-
ing of cogwheels. The period of the sequence of states of the rightmost cell of the registry
(which can be judged as the rightmost cogwheel) is p, the period of the sequence of states
of the second rightmost cell is p2 since the figure in that cell changes once in a period of the
rightmost cell, etc. The latter property is a definitive property of an ergodic transformation
on Zp; cf. Theorem 2. Therefore, all ergodic 1-Lipschitz transformations on Zp should be
considered to be clocks, cf. (ii) of Theorem 3, as they can be "adjusted’" one to another since
they all are conjugate to the p-adic odometer.

If the initial state of the odometer is taken to be 0 (i.e., each cell of the registry de-
picted by Figure 3 is 0), then after n ∈ N time units elapse, the registry will contain
the base-p expansion of the number n since τn

p (0) = n. Let us now take any ergodic
1-Lipschitz map f : Zp → Zp, and any t ∈ Zp and any sequence (ni)

∞
i=0 over N0 which

converges p-adically to t (such a sequence exists as N0 is dense in Zp). It turns out then
that for any z ∈ Zp, the p-adic limit limp

i→∞ f ni (z) exists; denote this limit via f t(z), then
(z; t) 7→ f t(z) is a 1-Lipschitz map Z2

p → Zp which is measure-preserving with respect to t;
see [23] [Propositions 4.87–4.88, 4.90]. Therefore, p-adic time t is well-defined. For instance
(see [23] [Example 4.89]), given an ergodic affine map f (z) = az + b on Zp, the two-variate
function f t(z) is of the form f t(z) = bt + z if a = 1, and

f t(z) = b · at − 1
a− 1

+ atz,

if a 6= 1. Note that if the affine map z 7→ az + b is ergodic then b 6≡ 0 (mod p) and a ≡ 1
(mod p) (see [23] [Theorem 4.36]); thus, both at and at−1

a−1 are well-defined p-adic integers
for every t ∈ Zp.

The problem which immediately arises is that p-adic time t is well-defined for every
t ∈ Zp, but if q is a prime number distinct from p, the p-adic time t may be meaningless
for a q-adic observer, the q-adic Little-endian, not to mention the Big-endian. Fortunately,
however, there is a clock (and therefore time) which is common both for all Little-endians and
Big-endian. This clock/time is unique up to the direction of the time arrow. It is clear that the clock,
which is common for all p-adic Little-endians and Big-endian, must be a totally consistent
function. The following theorem holds:

Theorem 11. Totally consistent functions which are measure-preserving for all prime p are exactly
the functions x 7→ ±x + c, where c ∈ Z; only the functions τ±(x) = x ± 1 are ergodic for all
prime p.



Entropy 2023, 25, 830 29 of 49

This means that the “universal clock” is a standard odometer which runs forward
(τ+(x) = x + 1) or backward (τ−(x) = x− 1).

Proof of Theorem 11. According to Theorem 5, any totally consistent function g is a poly-
nomial; therefore, to be measure-preserving on Zp, g must be (1) bijective modulo p and (2)
its derivative g′(x) must vanish modulo p nowhere for all prime p; see, e.g., [23] [Theorem
4.45]. As g is 1-Lipschitz on Zp for all prime p , and g′(x) is a polynomial, the derivative
exists and takes values from Zp for all prime p; hence, g′(Z) ⊂ Z. Therefore, (as g′(x) is a
polynomial), condition (2) implies that g′(Z) ∈ {1,−1}, which means that g′ is a constant,
±1. This means that g is the affine function, namely, either g(x) = −x + c or g(x) = x + c
for some c ∈ Z (since g(0) must be an integer as g(Z) ⊂ Z due to total consistency). This
proves the claim concerning measure-preservation.

The ergodicity claim follows from the ergodicity criterion for affine maps z 7→ az + b
which implies that if the map is ergodic on Zp then a ≡ 1 (mod p) and b 6≡ 0 (mod p);
see [23] [Theorem 4.36]. As these conditions must hold for all prime p, we conclude that
a = 1 and b ∈ {1,−1}.

Interpretation 6 (Free choice of temporal ordering at the smallest of scales). The only clock
that is common for “both ends of the scale” is the standard odometer τ(t) = t0 + t which shows
the time t− t0 ∈ R elapsed since the moment t0 ∈ R. All observers acquire the value of the time
elapsed up to a nonzero error with respect to the corresponding metrics. Therefore, in a contrast to a
real observer (the Big-endian) the p-adic observers (the Little-endians) generally cannot determine
with the “time stamps” of events which one of the two events happened earlier and which one later
since there is no order on the field of p-adic numbers which agrees with field operations.

Note 7. It is known that generally there is no ordering of events in quantum mechanics; see,
e.g., [48].

5.3. Digitalization

Initial automaton is a model of a (generally open) physical system prepared in some
fixed state; the system is exposed by an experimenter to a time series of “elementary impacts”
and thus produces the time series of “elementary reactions”. The impacts/reactions occurs
at discrete instants of time since time is assumed to be discrete; for example, at Planck’s
scale, the smallest time interval is Planck time 5.391247(60)× 10−44 s. Concrete values
of that smallest time interval depend on the process which is modelled (e.g.,. in smart
contracts of digital economy the smallest interval is usually assumed to be 24 h) and are
not specified; the definitive feature of the model is that “time flow” consists of “indivisible
time intervals”.

The experimenter prepares a number of identical systems in the same state and probes
them by exposing them to different impacts, observing reactions and thus obtaining a
number of experimental points (〈impact〉; 〈reaction〉), where 〈? ? ?〉 are measured values
of components of the impact–reaction pair. The experimenter then treats any measured
value as a real number up to a nonzero real error.

In order to not overload the exposition, in what follows we consider a one-dimensional
case mostly when the values 〈impact〉 and 〈reaction〉 are numbers rather than vectors. Up
to normalisation, we may assume that the measured numerical values are all in the unit real
interval [0, 1]; thus, the experimenter obtains a number of experimental points in the real
unit square [0, 1]× [0, 1] = I2 ⊂ R2. Namely, given an automaton A, let f = fA : Zp → Zp
be its automaton function (i.e., a 1-Lipschitz map). Consider a subset E( f ) of all the
following points of the Euclidean unit square I2 = [0, 1]× [0, 1] ⊂ R2:

e f
k (z) =

(
z mod pk

pk ;
f (z) mod pk

pk

)
∈ I2,
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z ∈ Zp, k = 1, 2, . . .. Here, z mod pk = ∑k−1
i=0 χi pi if z ∈ Zp is represented by its canonical

form z = ∑∞
i=0 χi pi, (χi ∈ Fp; i = 0, 1, 2, . . .). Note that f (x) mod pk corresponds to a

k-letter output word ξk−1 · · · · · · · · · ξ1ξ0 of the automaton which is fed by the k-letter input
word χk−1 · · · · · · · · · χ1χ0 which corresponds to x mod pk; cf. Figure 4.
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Figure 4. A point in the unit square I2 ⊂ R2 produced by the automaton A.

Further, although all the word lengths k are finite, the clustering is equivalent to
sending k→ ∞. Therefore, the clustering is equivalent to taking limit points of the closure
P( f ) of the set E( f ) with respect to the standard topology of R2. We call P( f ) a plot of f .
Speaking very loosely, the plot is a picture the experimenter obtains as an output of the
experiment which consists of a number of individual probes of a physical system which
is prepared in the same state before each probe. Note that the set of cluster points of the
pictures for both experimenters, the Little-endian and the Big-endian, obtained as result of the
experiment look very similar for the both since Little-endian makes the word lengths as long as
possible to construct the cluster points while Big-endian is only capable of obtaining the points
which correspond to sufficiently long words, i.e., the points which are close to the cluster points.
This fact is crucial for the future construction of wave function by the both experimenters as well
as for the uncertainty relation on which the both agree.

Let us describe this procedure more formally. For s = ∑∞
j=−k ζ j pj ∈ Qp, (ζ j ∈

{0, 1, . . . , p− 1}, j ∈ Z), let [s]p = ζ0 + ζ1 p + ζ2 p2 + · · · ∈ Zp and {s}p = ζ−k p−k + · · ·+
ζ−1 p−1 be the integral and fractional parts of s, respectively. Recall that any complex char-
acter of additive group Q+

p of the field Qp of p-adic numbers is of the form χr(s) = e2πi{sr}p ,
where r ∈ Qp; χr is a continuous group epimorphism into the group of complex roots of
unity (which is isomorphic to the group Q+/Z+). Take r = 1, denote χ1 via χ; given a
1-Lipschitz map f : Zp → Zp, consider the mappings

f̌k : e2πi{p−kz}p 7→ e2πi{p−k f (z)}p , (z ∈ Zp),

for all k ∈ N0. As every f̌k maps points of the unit circle S into points of S, the pairs
(e2πi{p−kz}p ; e2πi{p−k f (z)}p) constitute a set of points on the unit torus T2 = S× S. The unit
square I2 is a universal cover of the torus T2; this way, the points e f

k (z) ∈ I2 are identified

with the points (e2πi{p−kz}p ; e2πi{p−k f (z)}p) ∈ T2, and in what follows, we do not differ
between the point sets and speak either of the points on the surface of the torus T2 or on
the square I2, whichever is more convenient.

Definition 10 (Plots of automata). Given an automaton A, let f = fA : Zp → Zp be the

automaton function. The closure P( f ) = P(A) of all the points e f
k = ( z mod pk

pk ; f (z) mod pk

pk ) in the

square I2 (or of all the points (e2πi{p−kz}p ; e2πi{p−k f (z)}p) in the torus T2), where k ∈ N, z ∈ Zp is
called a (one-dimensional) plot of the automaton A or, similarly, of the automaton function f = fA.
The set P′( f ) = P′(A) of all the limit points of the plot, the derived set of the set P( f ) = P(A), is
called the limit plot of the automaton A (of the automaton function fA).

Recall that the limit point, accumulation point, or cluster point is a synonymic notion of the
point such that every neighbourhood of which contains points other than that point. Recall
also that the derived set of a closed set is also closed; thus, P′( f ) = P′(A) is closed. Being
closed, the set P(A) is measurable with respect to the Lebesgue measure on R2; denote as
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α(A) = α( f ) the measure of P(A). Respective notions for the general n-dimensional case,
n > 1, are defined as follows: for z ∈ Zp, k, n ∈ N, n > 1 denote

e f
k,n(z) =

(
z mod pk

pk ,
f (z)mod pk

pk , . . . ,
f n−1(z)mod pk

pk

)
∈ In ⊂ Rn.

The respective notation in this case is Pn( f ) = Pn(A), P′n( f ) = P′n(A), αn(A), etc. We
usually omit the index n when n = 2.

Theorem 12 (The automata 0-1 law, [49]). Given the arbitrary automaton A, the following
alternative holds: either α(A) = 0 (equivalently, P(A) is nowhere dense in I2), or α(A) = 1
(equivalently, P(A) = I2).

Note 8. Recall that nowhere dense sets can nevertheless have positive Lebesgue measures, for
instance, the “fat” Cantor sets (e.g., the Smith-Volterra-Cantor set), which are also known as
ε-Cantor sets; see e.g., [50]; however, this is not the case for the set P(A). The Lebesgue measure of
this set is 0 if and only if it is nowhere dense.

Theorem 12 is true in the multidimensional case as well. We will say briefly that a
1-Lipschitz map f : Zn

p → Zn
p (or respective automaton whose automaton function is f )

is measure-0 in dimension n if αn( f ) = 0, and measure-1 otherwise. It turns out that all
polynomials over Z whose degree is greater than 1 are measure-1 in all dimensions. Actually, for
f ∈ Z[x], a much stronger result is true: if deg f ≥ 2, then the distribution of points e f

k,n(z)
in the unit hypercube In tends to uniform as k→ ∞, for every n ∈ {2, 3, 4, . . .}. Specifically,
the following theorem holds:

Theorem 13 ([11]). Let f be a polynomial over Z, deg f ≥ 2. Then , the sequence (e f
k,n(z mod

pk))∞
k=1 of random vectors weakly converges as k → ∞ to a random vector having a continuous

uniform distribution in [0, 1)n.

Theorem 13 may be interpreted as showing another way by which chaos emerges.

Interpretation 7 (Emergence of chaos: The two ways).

• 1-st: Chaos emerges from infinite “chaotic sequences” such as random real numbers by
iterating them via Bernoulli-shift-like mappings, logistic mappings, etc; that is, when it is
assumed a priori that “chaos does exist immanently”.

• 2-nd: Chaos emerges from the “lack of knowledge what elementary causes happened at the
very beginning”; that is, if a Big-endian observer is incapable of determining what the digits
ξ0, ξ1, . . . , ξk−1, . . . are of the input z = ∑∞

j=0 ξ j pj ∈ Zp of the causal function f if k is small
enough.

Note that in the second case, the Little-endian observer is capable of determining the
digits ξk if k is “not too large”, so these digits are not hidden parameters. Nonetheless,
further in the paper, we show that a specific uncertainty relation holds both for the Little-
endian and Big-endian observers.

Note also that polynomials over Z whose degrees are greater than 1 are automaton
functions of infinite automata; cf., Example 2. However, any automaton function f : Zp → Zp
of an infinite automaton can be uniformly approximated on Zp by automaton functions of finite
automata, for instance, by the functions fn : z 7→ f (z)mod pn. This fact, together with the
finiteness assumption of Section 2, emphasises a distinguished role the finite automata play
in further considerations; thus, we now pay special attention to finite automata.

Theorem 14 (see [23] [Section 11.1.2]). Finite automata are measure-0 in all dimensions.
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Example 5. Automata may be infinite and measure-0; constants may be measure-1:

• The automaton whose automaton function is f (z) = z + (z2OR(− 1
3 )) , (z ∈ Z2), is infinite

and measure-0. Here, OR is bit-by-bit logical ∨ with no carries to higher order bits; that
is, if z = ∑∞

j=0 ζ j2j, then zOR(− 1
3 ) = ∑∞

j=0 ζ2j22j as − 1
3 = ∑∞

j=0 22j is a canonical 2-adic
representation of − 1

3 ∈ Z2 ∩Q.
• The automaton whose automaton function is f (z) = C where C is a p-adic integer whose

canonical representation corresponds to a Champernowne word is a measure-1 automaton.
Recall that a Champernowne word is a word obtained via concatenation of the base-p ex-
pansions of numbers 1, 2, 3, 4, 5, 6, ...; for instance, the 2-adic Champernowne word is
10111001101011 . . ..

In short, Theorems 12 and 14 imply that plots of finite automata cannot contain “fig-
ures” but may contain “lines”. These lines are of the utmost importance in further considerations
since they may naturally be treated as “experimental curves” obtained by probing a physical system
both by Little-endian and Big-endian observers. It turns out that smooth lines from limit
plots of finite automata are windings of torus; therefore, the lines may be treated as sine
waves, so the smooth lines in the limit plot of a finite automaton constitute a collection of sine
waves. Moreover, the waves are limit plots of finite affine automata. Now, we express these facts
rigorously.

Recall that a knot is a smooth embedding of a circle S into R3 and a link is a smooth
embedding of several disjoint circles in R3; cf. [51]. We will consider only special types
of knots and links, namely, torus knots and torus links. Informally, a torus knot is a
smooth closed curve without intersections which lies completely in the surface of a torus
T2 ⊂ R3, and a link (of torus knots) is a collection of (possibly knotted) torus knots; see,
e.g., [52] [Section 26] for formal definitions.

We also need a notion of a winding of a torus. Formally, a winding of a torus is
any geodesic on a torus. Recall that geodesics on torus T2 are images of straight lines
in R2 under the mapping (x; y) 7→ (x mod 1; y mod 1) of R2 onto T2 = R2/Z × Z; cf.,
e.g., [53] [Section 5.4].

Definition 11 (Winding of the torus). A winding of the torus is an image of a straight line
in R2 under the map mod1 : (x; y) 7→ (x mod 1; y mod 1) of the Euclidean plane R2 onto the
2-dimensional real torus T2 = R2/Z× Z = S× S ⊂ R3. If the line is defined by the equation
y = ax + b, we say that a is a slope of the winding C(a, b). We denote via C(∞, b) a winding
which corresponds to the line x = b, the meridian, and say that the slope is ∞ in this case. Windings
C(0, b) of slope 0 (i.e., the ones that correspond to straight lines y = b) are called parallels.

In dynamics, windings of torus T2 are viewed as orbits of linear flows on the torus;
that is, of dynamical systems on T2 defined by a pair of differential equations of the form
dx
dt = β; dy

dt = α on T2 and thus by a pair of parametric equations x = (βt + τ)mod 1; y =
(αt + σ)mod 1 in Cartesian coordinates; cf., e.g., [54] [Section 4.2.3].

Note 9. It is well known that a winding defined by the straight line y = ax + b is dense in T2 if
and only if −∞ < a < +∞ and the slope a = α

β is irrational; see, e.g., [54] [Proposition 4.2.8]
or [53] [Section 5.4].

Theorem 15 which follows states that C2-smooth lines (i.e., those which are twice
differentiable and have continuous second derivatives) in P′( fA) are windings of the torus
T2 provided the automaton A is finite; cf., Figures 5 and 6.

Theorem 15 ([10]). Let f : Zp → Zp be an automaton function of a finite automaton; let g be
a C2-function with domain [a, b] ⊂ [0, 1) ⊂ R and range [0, 1) ⊂ R. Let the graph G(g) =
{(x; g(x)) : x ∈ [a, b]} of the function g lie completely in P( f ). Then, there exist a, b ∈ Q ∩ Zp
such that g(x) = (ax + b) mod 1 for all x ∈ [a, b]; moreover, there is a winding of the torus
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T2 which lies completely in P( f ) and which contains the graph G(g) of the function g. There
are not more than a finite number of pairwise distinct windings of the unit torus T2 in P2( f );
all of these are images of real affine functions x 7→ ax + b for a, b ∈ Zp ∩Q under the mapping
mod1: R2 → T2.
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Note 10. The C2-smoothness condition can be relaxed: C1-smoothness is sufficient to ensure the
affinity; see [55].

Although Theorem 15, after proper restatement, holds for m-variate 1-Lipschitz maps
f : Zm

p → Zm
p as well, see [10], we restrict considerations in the rest part of the paper mostly

by a univariate case for simplicity.
The torus link which is a limit plot of a finite automaton affine function f : z 7→ az + b

on Zp is completely described by the following theorem:

Theorem 16 ([10]). Given a finite automaton affine function f : z 7→ az + b on Zp, (i.e., such
that a, b ∈ Zp ∩Q), represent a, b as irreducible fractions: a = α

β ; b = α′
β′ , where α, β, α′, β′ ∈ Z,

β, β′ 6≡ 0 (mod p). Then, the limit plot P′( f ) on the torus T2 is a torus link which consists of
N torus windings whose slope is a, where N = multp

β′

d is a multiplicative order of p modulo
β′

d , d = gcd(β, β′) is the greatest common divisor of β, β′, and N = 1 if β′

d = 1. Every torus
winding is a graph of the complex-valued function ψ(ρ, k) : R→ C on the torus T2 for a suitable

k = 0, 1, . . . , multp
β′

d − 1, where ψ(ρ, k) = e
i( α

β ρ−2πpk α′
β′ ), (ρ ∈ R).

In cylindrical coordinates, every torus winding x 7→ ax + b of a torus that is obtained
by revolving around Z-axis of a circle that is coplanar with the axis and has radius r and
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a centre at the distance R from the origin can be represented by the following parametric
equations  r0

θ
z

 =

 R + r cos(ax + b)
x

r sin(ax + b)

, x ∈ R. (15)

If a ∈ Zp ∩Q, then a is irreducible fraction α/β where α, β ∈ Z and p - β; then, corre-
sponding winding winds β times around the Z-axis and |α| times around a circle in the
interior of the torus, whereas the sign of α determines whether the rotation is clockwise
or counter-clockwise. Hence, “physical meaning” that can be ascribed to the coefficient
a = α

β of the affine map z 7→ az + b, (z ∈ Zp), which is a finite automaton function of affine
automaton if and only if a, b ∈ Zp ∩Q, is frequency (or, as a wavenumber, under a proper
choice of units). The choice of sign + or − depends only on what direction of rotation is
assumed to be “positive” or “negative”; thus, polarization and spin can be ascribed to the
sign of a in relevant models.

Theorem 16 in view of representation (15) implies that the limit plot of a finite automa-
ton whose function is z 7→ az + b, (where a, b ∈ Zp ∩Q, z runs over Zp) is in one-to-one
correspondence to a complex-valued function ψ : R×N0 → C :

ψ(x, k) = ei(ax−2πpkb), where x ∈ R, k ∈ N0 (16)

It is worth noting that the function ψ(x, k) is well-defined for all k ∈ Z since p is the
invertible modulo β′/d and thus e−2πipkb is well defined for every k ∈ Z; cf., Theorem 16.

Note 11. According to Theorem 16, different affine functions z 7→ az + b may have identical
limit plots. For instance, all the functions f (z) = z + c where c ∈ Zp ∩Q have identical limit
plots which correspond to the function ψ(x) = eix. Note also that whenever a limit plot of a finite
automaton A is the same as that of the finite automaton whose automaton function f is affine,
f (z) = az + b, there exist a minimal subautomaton of A (i.e., the one having no subautomata
other than itself) which has exactly the same limit plot; see Figures 7 and 8. A finite automaton is
minimal if and only if its reduced state transition diagram is totally connected: Given two states
s, t ∈ S, there is finite word w such that when the automaton in state s accepts the word w, the
automaton changes its state to t. If an automaton reaches a state which belongs to its (minimal)
subautomaton, the automaton will never reach a state which does not belong to the subautomaton.
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Example 6 (Limit plots of the automata). Figures 9 and 10 show the limit plot of a constant
function which is an automaton function of finite autonomous automaton; autonomous automata
may be judged as models of either isolated or closed physical systems. Parallel lines shown by
Figure 9 may be ascribed to energy levels.

The remaining examples are nonautonomous automata; these can serve as models of open
physical systems. Figures 9 and 10 depict limit plots produced of an autonomous automaton whose
state transition diagram depicts Figure 11. Figures 12 and 13 show the limit plot of an automaton
having two minimal subautomata; the state transition diagram of the automaton is shown in
Figure 14.

Figure 15 represents a plot of a finite automaton which approximates a measure-1 (and thus
infinite) automaton whose automaton function is z 7→ 1+ 3z + 2z2, (z ∈ Z2). Note the pronounced
straight lines in the plot; these lines constitute the limit plot of a minimal subautomaton.

Figure 16 depicts a plot of a measure-0 (but infinite) automaton which has the only minimal
finite affine subautomaton; the automaton function of the latter subautomaton is z 7→ 5z, (z ∈ Z2).
The limit plot of the latter automaton are red lines; cf., Figure 12; the state transition diagram is the
lower part of the diagram shown in Figure 14.

Basically, the limit plot of a finite automaton whose minimal subautomata are affine consists of
families of parallel straight lines in the unit square or, respectively, of links of the torus windings
whose slopes are in Zp ∩Q; cf., Figures 5, 6, 12, and 13. The the minimal subautomata from the
first example “exhibit nonzero phase shifts”, while for the ones from the second example, the “phase
shifts” are 0. Both examples are automata having two minimal affine subautomata. The minimal
subautomata from the first example (Figures 5 and 6) have limit plots defined by the functions
f1(z) = −2z + 1

3 (red and green windings) and f2(z) = 3
5 z + 2

7 , (yellow, brown, and blue
windings), respectively, z ∈ Z2. The minimal subautomata from the second example (Figures 12
and 13) have limit plots defined by the respective functions z 7→ 3z (blue lines) and z 7→ 5z (red
lines), z ∈ Z2.

The limit plot of a finite affine automaton whose automaton function is z 7→ az + b in the unit
square I2 consists of parallel straight lines with slope a = α/β ∈ Zp ∩Q; thus, the plot may be
considered not only on the torus obtained by “gluing together” opposite sides of the square but also
on a cylinder obtained by “gluing together” only a pair of opposite sides of the square. This way, one
obtains solenoid rather than a torus link. This representation of a limit plot is also convenient in
some cases. For instance, Figures 17 and 18 depict the limit plot of the automaton whose automaton
function is f (z) = ((zAND1)− ((NOT(z))AND1)) · z, where AND and NOT are respectively
bitwise logical “and” and bitwise logical “not” operations on base-2 expansions of numbers (with
no carries), while “·” and “−” are usual multiplication and subtraction of numbers (with carries).

Figure 19 represents the state transition diagram of a general automaton all whose minimal
automata are finite and affine.
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Figure 11. State transition diagram of autonomous automaton whose automaton function f : Z2 →
Z2 is a constant: f (z) = 2/7, ( z ∈ Z2). State 1 is initial.

5.4. Wave functions emerging from automata 1534

This Subsection deals with the main notion of quantum theory, the wave function. 1535

Our goal is derive wave functions from causal functions, that is, from automata. Functions 1536

(5.16) are building blocks of the construction of the wave function on the base of causal 1537

maps. To start with, we briefly outline general idea of the construction. 1538

Figure 9. Limit plot of the function f (z) = 2/7 (z ∈ Z2), in I2.
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Figure 10. Limit plot of the same function on the torus T2.
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Figure 14. State transition diagram of the automaton having two minimal sub-automata whose

automata functions are z 7→ 3z and z 7→ 5z, z ∈ Z2. Initial state is 0.

Recall that reduced state transition diagram of a finite automaton is a digraph each 1539

path in which ultimately reaches a minimal sub-automaton. There are no outgoing paths 1540

from sub-automata. By feeding the automaton with random long words, to each minimal 1541

sub-automaton we assign a probability when the automaton reaches states which belong 1542

to the sub-automaton, cf. Figure 20. Let automaton A be such that being fed by random 1543

long words, with probability 1 the automaton reaches at some finite step a state which 1544

belongs to a minimal automaton which is finite and affine. Limit plot of every such sub- 1545

automaton is described by a complex-valued function of the form (5.16). 1546

To every minimal sub-automaton which is finite and affine it is ascribed a limit plot. 1547

There are only countably many such limit plots since there only countable many affine 1548

functions Zp → Zp which are automata functions of these sub-automata: Due to the 1549

finiteness, coefficients of these affine functions must belong to the set Zp ∩ Q which is 1550

countable. As every two minimal sub-automata have no common states due to the min- 1551

imality, and as to every minimal sub-automaton it is assigned a probability of reaching 1552

the sub-automaton, to every limit plot one assigns a probability to "observe" that limit 1553

plot in experiment, i.e., to obtain accumulation points in the unit square which constitute 1554

that limit plot. The probability is equal to a sum of all probabilities to reach minimal sub- 1555

automata having that plot. Therefore these probabilities constitute a distribution assigned 1556

Figure 12. Limit plot of the automaton having two subautomata whose functions are z 7→ 3z and
z 7→ 5z, (z ∈ Z2).

Figure 13. Limit plot of the same automaton on the torus T2 ⊂ R3. The surface of the torus is made
visible by cross-hatching.
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countable. As every two minimal sub-automata have no common states due to the min- 1551

imality, and as to every minimal sub-automaton it is assigned a probability of reaching 1552
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that limit plot. The probability is equal to a sum of all probabilities to reach minimal sub- 1555

automata having that plot. Therefore these probabilities constitute a distribution assigned 1556

Figure 14. State transition diagram of the automaton having two minimal subautomata whose
automata functions are z 7→ 3z and z 7→ 5z, z ∈ Z2. The initial state is 0.

Figure 15. Plot of a finite automaton which is an approximation of a measure-1 automaton whose
automaton function is z 7→ 1 + 3z + 2z2, (z ∈ Z2).

Figure 16. Plot of a measure-0 automaton having the only minimal subautomaton whose automaton
function is z→ 5z, (z ∈ Z2).

Figure 17. Limit plot of a finite automaton whose automaton function is z 7→ ((zAND1) −
((NOT(z))AND1)) · z, (z ∈ Z2) on the (horn) torus.
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Figure 18. Solenoid that is a limit plot of the automaton having the same automaton function
f (z) = ((zAND1)− ((NOT(z))AND1)) · z, (z ∈ Z2).
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Figure 20. Example state transition diagram of 2-adic automaton having minimal sub-automata (out-

put symbols of labels of arrows are omitted); s0 is initial state. Respective probabilities of reaching

sub-automata S1, S2, S3 are 1/2; 1/4; 11/64 = 1/8 + 1/32 + 1/64

automaton S at finite steps constitute a disjoint union B(S) of balls of non-zero radii; whence, 1579

B(S) is a μ-measurable subset of Zp with respect to the Haar measure on Zp which is normalised 1580

so that μ(Zp) = 1. This way to S it is assigned a probability μ(S) = μ(B(S)). 1581

Note that the set W(S) does not depend on concrete state transition diagram of the 1582

automaton A but to be more definite one may assume that the state transition diagram of 1583

the automaton is reduced, thus, given the automaton, a unique, cf. Subsection 3.3. In that 1584

case some care should be taken speaking of paths since some arrows in the reduced state 1585

transition diagram may actually be loops, see, e.g., Figure 19: The paths (which we write 1586

from left to right) that begin at the initial state t0 and have prefixes 0111, 01011, 010011, 1587

0100011, ... all reach the sub-automaton S3 on 4-th, 5-th, 6-th, 7-th,.. steps respectively, so 1588

the probability to reach the sub-automatonS3 is 1/16 + 1/32 + 1/64 + 1/128 + ∙ ∙ ∙ = 1/8 1589

and B(S3) is a disjoint union of balls B1/16 (14), B1/32 (26), B1/64 (50), ..., B1/2 k (2 + 3 ∙ 1590

2k−2),... where k = 4, 5, 6, . . .. 1591

Given two minimal sub-automata S and T of the automaton A which are finite and 1592

affine, by the minimality one has B(S) ∩ B(T) = ∅; so the probability that a random infi- 1593

nite path starting from the initial state reaches at a finite step some minimal sub-automaton 1594

of the automaton A is the sum ∑ μ(B(S)) taken over all minimal sub-automata S which 1595

are finite and affine. Call an automaton A ultimately affine if the probability is 1. Note that 1596

if an ultimately affine automaton is infinite, by König’s lemma (also known as Beth’s tree 1597

theorem) [61] there are infinite paths which never reach states belonging to these minimal 1598

sub-automata. These paths constitute a μ-measurable subset in Zp but the measure of the 1599

Figure 19. General automaton whose minimal subautomata are all finite and affine

5.4. Wave Functions Emerging from Automata

This section discusses the main notion of quantum theory, the wave function. Our goal
is to derive wave functions from causal functions; that is, from automata. Functions (16)
are building blocks of the construction of the wave function on the base of causal maps. To
begin, we briefly outline the general idea of the construction.

Recall that the reduced state transition diagram of a finite automaton is a digraph in
which each path ultimately reaches a minimal subautomaton. There are no outgoing paths
from subautomata. By feeding the automaton with random long words, to each minimal
subautomaton we assign a probability for when the automaton reaches states which belong
to the subautomaton; cf., Figure 20. Let automaton A be such that, being fed by random
long words, the automaton at some finite step reaches, with a probability 1, a state which
belongs to a minimal automaton which is finite and affine. The limit plot of every such
subautomaton is described by a complex-valued function of the form (16).

To every minimal subautomaton that is finite and affine we ascribe its limit plot.
There are only countably many such limit plots since there are only countably many such
affine functions Zp → Zp that are automata functions of these subautomata: Due to the
finiteness of the subautomata, coefficients of these affine functions must belong to the set
Zp ∩Q which is countable. As every two minimal subautomata have no common states
due to the minimality and as to every minimal subautomaton it is assigned a probability
of reaching the subautomaton, to every limit plot one assigns a probability to “observe”
that limit plot in the experiment, i.e., to obtain accumulation points in the unit square
which constitute that limit plot. The probability is equal to a sum of all probabilities to
reach the minimal subautomata having that plot. Therefore, these probabilities constitute
a distribution assigned to the automaton; a characteristic function of that distribution is
a (generally infinite) series whose terms are functions ψ(x, k) = ei(ax−2πpkb) multiplied
by values of respective probabilities; cf., (16) (there is a vast literature on characteristic
functions of probability distributions; see, e.g., [56]). We argue that this characteristic
function of the distribution may be treated as a wave function.
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B(S) is a μ-measurable subset of Zp with respect to the Haar measure on Zp which is normalised 1580

so that μ(Zp) = 1. This way to S it is assigned a probability μ(S) = μ(B(S)). 1581
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Figure 20. Example state transition diagram of 2-adic automaton having minimal subautomata
(output symbols of labels of arrows are omitted). s0 is the initial state. The respective probabilities of
reaching subautomata S1, S2, and S3 are 1/2, 1/4, and 11/64 = 1/8 + 1/32 + 1/64.

Proceeding to a formal rigorous construction, let us review a few preliminary conventions:

• We do not distinguish affine automata whose limit plots coincide, so the actual prob-
ability distribution related to the automaton is distribution of classes of finite affine
subautomata having coinciding limit plots;

• We use terms “p-adic integer”, “infinite word over p-symbol alphabet”, and “infinite
path in a state transition diagram” as synonyms; see Sections 3.1–3.3.

A word of caution: there is a one-to-one correspondence between all paths of length k in the
state transition diagram and all numbers from {0, 1, . . . , pk − 1}; however, to every number
from N0 = {0, 1, 2, . . .}, there corresponds an infinite number of paths: Every such path
has a prefix which is simply a base-p expansion of a number and a suffix which consists of
zeros only; cf., Section 3.1.

Given an automaton A, let S be its subautomaton. Let W(S) be the set of all infinite
paths starting from the initial state of A in a state transition diagram of A which reach
states of S at finite steps. Note that if a path w reaches S at k-th step, then all paths
which correspond to infinite words having the same prefix of length k reach S at the k-th
step; therefore, the p-adic integers which correspond to these paths constitute a p-adic ball
of radius p−k. Therefore, all p-adic integers that correspond to infinite paths which reach the
subautomaton S at finite steps constitute a disjoint union B(S) of balls of nonzero radii; hence,
B(S) is a µ-measurable subset of Zp with respect to the Haar measure on Zp which is normalised
so that µ(Zp) = 1. This way to S is assigned a probability µ(S) = µ(B(S)).

Note that the set W(S) does not depend on a concrete state transition diagram of the
automaton A, but to be more definite, one may assume that the state transition diagram of
the automaton is reduced; thus, given an automaton function, the reduced state transition
diagram of respective automaton is unique; cf., Section 3.3. In this case, some care should
be taken speaking of paths since some arrows in the reduced state transition diagram may
actually be loops; see, e.g., Figure 19. The paths (which we write from left to right) that
begin at the initial state t0 and have prefixes 0111, 01011, 010011, 0100011, ... all reach the
subautomaton S3 on the fourth, fifth, sixth, seventh,.. steps respectively, so the probability
to reach the subautomaton S3 is 1/16 + 1/32 + 1/64 + 1/128 + · · · = 1/8 and B(S3) is
a disjoint union of balls B1/16(14), B1/32(26), B1/64(50), ..., B1/2k (2 + 3 · 2k−2),... where
k = 4, 5, 6, . . ..

Given two minimal subautomata S and T of the automaton A that are finite and affine,
by virtue of the minimality one has B(S) ∩ B(T) = ∅; thus, the probability that a random
infinite path starting from the initial state reaches at a finite step some minimal subau-
tomaton of the automaton A is the sum ∑ µ(B(S)) taken over all minimal subautomata S

which are finite and affine. We call an automaton A ultimately affine if the probability is 1.
Note that if an ultimately affine automaton is infinite, then, according to König’s lemma
(also known as Beth’s tree theorem) [57], there are infinite paths that never reach states
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belonging to these minimal subautomata. These paths constitute a µ-measurable subset in
Zp but the measure of the subset is 0 since the subset is a complement to a countable union
of balls whose measure is 1. For instance, the path 111 . . . in the state transition diagram
depicted by Figure 2 never reaches a minimal subautomaton (which has only one state,
namely, s1) , but all other paths reach the subautomaton at finite steps, so the probability to
reach that minimal subautomaton is 1.

Definition 12 (Plot equivalence of automata). Call the finite affine automata S and T plot
equivalent S ≡P T if their respective functions ψ : R×Z→ C defined by (16) coincide; that is,
if their limit plots coincide, P′(S) = P′(T), i.e., if the limit plots are links of the same number of
torus windings with a common slope.

Given a, b ∈ Zp ∩Q, denote via Sa,b an automaton whose automaton function is
z 7→ az + b. Let [Sa,b] be the set of all minimal subautomata of A that are plot-equivalent to
Sa,b. By virtue of the minimality, given S,T ∈ [Sa,b], the subautomata S and T have no
common states; therefore, B(S) ∩ B(T) = ∅; that is, the probability

q[Sa,b ]
= ∑

S∈[Sa,b ]

µ(B(S))

is well-defined. Given a, b ∈ Zp ∩Q, the equivalence relation ≡P induces an equivalence
relation on the set of all pairs (a; b) ∈ (Zp ∩Q)× (Zp ∩Q) which we denote by the same
symbol, i.e., (a; b) ≡P (c; d) if and only if Sa,b ≡P Sc,d.

Let Spec(A) be the set of all equivalence classes defined by minimal subautomata of A
which are finite and affine. Then, the series

ΨA(ρ, k) = ∑
[Sa,b ]∈Spec(A)

q[Sa,b ]
ei(aρ−2πpkb) (17)

converges absolutely for all ρ ∈ R, k ∈ Z and therefore defines a complex-valued function
ΨA(ρ, k). Call the function ΨA a sharp wave function assigned to the automaton A.

Theorem 17 (On automata having a prescribed wave function). Given non-negative real
numbers q1, q2, . . . such that ∑∞

j=1 qj = 1 and finite affine automata Sj = Saj ,bj
, (aj, bj ∈ Zp ∩Q,

j = 1, 2, . . .) which are pairwise plot-nonequivalent, there exists an ultimate affine automaton A

such that Spec(A) = {[Sj] : j = 1, 2, . . .}, qj = q[Saj ,bj
], and ΨA(ρ, k) = ∑∞

j=1 qje
i(ajρ−2πpkbj).

To prove the theorem we require a lemma.

Lemma 2 (All discrete random variables can be modelled on Zp). Given convergent series
∑∞

j=0 qj = 1 of positive real numbers qj ∈ R≥0 there exist pairwise disjoint open sets Wj ⊂ Zp
such that the normalised Haar measure µ of Wj is qj, j = 0, 1, 2, . . ..

Proof of Lemma 2. Most likely, the lemma is known, but as the author is aware of no
proper reference, a proof follows. Consider the Monna map mon(z) = ∑∞

i=0 αi p−i−1 =
0.α0α1α2 . . . ∈ [0, 1] ⊂ R where z = ∑∞

i=0 αi pi is a p-adic canonical expansion of
z ∈ Zp. Note that mon(B1/pk (a)) = [0.α0α1 . . . αk−1, 0.α0α1 . . . αk−1 + p−k] ⊂ [0, 1], where

a = ∑k−1
i=0 αi pi ∈ Zp; that is, the Monna map mon maps p-adic balls B1/pk (a) ⊂ Zp of radii

1/pk centred at a ∈ Zp onto closed subintervals of length 1/pk of the unit interval [0, 1];
note that λ(mon(B1/pk (a))) = µ(B1/pk (a)) where µ is the Haar measure on Zp normalised
so that µ(Zp) = 1, and λ is Lebesgue measure on the unit real interval [0, 1], i.e., the length
of the closed interval.
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Split the unit interval [0, 1] into pairwise disjoint open intervals Qj such that the
length of the j-th interval Qj is qj; namely, let Q1 = (0, q1), Q2 = (q1, q1 + q2), Q3 =
(q1 + q2, q1 + q2 + q3), ...; then, Q =

⋃∞
j=0 Qj is λ-measurable and λ(Q) = 1.

For each Qj let Bj be a set of all balls of nonzero radii such that mon(B) ⊂ Qj for every
B ∈ Bj. As any two p-adic balls either disjoint or one is a subset of another one, the set Bj is
a countable disjoint union of balls of nonzero radii. Thus, Bj is open as each p-adic ball of
nonzero radius is clopen; hence, Bj is µ-measurable. As every point from Qj lies in mon-
image of some ball from Bj, we conclude that µ(Bj) = qj and µ(

⋃∞
j=1 Bj) = ∑∞

j=1 µ(Bj) = 1
as Bj ∩ Bk = ∅ when j 6= k by the construction.

Proof of Theorem 17. This proof follows immediately from the proof of Lemma 2. Every
Bj, j = 1, 2, . . . is a countable disjoint union of balls B1/prjm (ajm), m = 1, 2, 3, . . ., centred

at ajm = ∑
rjm−1
k=0 αj,m,k pk ∈ Zp. Let branches of a p-adic tree be αj,m,0αj,m,1 · · · αj,m,rjm−1,

and let leafs be B1/prjm (ajm), j, m = 1, 2, . . .. In this digraph, replace all leafs B1/prjm (ajm)

with state transition diagrams of automata Sm ∈ [Sj]. Thus, the constructed digraph is
a state transition diagram of the automaton A which is the ultimate affine and such that

ΨA(ρ, k) = ∑∞
j=1 qje

i(ajρ−2πpkbj).

Note 12. From the proof of Theorem 17 it follows that the ultimate affine automaton may be either
measure-0 or measure-1. The first case occurs when, for example, the series ∑∞

j=0 qj is finite; therefore
the automaton A is finite and thus measure-0. The measure-1 case occurs when, for example, all
coefficients aj ∈ Zp ∩Q constitute a dense subset in R and all bj = 0.

In what follows, we will need a slightly generalised version of Lemma 2:

Corollary 1 (Generalized Lemma 2). Given convergent series ∑∞
j=0 qj = q ≤ 1 of positive real

numbers qj ∈ R≥0, there exist pairwise disjoint open sets Wj ⊂ Zp such that the normalized Haar
measure µ of Wj is qj, j = 0, 1, 2, . . ..

Proof of Corollary 1. Take [0, q] instead of [0, 1] in the proof of Lemma 2 and modify the
argument in an obvious way.

Sharp wave functions may be considered as wave functions with respect to discrete
time since the map e2πib 7→ e2πipkb is equivalent to a k-digit shift of the base-p representation
of b and a reduction modulo 1 of the resulting number. As k is the order of time elapsed
(and is measured by p-adic clock see Section 5.2 and Figure 3) since the moment the
automaton reaches a state from its minimal affine subautomaton whose automaton function
is z 7→ az + b, a sharp wave function may be judged as the one the Little-endian can
construct by observing reactions of a physical system at the smallest of scales.

We argue that a wave function with respect to continuous time can also be constructed
by using ultimate affine automata. The core idea of the construct is using the beta repre-
sentations of numbers rather than the base-p expansions. The beta representations of real
numbers were first introduced by A. Rényi in 1957 and since then have attracted substantial
attention in ergodic theory and symbolic dynamics; see, e.g., monograph [21].

Recall that given real β > 1, a β-representation of real b ≥ 0 is an infinite word χ0χ1 · · ·
over the alphabet B = {0, 1 . . . , bβc} such that b = ∑∞

j=−k χk+jβ
−k−j. Note that we consider

β-representations of real b ≥ 0 and not only of real b ∈ [0, 1] as in [21]. Of course, in (17),
we always may assume that b ∈ [0, 1]; however, to assign real numbers to paths in state
transition diagrams of automata we need beta representations of numbers from N0 which
then are converted into real numbers in a way similar to what we used in Section 5.3 by
exploiting p-adic representations.

Specifically, we first use β instead of p. Thus, each arrow in a state transition diagram
of the automaton whose input and output alphabets are B, is labelled by a pair χ|ξ, where
χ, ξ ∈ B; for an infinite path which starts from an initial state, there corresponds an infinite
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word w = χ0χ1 · · · over alphabet B; for w, we place a corresponding (bβc + 1)-adic
integer ∑∞

j=0 χj(bβc + 1)j. To construct a plot, we convert these (bβc + 1)-adic integers
into sequences of real numbers χ0β−1, χ1β−1 + χ0β−2, χ2β−1 + χ1β−2 + χ0β−3,..., thus
obtaining points (χk−1β−1 + · · ·+ χ0βk−2; ξk−1β−1 + · · ·+ ξ0βk−2) ∈ R2. To put it in other
words, we simply use β-representations for input/output words of the automaton A when
constructing a plot of the automaton, but the automaton function is still a 1-Lipschitz
map from (bβc + 1)-adic integers to (bβc + 1)-adic integers. This way, we construct a
sharp wave function ΨA(ρ, k) = ∑[Sa,b ]∈Spec(A) q[Sa,b ]

ei(aρ−2π(bβc+1)kb) (cf., (17)), which is
a well-defined complex valued-function of ρ ∈ R and k ∈ Z; then, we replace (bβc+ 1)
by β in the formula, thus resulting in another complex-valued function of ρ ∈ R and
k ∈ Z. The crucial point is that if 1 < β � 2, i.e., if β = 1 + τ where 0 < τ � 1, then
βk = (1 + τ)k ≈ 1 + kτ. When τ is small (e.g., if τ = 5.391247(60)× 10−44 s, the Planck
time) then for the Big-endian observer who is incapable of performing measurements with
that accuracy (which is currently only about 10−20 s), kτ ∈ R is indistinguishable from
continuous time. Thus, we obtain a fuzzy wave function

Ψ̃A(ρ, t) = ∑
[Sa,b ]∈Spec(A)

q[Sa,b ]
ei(aρ−2πtb) (18)

which is ascribed to the automaton A. The function is well-defined for all ρ, t ∈ R since
the series converges absolutely. From this point, the sharp wave function (which is a discrete
time function) can be viewed as an approximation of a fuzzy wave function (which is a continuous
time function). Note that since bβc = b1 + τc = 1, i.e., B is a 2-letter alphabet, then necessarily
p = 2; see sharp wave function Formula (17).

The term “approximation” here is not rigorous (although some hint is already given
by Example 4); to prove this statement with a full rigour is a separate problem which will
be considered in the future. In the current paper, we only find an exact representation for
β = 1 + τ under the finiteness assumption of Section 2, but before doing this, we illustrate
the usage of that β-representation using the analogy of film which is discussed in Section 2.
Each frame of a film contains a number of details, but to cause an illusion of motion to a
viewer, only a small share of the whole number of details is changed from one frame to the
next frame; the smaller the share is, the slower the motion appear to the a viewer. For a
Little-endian viewer, the share is p− 1 since he uses the base-p representation of numbers;
in the case when the share is τ, one has the (1 + τ)-representation. If 0 < τ � 1, we have
the case of a Big-endian viewer.

It is important to stress that to represent numbers from N0 in the base β, we use only
non-negative powers of β in order to guarantee the uniqueness of β-representation for each number
from N0 since if negative powers of β = 1 + τ when τ � 1 are allowed in β-representations,
then every number from (0, τ−1) has a continuum of distinct β-representations provided
τ <

√
5−1
2 [58]. However, in such a case, the very problem of assigning a number to a finite

path in a state transition diagram becomes ill-posed. Under said convention, the following
theorem is true:

Theorem 18 (Finiteness assumption implies β = N
√

2). Let 1 < β < 2. If an automaton that
performs the addition of β-representations of numbers from N0 is finite then necessarily β = N

√
2

for some N ∈ N. For each N ∈ N, the addition of numbers from N0 that are represented by
N
√

2-representations can be performed with a finite automaton.

Proof. Number 1 admits the only β-representation 1 = 1 + 0 · β + 0 · β2 + · · · in non-
negative powers of β as β > 1. A finite automaton ultimately maps periodic sequences
onto ultimately periodic sequences; therefore, if a finite automaton that maps pairs of
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infinite words into infinite words over the alphabet B = {0, 1} and performs 1 + 1 = 2,
then necessarily

2 = α0 + α1β + · · ·+ αn−1βn−1+

(γ0 + γ1β + · · ·+ γs−1βs−1)βn + (γ0 + γ1β + · · ·+ γs−1βs−1)β2n + · · · =
α0 + α1β + · · ·+ αn−1βn−1 + (γ0 + γ1β + · · ·+ γs−1βs−1)βn(1 + βn + β2n + · · · ),

where αi, γj ∈ {0, 1}. As the series 1 + βn + β2n + · · · diverges, then all γj = 0; hence,

2 = α0 + α1β + · · ·+ αk−1βk−1 + βk, (19)

for suitable k ≤ n− 1, αi ∈ {0, 1}. If α0 = 1, then the right-hand side of (19) is not equal to
the left-hand side; therefore, α0 = 0, and by substituting β = 1 + τ and collecting terms of
positive degrees in τ we obtain the following (by binomial theorem):

2 = α1β + · · ·+ αk−1βk−1 + βk = (α1 + · · ·+ αk−1 + 1) + τu(τ),

where u(x) is a polynomial of variable x whose coefficients are in N0. Hence, 1 = α1 + · · ·+
αk−1 + τu(τ), where αj ∈ {0, 1}, j = 1, 2, . . . , k− 1.

If u(x) is a nonzero polynomial, then τu(τ) > 0; thus, as α1 + · · ·+ αk−1 ∈ N0, we
must conclude that α1 + · · ·+ αk−1 = 0: Otherwise, the right-hand side in 1 = α1 + · · ·+
αk−1 + τu(τ) is strictly greater than is the left-hand side. Therefore, all αj = 0 and thus
2 = βk, i.e., β = k

√
2.

If u(x) is a zero polynomial, then necessarily α1 + · · ·+ αk−1 = 1. Therefore, there
must be exactly one nonzero αj; hence, 2 = βj + βk, where 0 < j < k. However, 2 6= βj + βk

since β > 1; so we get a contradiction.
The converse statement of the theorem is obvious since the addition of numbers

represented by N
√

2-expansions is an “addition with carry to the N-th digit”; for example,
when N = 2 one has

. . . 1 1 1 1 1 1 1 = −
√

2 − 1

+

. . . 0 0 0 0 0 0 1 = 1

. . . 0 1 0 1 0 1 0 = −
√

2

It is worth warning the reader that Theorem 18 is not about the calculation of Planck
time, whose value depends on the choice of units. In short, Theorem 18 is about how much
information one needs to have both worldviews, that of the Little-endian and the Big-endian, agree.
Specifically, Theorem 18 implies that the fuzzy wave function is the one which corresponds
to an automaton over a 2N-symbol alphabet; that is, to the automaton whose function
is f : ZN

2 → ZN
2 , i.e., a N-variate 2-adic 1-Lipschitz map; see Section 3.3. Actually, f is a

1-Lipschitz map Z2(
N
√

2) → Z2(
N
√

2), where Z2(
N
√

2) is the ring of integers of the field
Q2(

N
√

2); we leave further discussion of theory to future papers.
We remind the reader that for multivariate p-adic 1-Lipschitz maps, most theorems that

have been proven or mentioned in this paper hold true; in particular, Theorem 15 holds true.
Given a real function G : H → Rn whose domain is H ⊂ Rm, by the graph of the function (on
the torus Tm+n), we mean the point subset GH(g) = {(−→x mod 1; G(−→x )mod 1) : −→x ∈ H} ⊂
Tm+n. Note that if−→y = (y1; . . . ; yk) ∈ Rk, then−→y mod 1 stands for (y1 mod 1; . . . ; yk mod 1).
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Theorem 19 ([10]). Let A be a finite automaton over the alphabet {0, 1, . . . , p− 1}, let A have
m inputs and n outputs, and let G = (G1; . . . ; Gn) : [−→a ,

−→
b ] = [a1, b1]× · · · × [am, bm] [0, 1)n

(where [ak, bk] ⊂ [0, 1), Gi : [−→a ,
−→
b ] → [0, 1), k = 1, 2, . . . , m) be a two-times differentiable

function such that all its second partial derivatives are continuous on [−→a ,
−→
b ]. If G(G) is a subset

in a plot P(A) ⊂ Tm+n of the automaton A, then there exist an m× n matrix D = (dkj) and
a vector −→c = (c1; . . . ; cn) such that dkj ∈ Q ∩ Zp, cj ∈ Q ∩ Zp ∩ [0, 1) (k = 1, 2, . . . , m;

j = 1, 2, . . . , n) and G(−→x ) = (−→x D +−→c )mod 1 for all −→x ∈ [−→a ,
−→
b ]. There are not more than

a finite number of D and −→c such that dkj ∈ Q ∩ Zp, cj ∈ Q ∩ Zp ∩ [0, 1) (k = 1, 2, . . . , m;

j = 1, 2, . . . , n) and G
[−→a ,
−→
b ]
((−→x D +−→c )mod 1) ⊂ P(A) for some [−→a ,

−→
b ] ⊂ [0, 1)m; moreover,

if G
[−→a ,
−→
b ]
(−→x A +−→c ) ⊂ P(A) for some [−→a ,

−→
b ] ⊂ [0, 1)m then GRm((−→x D +−→c )mod 1) ⊂

P(A) ⊂ Tn+m.

The theorem implies that in the multivariate case, the sharp wave function is of the
following form:

ΨA(
−→x , r) = ∑[

S
A,
−→
b

]
∈Spec(A)

q[
S

A,
−→
b

]ei(−→x A−2πpr−→b ); (−→x ∈ Rm;
−→
b ∈ Rn; r ∈ Z).

Therefore, Theorem 18 implies that a univariate fuzzy wave function is actually a multivariate
sharp wave function; however, it is for a large number of dimensions. For instance, if

N
√

2 = 1+ τ where τ is of order of Planck time, then N ≈ ln 2
τ ≈ 1043; that is, the automaton

function of respective automaton is a 1-Lipschitz map Z1043

2 → Z1043

2 . This means that the
matrices A in the above formula for the sharp wave function ΨA(

−→x , r) are 1043 × 1043; that
is, each of the matrices contains more entries than the number of atoms in the universe.
An infinite-dimensional space is an adequate model for a 1043-dimensional space; this
is why both the Big-endian and Little-endian would agree that wave functions “live” in
Hilbert spaces. We postpone to a future paper more rigorous statements and proofs on how
pure and fuzzy wave functions are related one to another; here, we only explain why both
functions, which may be judged as “physical”, are elements of Hilbert space `2(Spec(A))
of square-summable complex sequences whose terms are indexed by elements of the set
Spec(A) (which is countable) since a “physical” wave function must be square-summable
and the sum of squares of probability amplitudes must be 1. Recall that any separable
Hilbert space is metrically isomorphic to `2 and that the Fourier transform on the circle is
such an isomorphism between the Hilbert space of square-integrable functions on [0, 1] = I
and the space `2(Z) of square-summable complex sequences whose terms are enumerated
by integers. It is not difficult to construct sharp wave functions which can be judged as
“physical” with this meaning. Indeed, take any sequence q1, q2, . . . of positive real numbers
such that ∑∞

j=1 qj = 1, and the series ∑∞
j=1
√

qj of positive square roots converges; by using

Theorem 17, construct the automaton A. Then, function ∑∞
j=1
√

qje
i(ajρ−2πpkbj) is the one we

are seeking.
We finalise the subsection with the following interpretation.

Interpretation 8 (Discrete spectrum; continuous spectrum). The measure-0 ultimate affine
automata may be treated as models of physical systems having discrete (energy, frequency, ...)
spectra, while measure-1 ultimate affine automata may be treated as models of physical systems
having continuous spectra.

5.5. Uncertainty

In this subsection, we formally derive an uncertainty relation which holds for wave
functions of automata. We stress, once again, that despite the Litle-endian being capable
of performing observation at the smallest scale and the Big-endian not being able to do so, the
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uncertainty relation, which can be treated as a time-energy uncertainty, holds for both observers, i.e.,
for Little-endian as well as for Big-endian; thus, no hidden parameters are assumed.

The uncertainty relation we are going to deduce is an entropic one. A number of
research papers have been devoted to discussing entropic uncertainty relations; see, e.g.,
the expository paper [59] and the references therein. The entropic uncertainty relation
derived below is of a novel type since it relates the time during which a system reaches
a “pure state" that can be ascribed to a minimal affine subautomaton and the state (i.e.,
an element of Spec(A)) itself. Note that as the Little-endian is capable of performing
measurements at the smallest of scales, the time a system reaches a state that belongs to
some minimal automaton is not 0, i.e., the “wave function collapse" is not momentary, it
takes some minimal time intervals (e.g., some Planck time). Note that the collapse of wave
functions as a finite-time process is discussed in the literature; see, e.g., [60].

To start with, we need to restate some results from Section 5.4 in terms of prefix codes
since in what follows, we use some basic properties of the codes which may be found, e.g.,
in the book [61].

Definition 13 (Prefix code). A nonempty set C of finite nonempty words over a finite alphabet A
that consists of p > 1 letters is called a prefix code if each word from C is a prefix of no other word
from C.

Let words from the nonempty set G of finite nonempty words over A be ordered with
respect to a nondecreasing order of their lengths, and let `i be the length of the i-th word (so
`1 ≤ `2 ≤ · · · ). The set G is a prefix code if and only if the following Kraft–McMillan inequality
holds:

∞

∑
i=1

p−`i ≤ 1. (20)

Note 13. From the proof of Theorem 17, it follows that the branches of the state transition
diagram constitute a prefix code since each word which corresponds to a branch of length
k reaches some minimal affine subautomaton exactly at the k-th step, thus, the word cannot
be a prefix of any other word which corresponds to another branch. Note that words begin
from the root of the tree, and the root is the initial state in the state-transition diagram. From the
construction, it follows that the Kraft–MacMillan inequality for that code is equality. However,
by using Corollary 1 rather than Lemma 2 in the proof, one constructs a prefix code such that
∑∞

i=1 p−`i = q ≤ 1 for any given 0 < q ≤ 1. In this case, the rest infinite paths of the complete
p-adic tree that lead to no minimal finite affine subautomaton constitute a set of Haar measure 1− q.
The automaton having such a state transition diagram will reach minimal subautomata which are
finite and affine with probability 0 < q ≤ 1 rather than exactly 1. In that case, to automaton A,
there corresponds a sharp wave function of the form (17) such that ∑[Sa,b ]∈Spec(A) q[Sa,b ]

= q which
therefore is normalisable. For not to overload the exposition, in what follows we mostly deal
with the case when q = 1, i.e., with ultimately affine automata A, cf. Section 5.4.

Let X be a random variable on the prefix code G = (wi)
∞
i=1 X; we denote via

qi = Prob(X = wj) the probability that X is equal to the word wi. By definition [61],
the entropy H(X) of the random variable X is H(X) = −∑∞

i=1 qi logp qi, whereas the mean
length of the codeword is E(X) = ∑∞

i=0 qi`i.
There exists a prefix code such that `i = dlogp(1/qi)e for which the right-hand side

inequality in (21) below holds (that right-hand side inequality is not true in general). The
left-hand side inequality in (21) below holds whenever H(X) < +∞ and E(X) < +∞,
becoming an equality if and only if qi = p−`i [61] [Theorem 4.3].

H(X) ≤ E(X) < H(X) + 1, (21)

The time which a (both sharp and fuzzy) wave function takes to collapse can be
expressed via the length of a word which reaches a state from some minimal affine subau-
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tomaton since the length of the word is the order of time expressed in the respective base;
see the explanations in Section 5.3. This is why in what follows, we deal with the lengths of the
words rather than with time itself. Note that when dealing with the lengths of the words, we
may restrict considerations to the words over the alphabet {0, 1, . . . , p− 1} where p is a
prime since fuzzy wave functions are constructed by using words over the alphabet {0, 1};
see Section 5.4. The only difference between sharp and fuzzy wave function constructions
for p = 2 are the numerical values that are assigned to words by both the observers: The
Little-endian assigns numbers to words by reading the words as the base-2 expansions of
numbers whereas the Big-endian reads these words as (1 + τ)-representations of numbers
for 0 < τ � 1. We stress that in what follows, “mean time of collapse” is synonymous with
“mean word length” although the actual mean time of collapse measured by the both observers
is different due to the inevitable nonzero measurement error. For instance, to the word
of length k whose prefix is k− 1 zeros and whose suffix is 1, the Little-endian assigns the
value 2k, whereas the Big-endian assigns the value (1 + τ)k, which for small τ and not too
large k, is indistinguishable for this observer from 1 due to the measurement error. To put it
in other words, the Little-endian’s measurements of time elapsed are much more accurate
than are the Big-endian’s; the time within which the wave function collapses is large for
the Little-endian, whereas that time is zero for the Big-endian up to the measurement
accuracy of his equipment; although both the clocks the observers use are 2-adic, according
to Theorem 18, the Big-endian can observe digits in the windows that are to the left of
the (N − 1)-th window at the face of the clock for N large, whereas Little-endian observes
digits to the left of the lowest order position, i.e., from the rightmost window (cf., Figure 3).
Nevertheless, we are going to show that “time-energy” uncertainty in terms of the length of
words in the state transition diagrams of automata holds for both observers.

Let A be an ultimately affine automaton, cf. Section 5.4. Define the automaton entropy
as

HA = − ∑
[Sa,b ]∈Spec(A)

q[Sa,b ]
logp q[Sa,b ]

.

For every [Sa,b] ∈ Spec(A), the probability q[Sa,b ]
is equal to the sum of all p−Λ(w), where

Λ(w) is the length of a finite word w that reaches some state that belongs to some subau-
tomaton from [Sa,b] exactly at the Λ(w)-th step; the summation is over all these words. Let
C[Sa,b] be a code whose codewords are all these words w; then, ∑(w∈[Sa,b ])

p−Λ(w) = q[Sa,b ]
.

Note that ∑[Sa,b ]∈Spec(A) ∑(w∈[Sa,b ])
p−Λ(w) = ∑[Sa,b ]∈Spec(A) q[Sa,b ]

= 1, the codes C[Sa,b]

are disjointed for different [Sa,b] ∈ Spec(A), and the union of all these codes for all
[Sa,b] ∈ Spec(A) is a prefix code C(A) such that ∑w∈C(A) p−Λ(w) = 1. According to the
above convention, the mean time T(A) of wave function collapse is the mean length of a
codeword of the code C(A):

T(A) = ∑
w∈C(A)

Λ(w)p−Λ(w)

The inequality (21) implies that

T(A) ≥ HT = − ∑
w∈C(A)

p−Λ(w) logp(p−Λ(w)) = ∑
w∈C(A)

Λ(w)p−Λ(w) = T(A),

where HT is the entropy of the code C(A). Therefore, the mean time of collapse of the automaton
wave function is equal to the entropy of the code C(A).

For every n ∈ N, let Tn be a set of all codewords of length n from the code C(A). If
Tn 6= ∅ , then Tn is a prefix code. All of these codes are disjointed, and their union is C(A).
Therefore, PN = ∑N

n=1 ∑w∈Tn p−n is the probability that the wave function collapses for a
time not greater than N. Let Htime≤N(A) be the entropy of the prefix code T(N) =

⋃N
n=1 Tn;

that is, Htime≤N(A) = −∑w∈T(N) p−Λ(w) logp(p−Λ(w)) = ∑w∈T(N) Λ(w)p−Λ(w). As the

probability assigned to w ∈ C(A) is p−Λ(w) and as ∑w∈C(A) p−Λ(w) = 1, then for N not
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less than the length of the shortest word from C(A)), it holds that Htime≤N(A) + HA > 0.
Moreover, as Htime≤+∞(A) = ∑w∈C(A) Λ(w)p−Λ(w) ≥ ∑w∈C(A) p−Λ(w) = 1, then

Htime6+∞(A) + HA > 1.

If to minimal affine subautomata there are ascribed “energy levels” (e.g., if in the subau-
tomata functions z 7→ az + b, the coefficients a are different and b = 0) these inequalities
may be judged as time-energy uncertainty relation since if an observer measures the time which
a wave function takes to collapse, he does not know for sure to which of the states the wave function
has collapsed; on the other hand, if he knows to which of the states the wave function has collapsed,
he does not know for sure how much time the collapse has taken.

In a general case, these inequalities cannot be sharpened. Since
⋃∞

n=1 Tn = C(A), then
C(A) can be split arbitrarily into the disjointed union of sets D1, D2, . . ., and as each of Dj
is itself a prefix code, there is an automaton D such that C[Sa,b] = Dj, (j = 1, 2, . . .). Indeed,
the entropy Htime≤+∞(A) is determined by the code C(A) only, whereas HA is determined
completely by the partition of the code C(A) into arbitrary nonempty subsets and by the
“assigning of limit plots” to each of the subsets.

The codeword lengths in C(A) can be arbitrary as well.

Theorem 20 (On maximal prefix codes [62]). For every non-decreasing map ` : N→ N such
that ∑∞

n=1 p−`(n) = d ≤ 1 there exists a (maximal) prefix code C = {wn : n ∈ N} such that
Λ(wn) = `(n), for all n ∈ N.

That is, one can take any such code C for d = 1, split all its codewords into a partition
P(C) of nonempty subsets, assign to every subset S ∈ P(C) a limit plot of a finite automaton
Sa,b(S) arbitrarily , and construct a respective automaton A so that C(A) = C and all finite
paths in every S lead to the Sa,b(S).

We have that HA ∈ [0,+∞], Htime≤+∞(A) ∈ [1,+∞], T(A) ∈ [1,+∞] (as T(A) =
HT = Htime≤+∞(A)), and nothing more definite can be said in the general case. It is possible
that Htime≤+∞(A) = 1. For instance, let p = 2, and let C(A) = {1, 01, 001, 0001, . . .}. Then,
the entropy HA may be equal to 1 if different limit plots are assigned to different balls
B2−n−1(2n). The entropy HA may be zero if the limit plots that are assigned to all these balls
are equal one to another. One may split the set of all these balls into a partition of pairwise
disjointed nonempty subsets and assign to each ball a limit plot so that to all balls from
a subset, the same limit plot is assigned, but to balls that belong to different subsets, one
assigns different limit plots. In all these cases, Htime≤+∞(A) = 1 (as the entropy is equal to
T(A)), but the entropies HA are different.

Finally, consider generating series fA(x) = ∑w∈C(A) xΛ(w) = ∑∞
n=1 tnxn, where tn is the

number of all words of length n in the prefix code C(A). As fA(1/p) = 1, then for the radius RA

of convergence of the series, it holds that RA ≥ 1/p, with fA(1/p) = 1. Hence, the function
fA(x) is differentiable at all points from (−RA, RA), but if RA = 1/p, then the derivative f ′A(x)
may not exist at x = 1/p or may go to +∞. However, f ′A(1/p) = p · T(A), i.e., the derivative
f ′A(1/p) determines the entropy Htime≤+∞(A).

6. Discussion

In the paper, a number of mathematical statements are rigorously proven which, as a
whole, advocate that answers to the questions as whether Nature at the smallest of scales is
discrete or continuous, random and chaotic, or deterministic and predictable, solely depend
on the free choice of metric, real or p-adic, with respect to which numerical experimental
data are processed. The core idea is that rational p-adic integers, i.e., irreducible fractions
whose denominators are coprime to p, are indistinguishable by measurement from real
numbers due to the inevitable nonzero measurement error. The paper is motivated by the
ideas of I. Volovich on p-adic mathematical physics, cf., [6], by G. ‘t Hooft’s cellular automa-
ton interpretation of quantum mechanics, cf., [7], and (to some extent) by recent papers on
superdeterminism by J. Hance, S. Hossenfelder, and T. Palmer, [3,5]. As a whole, the paper
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is information-theoretic by nature, so the results of the paper concerning causality, wave
functions, entropic time-energy uncertainty relation, etc., which are rigorously deduced in
the paper, may be considered as a contribution to J. Wheeler’s it from bit doctrine, cf., [14].
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