
Citation: Huang, Z.; Xu, W.; Zhuo, X.

Community-CL: An Enhanced

Community Detection Algorithm

Based on Contrastive Learning.

Entropy 2023, 25, 864. https://

doi.org/10.3390/e25060864

Academic Editors: Shaoting Tang, Xin

Wang and Longzhao Liu

Received: 27 April 2023

Revised: 21 May 2023

Accepted: 25 May 2023

Published: 29 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Community-CL: An Enhanced Community Detection Algorithm
Based on Contrastive Learning
Zhaoci Huang , Wenzhe Xu * and Xinjian Zhuo

School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
zc.huang@bupt.edu.cn (Z.H.); zhuoxj@bupt.edu.cn (X.Z.)
* Correspondence: wenzhexu@bupt.edu.cn

Abstract: Graph contrastive learning (GCL) has gained considerable attention as a self-supervised
learning technique that has been successfully employed in various applications, such as node classifi-
cation, node clustering, and link prediction. Despite its achievements, GCL has limited exploration of
the community structure of graphs. This paper presents a novel online framework called Community
Contrastive Learning (Community-CL) for simultaneously learning node representations and detect-
ing communities in a network. The proposed method employs contrastive learning to minimize the
difference in the latent representations of nodes and communities in different graph views. To achieve
this, learnable graph augmentation views using a graph auto-encoder (GAE) are proposed, followed
by a shared encoder that learns the feature matrix of the original graph and augmentation views.
This joint contrastive framework enables more accurate representation learning of the network and
results in more expressive embeddings than traditional community detection algorithms that solely
optimize for community structure. Experimental results demonstrate that Community-CL achieves
superior performance compared to state-of-the-art baselines in community detection. Specifically, the
NMI of Community-CL is reported to be 0.714 (0.551) on the Amazon-Photo (Amazon-Computers)
dataset, which represents a performance improvement of up to 16% compared with the best baseline.

Keywords: community detection; contrastive learning; graph neural network

1. Introduction

Community detection is a crucial problem in network analysis that aims to identify
groups of nodes that are more interconnected with each other than with the rest of the
network [1]. It has a wide range of applications, including social network analysis [2],
recommendation systems [3], and epidemiology [4], among others. Specifically, ref. [5]
presents a novel perspective by exploring the community evolutions in TikTok’s dangerous
and non-dangerous challenges, providing valuable insights for community detection in
social media. And ref. [6] utilize a community detection model to analyze text streams
from microblogging sites, aiming to detect users’ interest communities. Over the years,
numerous community detection algorithms have been proposed, ranging from traditional
methods based on modularity optimization [7] to more recent ones using deep learning
techniques [8]. Despite the great progress achieved so far, most existing community
detection methods rely on labeled data, which is often costly and time-consuming to obtain.
In contrast, unsupervised community detection methods [9], which do not require any
prior knowledge about the network structure, have received less attention in the literature.

One promising approach to address this lack is contrastive learning [10], which learns
the general features of a dataset without the need for manual labels or annotations. It
involves learning a similarity metric between pairs of samples and optimizing a loss
function that encourages same-class samples to be close to each other while being far from
samples of other classes. Graph contrastive learning is a recent extension of contrastive
learning to network analysis [11], which is typically used to encode the graph structure

Entropy 2023, 25, 864. https://doi.org/10.3390/e25060864 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25060864
https://doi.org/10.3390/e25060864
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4765-3562
https://orcid.org/0000-0002-0227-1678
https://doi.org/10.3390/e25060864
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25060864?type=check_update&version=1

Entropy 2023, 25, 864 2 of 15

and generate node or subgraph embeddings. The embeddings are then compared using
a contrastive loss function, which encourages similar nodes or subgraphs to be closer to each
other in the embedding space than dissimilar ones. Despite its potential, graph contrastive
learning for unsupervised community detection is still in its infancy, with relatively few
existing methods that specifically target this task.

However, existing methods face several challenges that need to be addressed to im-
prove community detection. One major challenge is the choice of the positive and negative
sampling strategy (augmentation method). Unlike in the field of computer vision, where
changes to an image such as rotation or distortion do not significantly alter its semantic
meaning [12], even minor alterations to the structure of graph data can significantly damage
its semantics [13]. Therefore, developing more effective strategies that can capture the
complex community structure of the network is an important research direction. Another
challenge is the design of the contrastive framework itself. Most existing methods focus on
learning a global representation of the network, rather than a node-level or community-
level representation that can directly facilitate community detection. Moreover, existing
community detection methods often use a two-step learning process [8,14], which can
introduce extra errors and lead to a suboptimal result. To address these challenges, it is nec-
essary to explore new ways to incorporate community structure into contrastive learning
models and design end-to-end frameworks that can facilitate community detection directly.

To address these issues, we consider the following two aspects.
Data augmentation: also referred to as augmented data or augmentation view, in-

volves generating new data from existing data through the random masking or removal of
certain elements, such as edges, nodes, or attributes [15]. In this paper, we propose a novel
approach for generating augmented data that takes into account the importance of edge
structures in communities. Specifically, we use a graph auto-encoder to map the original
graph into an embedding space, and a dot product decoder to calculate the probability of
edge existence between nodes. By incorporating an augmented-level parameter to filter
out low-probability edges, our proposed method generates a reconstructed graph that is
more informative, controllable, and preserves more topological information, resulting in
more effective data augmentation for community detection tasks.

Contrastive Framework: Inspired by CC [16] in computer vision, we argue that the
columns of the representation matrix learned by the shared encoder can be considered as the
pseudo-label of the community. Therefore, we build a joint contrastive framework in which
community-level and node-level contrastive learning are executed synchronously. The joint
contrastive framework can increase the similarity of representations of the same community
in different views and enhance the consistency of representations of the same node in differ-
ent views. Meanwhile, the community-level contrastive can achieve end-to-end community
detection from an individual clustering perspective by learned community representations.

The main contributions of this paper are summarized as follows:

• We present a novel end-to-end algorithm for community detection, which leverages
a joint contrastive framework to simultaneously learn the community-level and node-
level representations.

• We propose a learnable augmentation view generation scheme that captures the
significance of edges in embedding space and generates more informative and diverse
augmented data for community detection.

• We conduct extensive experiments on multiple real-world graph datasets to evaluate
the proposed method. The results demonstrate that our approach achieves competitive
performance on community detection tasks and the learnable augmentation scheme is
effective and robust.

2. Related Work
2.1. Community Detection

A variety of community-detection algorithms have been developed since the begin-
ning of the 21st century. Traditional methods for community detection are mainly based

Entropy 2023, 25, 864 3 of 15

on modularity theory and clustering [17] algorithms and have made notable progress in
recent years [18]. Modularity optimization-based methods are commonly used due to its
intuitive and easily applicable characteristics. The Girvan-Newman algorithm evaluates
the importance of nodes in the network using betweenness centrality, and then gradually
deletes edges in the network according to the size of betweenness centrality, ultimately
dividing the network into several communities. The Louvain algorithm [19] uses modu-
larity to evaluate the quality of community partitions, divides the network into several
communities, and continuously optimizes modularity until it can no longer be improved.
However, these methods may suffer from high computational complexity and poor scala-
bility when dealing with large-scale graphs. In addition, clustering-based methods have
also been widely used in the field of community detection, such as K-means [20] and
hierarchical clustering [21]. Cluster-based methods usually require setting the number of
clusters in advance, so for networks with complex community structures, the results may
not be satisfactory.

With the development of Internet technology, deep learning models have gained lots of
attention in community detection tasks due to their ability to capture unstructured features
and identify high-dimensional nonlinear information [8]. Deep learning techniques for
community detection can be broadly categorized into two groups: methods based on Graph
Embedding [22] and methods based on Graph Convolutional Networks (GCN) [23]. Graph
embedding methods, such as DeepWalk [24], and Node2Vec [25], leverage random walk
to maximize the similarity between nodes and neighbourhoods. Methods based on GCN
perform convolution operations directly on the graph structure to extract node features
and perform community detection [26].

The LGNN algorithm [27] first transforms the original graph into its corresponding
line graph and then performs node embedding on the line graph. After the node embedding
is completed, the LGNN algorithm uses a linear support vector machine (Linear SVM) to
predict labels for each node, thereby achieving supervised community detection. Many
other deep learning methods have also been investigated for community detection beyond
graph embedding and convolutional networks. One such method is AA-Cluster [28],
which states that neighbours of similar nodes and multi-step neighbours should also have
similarities. Based on this, hierarchical similarity probabilities are proposed, AA-Cluster
uses biased random wandering with Skip-Gram followed by stochastic gradient descent
to maximize the co-occurrence probability of similar nodes. Another notable approach is
CommunityGAN [29], which employs a generative adversarial network (GAN) [30] for
community detection. By generating local neighborhoods of the original graph and using
a discriminator network to classify them, CommunityGAN learns the community structure
information and produces the final community partitioning results. The aforementioned
algorithms are all supervised methods, which heavily rely on labeled data and may suffer
from limited generalization ability to handle new or unseen community structures.

Most current unsupervised methods for community detection typically rely on a two-
step learning scheme, first learning node embeddings and then using k-means for commu-
nity segmentation. This approach may lead to an increase in unknown errors. Therefore,
developing unsupervised or self-supervised deep learning methods for community de-
tection that can directly learn from graph structures without relying on external labels
remains an active research area. As one of the most popular algorithms in the field of self-
supervised learning, contrastive learning has provided solutions for many unsupervised
tasks. Therefore, this study aims to address the scarcity of unsupervised algorithms for
community detection by combining the self-supervised learning strategy of contrastive
learning and proposing a new self-supervised community detection algorithm.

2.2. Graph Contrastive Learning

Contrastive learning is an unsupervised learning approach that aims to learn the
underlying structure of data by comparing pairs of samples. Unlike supervised learning,
which requires labeled data, contrastive learning focuses on identifying the similarity or

Entropy 2023, 25, 864 4 of 15

dissimilarity between pairs of samples. As an extension of contrastive learning, graph
contrastive learning learns the embedding representations of nodes and edges by utilizing
graph data. Unlike traditional graph representation learning methods that rely on super-
vised information or labels, graph contrastive learning relies solely on contrastive loss
functions to train the model, enabling it to learn more robust and useful feature representa-
tions in an unsupervised manner. Moreover, graph contrastive learning typically combines
data augmentation techniques to improve the performance of the model, enabling it to
better deal with issues such as data sparsity and missing values.

The field of graph representation learning has been advancing rapidly in recent years,
and contrastive learning has emerged as a promising unsupervised approach for learning
representations of nodes and edges in graphs.

DGI [31] is a novel work that applies the contrastive learning framework to graph rep-
resentation learning and proposes a global-local contrastive framework. In this approach,
the graph is corrupted by shuffling features, and the corrupted graph is regarded as the
global negative sample. The goal of DGI is to maximise global and local mutual information.
In terms of data augmentation for contrastive learning, GraphCL [15] discusses the effects
of four different graph data augmentation methods (node dropping, edge perturbation,
attribute masking, and subgraph) and their different combinations on graph contrastive
learning. The results show that applying augmentation for graph contrastive learning
improves the performance of downstream tasks, but the best-fit augmentation strategies
vary across different graph datasets. GCA [32] proposed an adaptive augmentation scheme
which computed the edge importance from three perspectives: node degree, feature vector
and PageRank. They then calculated the probability of edge dropping based on the edge im-
portance. However, the prior probability of edge importance is not learnable. MVGRL [33]
and GCC [34] apply subgraph augmentation and contrastive. MVGRL uses a diffusion
kernel to add edges and then uses subgraph sampling to obtain contrastive pairs; while
GCC constructs a subgraph from the ego-network generated by the nodes. The subgraphs
generated from different nodes or graphs can be considered as negative sample pairs.
However, all the above methods rely on various intuition-based augmentation strategies
to transform the graph structure. This paper intends to contribute to the field of graph
representation learning by introducing a novel graph augmentation scheme and contrastive
framework specifically for community detection.

3. Methods

As shown in Figure 1, our proposed framework combines the power of graph au-
toencoders, graph convolutional neural networks, and contrastive learning to enhance the
topological structure and feature information of a graph, leading to improved performance
on downstream tasks. Figure 1a is an augmentation generator, generated based on a graph
autoencoder. It is superior to random edge drop methods as it preserves more topological
structure and feature information of the original graph by learning a low-dimensional
embedding representation. An importance threshold is employed to regulate the aug-
mented level, which provides control over the diversity and richness of the generated
augmented graph. In contrast, random edge missing methods lack this controllability.
Figure 1b is a shared encoder, which utilizes a two-layer GCN to aggregate information
from the graph’s neighborhoods more effectively. This approach enables the model to
capture local and global structural information and enhance the overall performance of
downstream tasks.

Two contrastive heads are designed in Figure 1c, one for node-level contrastive learn-
ing and the other for community-level contrastive learning. This design allows the model
to learn both fine-grained node representations and high-level community representations,
which can capture different levels of graph structure and enhance the overall performance
of downstream tasks. The node-level contrastive head focuses on learning node-level
representations by contrasting positive pairs of augmented views of the same node and
negative pairs of different nodes. This allows the model to capture the local structural

Entropy 2023, 25, 864 5 of 15

information and the context of each node. The community-level contrastive head, on the
other hand, learns representations for communities by contrasting positive pairs of aug-
mented views of the same community and negative pairs of different communities. This
allows the model to capture global structural information and interdependencies between
nodes. By combining these two contrastive heads, the proposed method can learn both
fine-grained and high-level representations of the graph, and the soft labels generated by
the community-level contrastive head can be utilized to obtain the community detection
results for each node directly.

Z
GCN

encoder
Z·ZT

decoder

Hori

Haug

GCN

encoder

GCN

encoder

shared

σ
σ
σ
σ

gNode(·)

σ
σ
σ
σ

gComm(·)

ya

yb

za

zb

maximize
similarity

maximize
similarity

(a) Generator (b) Shared encoder (c) Contrastive head

Figure 1. Framework overview of Community-CL model, which consist of (a) a augmentation
generator, (b) a shared deep graph neural network, and (c) two contrastive heads which are designed
for node-level and community-level, respectively.

3.1. Generator

Given an original graph G = (V, E), where V and E are the nodes set and edges
set, respectively, we denote the adjacency matrix of the graph as A ∈ {0, 1}n×n and the
nodes’ feature matrix as X ∈ {0, 1}n×d, where n = |V| is the number of nodes and d is
the dimension of features. A two-layer graph convolutional neural network (GCN) is first
used to aggregate the neighborhood information of the nodes and generate an embedding
representation of the nodes. The adjacency matrix and the feature matrix are multiplied to
achieve the convolution operation on the graph structure, which captures the structural
information of the graph. In the GCN model, the same adjacency matrix is used at each
layer to achieve information sharing and propagation, as shown in Equation (1):

Z = GCN(X, A) = ÂReLu(ÂXW0)W1, (1)

where W0, W1 are the weight matrix that need to be learned, Relu is a nonlinear activation
function that serves to perform a nonlinear transformation of the input to enhance the
expressiveness of the model, Â = D

1
2 AD

1
2 , and D is the degree matrix of the graph. If

the graph does not have a feature matrix, a unit matrix I ∈ {0, 1}n×n can be used to
replace the X. A dot product decoder can be applied to achieve the reconstructed adjacency
matrix Ã,

Ã = sigmoid(ZZT). (2)

The cross-entropy is used as a loss function by maximizing the similarity between the
original matrix and the reconstructed adjacency matrix.

L = − 1
n ∑

i,j∈E
(a log(ãij + (1 − aij) log(1 − ãij), (3)

where aij is the element of the original adjacency matrix, and ãij is one of the reconstructed
adjacency matrices. ãij can be seen as the existence probability of edges between node i and
node j of the reconstructed graph. The element aij in A generated after pre-training can

Entropy 2023, 25, 864 6 of 15

be regarded as the probability of the existence of concatenated edges between node i and
node j in the reconstructed adjacency matrix.

We have established an augmentation level τa ∈ [0, 5] to regulate the trade-off between
diversity and precision of the generated augmentation view. By varying the augmenta-
tion level, we can regulate the threshold probability for edge retention in the generated
augmented graph,

Ã =

{
1 ãij > sigmoid(τa)

0 ãij ≤ sigmoid(τa).
(4)

where the importance threshold is computed by the following function:

sigmoid(τa) =
1

1 + eτa
. (5)

The converted Ã will be used as input data for the contrastive model. τa and the
importance threshold preserve the sparsity of generated view, which reduces the compu-
tational complexity and makes the algorithm still efficient on the large graph. And the
training strategy of the generator is described in Algorithm 1.

Algorithm 1 The framework of generator

Require: Original Graph G, Augmented level τa, Training Epoch E1 and Structure of gθ

Ensure: Augmentation View GT

1: for epoch = 1 to E1 do
2: Encode the original G by Z = gθ(G)
3: Decode Z by a dot product decoder using Equation (2)
4: Compute Loss L using Equation (3)
5: Update gθ through gradient descent to minimize L
6: end for
7: Generate reconstruct adjacency matrix Ã using the augmented level τa (see

Equation (4)).

3.2. Shared Graph Convolution Encoder

After generating the augmented views, we employ a shared graph convolutional
neural network to learn the representation matrices of the original graph and the augmented
views. The learned representation is denoted as Hori and Haug. GCN can effectively capture
the structural information and local features between nodes, enabling accurate modeling of
similarity in contrastive learning. By leveraging the advantages of GCN, we aim to enhance
the performance of our proposed method in the contrastive learning task.

3.3. Node-Level Constrastive Head

The purpose of contrastive learning is to learn a low-dimensional embedding repre-
sentation in which positive sample pairs are similar, and negative sample pairs are distinct.
We use pseudo-labels based on the original graph and the augmentation view to construct
positive and negative sample pairs. Each original graph and its augmented graph contain
n nodes, resulting in a total of 2n nodes. For a specific node in an original graph, its
corresponding node in the augmented graph is considered a positive sample pair, while all
other 2n − 2 nodes in the original and augmented graphs are considered negative sample
pairs. To alleviate information loss caused by contrastive learning, a two-layer nonlinear
MLP encoder gNode(·) is used to map the feature matrix obtained by the shared encoder
to a low-dimension embedding space. The embeddings for the original and augmented
graphs are denoted as Zori

Node = gNode(Hori) and Zaug
node = gNode(Haug), respectively. The zori

i

Entropy 2023, 25, 864 7 of 15

and zaug
i are feature vectors of node i in different views. We compute the similarity between

all pairs of nodes using the following cosine similarity,

s(zori
i , zaug

j) =
(zori

i)(zaug
j)T

∥zori
i ∥∥zaug

j ∥
, (6)

where i, j ∈ [1, n]. To optimize the similarity of node pairs, a loss function is utilized.
Specifically, for a given node i of the original graph, the associated pairwise loss is computed
as follows in Equation (7):

lori
i = − log

exp(s(zori
i , zaug

i))/τNode

∑n
j=1[

exp(s(zori
i ,zaug

i))
τNode

+
exp(s(zori

i ,zaug
j))

τNode
]

, (7)

where τNode is the temperature parameter that controls the sharpness of the probability
distribution. The numerator of the loss function represents the similarity of the positive
sample pair, while the denominator corresponds to the sum of the similarities between the
given node and all others in the graph. s(zori

i , zaug
j) computes the similarity of node i and

non-corresponding node j. To regulate the model’s sensitivity to similarities, τNode is intro-
duced. By adjusting the value of τNode, we can balance the robustness and discriminability
of the model [35].

At the node level, the objective of the node-level contrastive head is to enhance the
similarity between each original node and its corresponding augmented node. Therefore,
we compute the contrastive loss at the node level for each node in the original graph
and its augmentation view. The contrastive loss between the i-th augmented node and
its corresponding original node is denoted as laug

i , computation of laug
i is same as lori

i
introduced in Equation (6). Therefore, the overall contrastive loss can be represented as

LossNode =
1

2n

n

∑
i=1

(lori
i + laug

i). (8)

3.4. Community-Level Contrastive Head

We project the feature representation Hori and Haug into the latent space of the commu-
nity dimension using another two-layer MLP encoder gComm(·). This results in community
embedding matrix Zori

Comm ∈ Rn×M and Zaug
Comm ∈ Rn×M, where M is the number of com-

munities. In other words, Zori
Comm and Zaug

Comm can be viewed as feature matrices in the
community dimension, where the ith row of the matrix represents the feature vector for
node i and the element of zip represents the probability that node i belongs to the commu-

nity p. However, if we transpose the feature matrix Zk
Comm ∈ Rn×M to Zk

Comm
T ∈ RM×n,

where k ∈ {ori, aug}, the pth row can be seen as the feature vector of community p, where
each element yji represents the probability that community p contains node i. We denoted
the feature vector of community p as yk

p.
The cosine similarity of the community pairs is calculated in the community embed-

ding space

s(yori
p , yaug

q) =
(yori

p)(yori
q

T
)

∥yori
p ∥∥yaug

q ∥
, (9)

where p, q ∈ [1, M]. We set the community-level temperature parameter as τComm, and use
the normalized temperature-scale cross-entropy loss function to optimize the community
contrastive pairs. This helps to ensure that for each community feature vector yori

p , its

Entropy 2023, 25, 864 8 of 15

similarity is maximized with its corresponding community feature vector yaug
p , while its

similarity to non-corresponding communities is minimized.

l̂ori
p = − log

exp(s(yori
p , yaug

p))/τComm

∑M
p=1[

exp(s(yori
p ,yaug

p))
τComm

+
exp(s(yori

p ,yaug
q))

τComm
]
. (10)

Similarity with the node contrastive loss, the contrastive loss between the p-th augmented
community and its corresponding original community is denoted as l̂aug

p , computation of
l̂aug
p is the same as l̂ori pi, introduced in Equation (10). After traversing the contrastive loss of

all communities, a penalty term is introduced to mitigate the issue of the majority of nodes
being assigned to the same community. The assignment probability P(yk

q) is calculated for
each community:

P(yk
q) =

p(yk
qi)

∑M
q=1 ∑N

i=1 p(yk
qi)

, (11)

where k ∈ {ori, aug}. To calculate the sum of the entropy of community assignment
probabilities of the original and augmentation views, I(Y):

I(Y) = −
M

∑
i=1

[P(yori
i log P(yori

i) + P(yaug
i log P(yaug

i)]. (12)

If all the nodes are assigned to the same community, the community assignment probabili-
ties will be highly imbalanced and the entropy of community assignment will be very low,
resulting in a higher penalty term. In contrast, if each node is equally likely to be assigned
to any community, the entropy of community assignment will be maximized, resulting in a
lower penalty term. The final community-level loss is computed as:

LossComm =
1

2M

M

∑
p=1

(l̂ori
p + l̂aug

p)− I(Y). (13)

3.5. Object Function

Our proposed method differs from traditional graph clustering approaches, which of-
ten focus solely on either global or local information. Instead, we combine both community-
level and node-level heads, which allows for a more comprehensive understanding of
the graph and more informed clustering decisions. By optimizing the node-level and
community-level contrastive heads simultaneously in a single-stage, end-to-end process,
our model can effectively leverage both types of information to achieve superior clus-
tering results. We introduce an overall objective function to comprise node-level and
community-level contrastive losses, i.e.,

L = αLossn + (1 − α)Lossc. (14)

Here, the hyper-parameter α is used to balance the node-level and community-level con-
trastive losses. Through experimentation, we found that setting α = 0.5 works well. Our
proposed model’s complete training and testing process is presented in Algorithm 2. After
the training process is completed, the argmax function is used to aggregate the embeddings
of each community, resulting in the final assignment of each node to a specific community.
Specifically, the final community representation H is computed by an argmax function,
which returns the index of the largest element in the vector. The returned result c is the
assignment vector of nodes.

Entropy 2023, 25, 864 9 of 15

Algorithm 2 The framework of contrastive learning

Require: Original Graph, G, Augmentation View, GT , Training Epoch, E2, Temperature
parameter, τN , τC, Community number, M, Structure of f , gNode, and gComm.

Ensure: Community assignments.
1: for epoch = 1 to E2 do
2: compute node and community representations by

H = f (G), H̃ = f (GT)
zori

i = gNode(hori
i), zaug

i = gNode(h
aug
i)

yori
p = gComm(hori

p), yaug
p = gComm(h

aug
p)

3: Compute node-level contrastive Loss LN , community-level contrastive Loss LC and
overall loss L

4: Update f , gNode , and gComm through gradient descent to minimize L
5: end for
6: Extract feature by H = f (G)
7: Compute community assignment by c = argmaxgC(h)

4. Experiments
4.1. Experimental Setup
4.1.1. Datasets

We evaluate our proposed method on six different graph datasets of varying sizes,
including two small datasets, Cora & Citeseer, and four middle-sized datasets Amazon-
Photo & Amazon-Computers, Coauthor-CS, and WikiCS. The detailed statistics are listed
in Table 1.

Cora & Citeseer [36] are two citation networks where nodes represent papers and
edges are established if two papers have a reference relationship. The papers are described
using a bag-of-words, and the one-hot bag-of-words is used as the feature for the network.
In Cora and Citeseer, the nodes are assigned to seven and six classes, respectively, based on
the papers’ type.

Amazon-Photo & Amazon-Computers [37] are two co-purchase networks collected
by crawling the Amazon website. The nodes represent the products, and if two products
are purchased together, they have an edge. The features are bag-of-words vectors extracted
from product reviews, and the class labels are given by the product category.

Coauthor-CS & Coauthor-Physics [37] are co-authorship graphs based on the Mi-
crosoft Academic Graph from the KDD Cup 2016 challenge. The nodes represent authors,
and they are connected by an edge if they co-authored a paper. The features represent
paper keywords for each author’s papers, and class labels indicate each author’s most
active fields of study.

WikiCS [38] is constructed based on the Computer Science articles in Wikipedia.
The network consists of nodes corresponding to articles, with edges based on hyperlinks.
There are 10 classes representing different branches of the field.

Table 1. Statistics of datasets used for evaluations.

Dataset Type Nodes Edges Attributes Classes

Cora reference 2708 10,556 1433 7
Citeseer reference 3327 9104 3703 6
Amazon-Photo co-purchase 7487 119,043 745 8
Amazon-Computers co-purchase 13,381 245,778 767 10
Coauthor-CS co-author 18,333 81,894 6805 15
WikiCS reference 11,701 216,123 300 10

4.1.2. Implementation Details

To compare our proposed method with previous work, we use a 2-layer GCN network
as the shared encoder in all experiments, as well as in the primary network of the baseline

Entropy 2023, 25, 864 10 of 15

method. We use the generator described in Section 3.1 to construct the augmentation
view. The hidden layer dimension of the generator is set to 16, and the initial learning
rate is set to 0.001. We use a dot product decoder to get the reconstructed probability
matrix after 200 training epochs. For all the datasets, we set the augmented level to 5.
The shared encoder encodes the input original graph and augmentation view to generate
128-dimensional feature vectors for subsequent comparison learning. The temperature
parameters τN , and τC are set to 0.5 and 1, respectively.

The augmentation view generator and contrastive model both are optimized by Adam
Optimizer [39]. Adam is a variant of stochastic gradient descent (SGD) that prevents the
learning rate from becoming too large when the gradient is large, ensuring the stability
of parameter values. This optimizer has been widely used and proven effective since it
was proposed.

We employ PyTorch and PyG (PyTorch Geometric Library) to download and process
the graph data. The experiments are conducted using the Nvidia GeForce RTX 3080Ti GPU.

4.1.3. Evaluation Metrics

The two metrics we use to evaluate our method are Normalized Mutual Information
(NMI) and Adjusted Rand Index (ARI). These metrics are commonly used in evaluating
clustering algorithms, with higher values indicating better clustering results for all metrics.

4.1.4. Leading Example

In order to enhance the comprehensibility of our experiments, we present a leading
example as follows:

• Step 1: We downloaded the Cora dataset using PyG. The Cora dataset consists of
2708 nodes, 5429 edges, and a total of 7 categories. The dataset includes 1433 features,
each of which is represented by only 0/1. Thus, we obtained the adjacency matrix
A ∈ R2708×2708 and feature matrix X ∈ R2708×1433.

• Step 2: We employ Equations (1)–(5) as well as Algorithm 1 to generate Ã ∈ R2708×2708.
• Step 3: Next, we use A, Ã and X as input data for the shared convolution encoder,

with a learned dimension of 128. As a result, we obtain the learned represention
Hori ∈ R2708×128 and Haug ∈ R2708×128.

• Step 4: We take the learned representations Hori and Haug as inputs to two MLP
encoders, namely, gNode and gComm. In gNode, we set the output dimension to 32
and obtain the node-level representations Zori

Node ∈ R2708×32 and Zaug
Node ∈ R2708×32.

In gComm, the output dimension is set to the number of classes (which is 7 in this
case), resulting in the community-level representations Zori

Comm ∈ R2708×7 and Zaug
Comm ∈

R2708×7.
• Step 5: we use Equations (6) and (9) to compute the similarity of nodes and communi-

ties between original graph and augmentation view. We then use Equations (7), (8)
and (10)–(13) to compute the node-level loss and community-level loss, respectively.

• Step 6: Finally, We use the Equation (14) to compute the overall loss, where the
hyper-parameters α and β are set to 0.5. We update all the parameters according to
Algorithm 2.

• Step 7: Once the training is complete, we take the original graph’s adjacency matrix A
and feature matrix X as inputs to our model, resulting in the final community-level
representation Zori

Comm ∈ R2708×7. We then use the argmax function to assign nodes to
communities based on their highest probability of membership.

4.1.5. Baselines

We evaluate our method on six representative graph datasets and compare it with eight
state-of-the-art graph algorithms. This includes four traditional methods: k-means [20],
DeepWalk [24], GAE & VGAE [40], 6 existing graphs: GCA [32], MVGRL [33], DGI [31],
HDI [41], gCoole [42].

Entropy 2023, 25, 864 11 of 15

4.2. Overall Performance

The experimental results presented in Table 2 demonstrate that our proposed method
outperforms other state-of-the-art baselines in all six datasets in terms of NMI and ARI.
Specifically, in the Amazon-Photo dataset, our method achieves more than 50% improve-
ment in performance compared to the best baseline on Amazon-Computers and Coauthor-
CS in terms of ARI. The remarkable results demonstrate the effectiveness of our proposed
method in community detection. The combination of the community-level and node-level
heads is the key to the performance improvement of our method. This will be further
demonstrated in the ablation study presented in the following section.

Table 2. The clustering performance on six different size and type graphs. The best results are shown
in boldface.

Dataset Cora Citeseer Amazon-Photo Amazon-Computers Coauthor-CS WikiCS

Metric NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

k-means 0.167 0.229 0.17 0.27 0.235 0.112 0.192 0.086 0.498 0.315 0.244 0.022
DeepWalk 0.243 0.224 0.276 0.105 0.494 0.338 0.227 0.118 0.727 0.612 0.323 0.095
MVGRL 0.502 0.479 0.392 0.394 0.343 0.242 0. 244 0.141 0.733 0.637 0.254 0.101

DGI 0.498 0.447 0.378 0.381 0.365 0.253 0.318 0.165 0.754 0.639 0.309 0.130
HDI 0.449 0.352 0.350 0.341 0.430 0.310 0.347 0.216 0.725 0.616 0.240 0.104
GAE 0.389 0.293 0.174 0.141 0.614 0.493 0.441 0.258 0.727 0.613 0.241 0.094

VGAE 0.414 0.347 0.163 0.101 0.531 0.354 0.423 0.238 0.733 0.605 0.259 0.072
GCA 0.503 0.342 0.443 0.384 0.592 0.504 0.426 0.246 0.735 0.618 0.298 0.101

gCooLe 0.494 0.422 0.388 0.347 0.618 0.508 0.474 0.277 0.747 0.634 0.321 0.155

Our Method 0.563 0.487 0.476 0.450 0.714 0.629 0.550 0.434 0.757 0.657 0.455 0.305

4.3. Ablation Study

Three ablation studies are carried out to further understand the importance of data
augmentation, the effect of two contrastive heads, and the reliance on the backbone network.

4.3.1. Importance of Generator

We proposed a GAE-based data augmentation generator to enhance the performance
of our contrastive learning method. As previous research has demonstrated, the success of
contrastive learning heavily relies on the proper strategy of data augmentation [43]. To val-
idate our approach, we evaluate our method on Cora using various data augmentation
schemes, such as 10% EdgePerturb, 10% NodeDrop, 10% Subgraph and 10% AttrMask.
In our experimental setup, the augmentation methods employed were as follows: 10%
EdgePerturb: This method randomly drops each edge from the adjacency matrix with
a probability of 0.1. 10% NodeDrop: With a probability of 0.1, this technique randomly
removes individual nodes from the graph. 10% Subgraph: By selecting nodes with a proba-
bility of 0.1, a subgraph is constructed using the chosen nodes. And 10% AttrMask: With
a probability of 0.1, this method masks node features by replacing them using 0. Figure 2
shows that our generator is more stable and produces more diverse and informative aug-
mented views of the graph data. This is critical for contrastive learning since it requires
a diverse set of views to learn meaningful representations of the underlying graph structure.
Unlike traditional augmentation methods like edge perturbation and node dropping, which
can randomly remove important nodes or edges and introduce uncertainty in commu-
nity detection, our generator is more stable and preserves essential graph features in the
produced views.

Among traditional augmentation methods, AttrMask performs the best, indicating that
edge influence is stronger than attribute influence, and further highlighting the necessity
of our proposed learnable augmentation based on edge reconstruction. Our learnable
augmentation can adjust to the specific characteristics of the input graph data and generate

Entropy 2023, 25, 864 12 of 15

views tailored to the task at hand. This is particularly important in real-world applications
where the graph data can have varying characteristics and structures.

Figure 2. Ablation study on WikiCS by visualizing node representations with t-SNE.

4.3.2. Effect of Augmented-Level τa

We investigate the impact of different levels of augmentation on community detection
performance. To do so, we evaluate the NMI and ARI on Cora for augmentation levels
ranging from τa = 1 to 5. In addition to NMI and ARI, we also use modularity Q as
an evaluation metric, a common indicator for assessing community detection performance
proposed by Newman [44]. The results are shown in Table 3. The predicted Q shown in
Table 3 is a measure of the quality of the predicted community labels, calculated using the
predicted labels and the real edges of the graph. The Original Q is calculated using the real
labels and the real edges of the graph.

Table 3. Effect of Augmented Level (τa) on Community Detection Performance.

Augmented Level NMI ARI Predicted Q Original Q

1 0.533 ± 0.0327 0.465 ± 0.0753 0.734 ± 0.0082

0.6401
2 0.545 ± 0.0022 0.481 ± 0.0253 0.743 ± 0.0095
3 0.573 ± 0.0082 0.501 ± 0.0277 0.735 ± 0.0127
4 0.557 ± 0.0245 0.482 ± 0.0400 0.726 ± 0.0083
5 0.558 ± 0.0107 0.486 ± 0.0294 0.717 ± 0.0150

The optimal outcome is indicated by the bold part.

We conducted an evaluation of the modularity Q using both the real labels and the
predicted labels. The result shows the following: (1) Our proposed method is effective in
every level of augmented data. We found that when τa = 3, the number of preserved edges
is more reasonable, and the result is optimal; (2) The predicted Q is higher than the original
Q, indicating that our method is optimized towards making the community internally tight
and externally sparse.

4.3.3. Importance of Double-Contrastive Head

We conduct ablation studies on four datasets, Cora, Amazon-Photo, Amazon-Computers
and Coauthor-CS, to demonstrate the effectiveness of our proposed node-level head (NCH)
and community-level head (CCH). Specifically, we remove one of the two heads, and per-
formed k-means in the node space for community assignments when the cluster-level
contrastive head is removed. Results given in Table 4 demonstrate the complementary
nature of the two heads and the improvement gained from their joint use. Notably, NCH
performs better on Cora, while CCH performs better on the other three datasets. The results
also demonstrate the importance and significance of considering the community level in
community detection, as CCH can make direct community predictions.

Entropy 2023, 25, 864 13 of 15

Table 4. Effect of two contrastive heads.

Dataset Contrastive Head NMI ARI

Cora
Node+Community 0.5368 + 0.018 0.4837 + 0.024
Node 0.4848 + 0.024 0.3847 + 0.045
Community 0.4532 + 0.011 0.4051 + 0.015

Node + Community 0.7140 + 0.010 0.6293 + 0.008
Node 0.3824 + 0.030 0.2741 + 0.030Amazon-Photo
Community 0.5752 + 0.000 0.5741 + 0.001

Node + Community 0.5506 + 0.0035 0.4338 + 0.0033
Node 0.4678 + 0.020 0.3053 + 0.032Amazon-Computers
Community 0.4804 + 0.0014 0.3202 + 0.0020

Node + Community 0.7519 + 0.0132 0.6579 + 0.0108
Node 0.6432 + 0.0105 0.4357 + 0.0110Coauthor-CS
Community 0.7243 + 0.0055 0.6378 + 0.0083

The optimal outcome is indicated by the bold part.

To further validate the effectiveness of our approach, we use t-SNE [45] to visualize
the node representation. As shown in Figure 3, when only applying the CCH, the distance
among clusters is greater and the internal nodes of clusters are more compact. The NCH
presents more blurred cluster boundaries and dispersed internal nodes. The ablation studies
and visualization results demonstrate the innovation and importance of our proposed
method in community detection.

(a) (b) (c)

Figure 3. Ablation study on Cora by visualizing graph representations with t-SNE. (a) Community
Contrastive Head. (b) Node Contrastive Head. (c) Community and Node Contrastive Heads.

5. Conclusions

In this paper, we present a novel self-supervised community detection algorithm
based on graph contrastive learning, which improves current methods by designing new
enhanced data generation strategies and a joint contrastive framework. Our algorithm
presents several innovations.

Firstly, we introduce a novel data augmentation method that generates diverse views
of networks by using a graph autoencoder and dot-product decoder. The augmented level
provides more information about the network and enhances controllability. Our method
can capture the complexity of community structure while including rich node information,
effectively addressing the problem of poor robustness by traditional methods that randomly
delete edges or nodes.

Secondly, we propose a joint contrastive framework that directly uses community
structure information for community detection tasks, avoiding potential errors caused
by two-step learning and achieving end-to-end learning. Community-level contrastive
learning captures the global structure and topological features, while node-level con-

Entropy 2023, 25, 864 14 of 15

trastive learning considers the similarity and dissimilarity between nodes. By combining
community-level and node-level contrastive learning, more in-depth information can be
supplemented, improving the performance of community detection.

Most importantly, we extensively evaluate our method on multiple real-world graph
datasets and compare it with other methods. The experimental results demonstrate the
competitive performance of our algorithm in community detection tasks, proving its
effectiveness and robustness.

Our proposed unsupervised community detection algorithm based on contrastive
learning exhibits innovation in data augmentation and contrastive learning, and demon-
strates excellent performance in experiments. Future research can further explore different
data augmentation strategies and contrastive learning methods to improve the performance
and applicability of community detection algorithms. Additionally, our method could
be extended to handle larger-scale graphs and other related tasks such as link prediction,
anomaly detection, and community evolution analysis.

Author Contributions: Conceptualization, Z.H. and W.X.; Methodology, Z.H.; Validation, Z.H.;
Formal analysis, Z.H. and W.X.; Data curation, Z.H.; Writing—original draft, Z.H.; Writing—review
& editing, W.X. and X.Z.; Visualization, Z.H.; Supervision, X.Z.; Funding acquisition, W.X. and X.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by “the Fundamental Research Funds for the Central Univer-
sities (2022RC35)”. Authors are also supported by the National Natural Science Foundation of China
(61973042; 62272054), and the Beijing Natural Science Foundation (1202020).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Available on requests.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bedi, P.; Sharma, C. Community detection in social networks. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2016, 6, 115–135.

[CrossRef]
2. Papadopoulos, S.; Kompatsiaris, Y.; Vakali, A.; Spyridonos, P. Community detection in social media: Performance and application

considerations. Data Min. Knowl. Discov. 2012, 24, 515–554. [CrossRef]
3. Gasparetti, F.; Sansonetti, G.; Micarelli, A. Community detection in social recommender systems: A survey. Appl. Intell. 2021,

51, 3975–3995. [CrossRef]
4. Mokaddem, M.; Khodja, I.I.; Setti, H.A.; Atmani, B.; Mokaddem, C.E. Communities Detection in Epidemiology: Evolutionary

Algorithms Based Approaches Visualization. In Proceedings of the Modelling and Implementation of Complex Systems: 7th
International Symposium, MISC 2022, Mostaganem, Algeria, 30–31 October 2022; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 319–332.

5. Bonifazi, G.; Cecchini, S.; Corradini, E.; Giuliani, L.; Ursino, D.; Virgili, L. Investigating community evolutions in TikTok
dangerous and non-dangerous challenges. J. Inf. Sci. 2022, 01655515221116519.

6. Jiang, L.; Shi, L.; Liu, L.; Yao, J.; Ali, M.E. User interest community detection on social media using collaborative filtering. Wirel.
Netw. 2022, 28, 1169–1175

7. Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826.
[CrossRef]

8. Su, X.; Xue, S.; Liu, F.; Wu, J.; Yang, J.; Zhou, C.; Hu, W.; Paris, C.; Nepal, S.; Jin, D.; et al. A comprehensive survey on community
detection with deep learning. IEEE Trans. Neural Netw. Learn. Syst. 2022. [CrossRef]

9. He, D.; Song, Y.; Jin, D.; Feng, Z.; Zhang, B.; Yu, Z.; Zhang, W. Community-centric graph convolutional network for unsupervised
community detection. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on
Artificial Intelligence, Yokohama, Japan, 7–15 January 2021; pp. 3515–3521.

10. Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. Supervised contrastive learning.
Adv. Neural Inf. Process. Syst. 2020, 33, 18661–18673.

11. Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Deep graph contrastive representation learning. arXiv 2020, arXiv:2006.04131.
12. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [CrossRef]
13. Yin, Y.; Wang, Q.; Huang, S.; Xiong, H.; Zhang, X. Autogcl: Automated graph contrastive learning via learnable view generators.

In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 8892–8900.
14. Chunaev, P. Community detection in node-attributed social networks: A survey. Comput. Sci. Rev. 2020, 37, 100286. [CrossRef]

http://doi.org/10.1002/widm.1178
http://dx.doi.org/10.1007/s10618-011-0224-z
http://dx.doi.org/10.1007/s10489-020-01962-3
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1109/TNNLS.2021.3137396
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1016/j.cosrev.2020.100286

Entropy 2023, 25, 864 15 of 15

15. You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; Shen, Y. Graph contrastive learning with augmentations. Adv. Neural Inf. Process.
Syst. 2020, 33, 5812–5823.

16. Li, Y.; Hu, P.; Liu, Z.; Peng, D.; Zhou, J.T.; Peng, X. Contrastive clustering. In Proceedings of the AAAI Conference on Artificial
Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 8547–8555.

17. Amini, A.A.; Chen, A.; Bickel, P.J.; Levina, E. Pseudo-likelihood methods for community detection in large sparse networks. Ann.
Statist. 2013, 41, 2097–2122. [CrossRef]

18. Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [CrossRef]
19. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory

Exp. 2008, 2008, P10008. [CrossRef]
20. Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Society. Ser. C 1979, 28, 100–108.

[CrossRef]
21. Johnson, S.C. Hierarchical clustering schemes. Psychometrika 1967, 32, 241–254. [CrossRef]
22. Tandon, A.; Albeshri, A.; Thayananthan, V.; Alhalabi, W.; Radicchi, F.; Fortunato, S. Community detection in networks using

graph embeddings. Phys. Rev. E 2021, 103, 022316. [CrossRef]
23. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
24. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.
25. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.
26. Wang, C.; Pan, S.; Long, G.; Zhu, X.; Jiang, J. Mgae: Marginalized graph autoencoder for graph clustering. In Proceedings of the

2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 889–898.
27. Chen, Z.; Li, X.; Bruna, J. Supervised community detection with line graph neural networks. arXiv 2017, arXiv:1705.08415.
28. Akbas, E.; Zhao, P. Attributed graph clustering: An attribute-aware graph embedding approach. In Proceedings of the 2017

IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, Sydney, Australia, 31 July–3
August 2017; pp. 305–308.

29. Jia, Y.; Zhang, Q.; Zhang, W.; Wang, X. Communitygan: Community detection with generative adversarial nets. In Proceedings
of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 784–794.

30. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

31. Velickovic, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep graph infomax. ICLR (Poster) 2019, 2, 4.
32. Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Graph contrastive learning with adaptive augmentation. In Proceedings of the

Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 2069–2080.
33. Hassani, K.; Khasahmadi, A.H. Contrastive multi-view representation learning on graphs. In Proceedings of the International

Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 4116–4126.
34. Qiu, J.; Chen, Q.; Dong, Y.; Zhang, J.; Yang, H.; Ding, M.; Wang, K.; Tang, J. Gcc: Graph contrastive coding for graph neural

network pre-training. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Virtual, 6–10 July 2020; pp. 1150–1160.

35. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
36. Hight, C.; Perry, C. Collective intelligence in design. Archit. Des. 2006, 76, 5–9. [CrossRef]
37. Shchur, O.; Mumme, M.; Bojchevski, A.; Günnemann, S. Pitfalls of graph neural network evaluation. arXiv 2018, arXiv:1811.05868.
38. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,

arXiv:1301.3781.
39. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
40. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308.
41. Jing, B.; Park, C.; Tong, H. Hdmi: High-order deep multiplex infomax. In Proceedings of the Web Conference 2021, Ljubljana,

Slovenia, 19–23 April 2021; pp. 2414–2424.
42. Li, B.; Jing, B.; Tong, H. Graph communal contrastive learning. In Proceedings of the ACM Web Conference 2022, Austin, TX,

USA, 1–5 May 2022; pp. 1203–1213.
43. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In

Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 1597–1607.
44. Newman, M.E.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [CrossRef]
45. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1214/13-AOS1138
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.2307/2346830
http://dx.doi.org/10.1007/BF02289588
http://dx.doi.org/10.1103/PhysRevE.103.022316
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1002/ad.314
http://dx.doi.org/10.1103/PhysRevE.69.026113

	Introduction
	Related Work
	Community Detection
	Graph Contrastive Learning

	Methods
	Generator
	Shared Graph Convolution Encoder
	Node-Level Constrastive Head
	Community-Level Contrastive Head
	Object Function

	Experiments
	Experimental Setup
	Datasets
	Implementation Details
	Evaluation Metrics
	Leading Example
	Baselines

	Overall Performance
	Ablation Study
	Importance of Generator
	Effect of Augmented-Level a
	Importance of Double-Contrastive Head

	Conclusions
	References

