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Abstract: Continuous-variable quantum key distribution (CVQKD) plays an important role in quan-
tum communications, because of its compatible setup for optical implementation with low cost. For
this paper, we considered a neural network approach to predicting the secret key rate of CVQKD
with discrete modulation (DM) through an underwater channel. A long-short-term-memory-(LSTM)-
based neural network (NN) model was employed, in order to demonstrate performance improvement
when taking into account the secret key rate. The numerical simulations showed that the lower
bound of the secret key rate could be achieved for a finite-size analysis, where the LSTM-based
neural network (NN) was much better than that of the backward-propagation-(BP)-based neural
network (NN). This approach helped to realize the fast derivation of the secret key rate of CVQKD
through an underwater channel, indicating that it can be used for improving performance in practical
quantum communications.

Keywords: continuous-variable; quantum key distribution; neural network; underwater channel

1. Introduction

Information security has always been important. Current cryptosystems are dependent
on mathematical puzzles without rigorous proofs, and with ever-increasing computing
power, such cryptosystems are in danger of being violently broken. In this context, quantum
communications have been suggested [1,2], which involve an important technical aspect
called a quantum key distribution (QKD) [3–5]. Currently, security analysis of QKD
protocols involves finding the low bound on the secret key rate: this task, which is usually
complex and tedious, may apply to the specific protocols, whereas the achievable bound
on the secret key rate is usually not compact enough. Recent results have demonstrated
a reliable numerical method, in a finite dimensional environment, for deriving secret key
rates [6,7], which depends on solving a convex optimization problem; however, when
the Hilbert space in which the bipartite state is located becomes infinite-dimensional, this
numerical method cannot be used efficiently.

QKD in discrete variables (DV) [8,9] can be reduced to finite dimensionality by us-
ing compressed mappings [10–12] or tagged state squarers [13]; however, for QKD in
continuous variables (CV) [14–17], there is no accurate compression model to reduce the
dimensionality. Therefore, we have to devote ourselves to finding an effective approach to
achieving a compact bound of the secret key rate of the CVQKD system.

CVQKD has unique advantages, such as high-rate modulations with large capacity,
which involve Gaussian modulation (GM) and discrete modulation (DM), for processing
signals in optical communications. Compared to the GM scheme, the DM scheme has
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received increasing attention, because of its low cost in experiments. Recent works have
focused on asymptotic security proofs of DM-CVQKD with an arbitrary number of the
modulated states [14–17]. The results introduced an assumption of photon number cutoff,
in order to reduce the dimension of Hilbert space; therefore, it cannot be said that this
approach is a completely strict security proof, and the photon number cutoff assumption
cannot be justified. A dimensionality reduction algorithm, without using the photon
number cutoff assumption, has been proposed recently [18], which approximates an infinite-
dimensional optimization problem, by converting it to a convex optimization problem in a
finite-dimensional subspace.

In recent decades, CVQKD has been designed for free-space (FS) communications [19].
Several kinds of CVQKD protocols have been suggested for FS channels, such as satellite-
to-satellite links, satellite-to-ground links, air-to-water channels, and so on [20,21]. Un-
fortunately, the transmission coefficient fluctuates, due to the effects of turbulence in the
FS channels, where coherent detection may be distorted, leading to the decreased perfor-
mance of the quantum communication system. However, there have been a few studies on
CVQKD through an underwater channel, where the transmission distance was decreased
destructively due to the effect of the noise of the rapidly changing conditions in the sea-
water. In order to characterize a practical CVQKD through an underwater channel, it
is necessary to counteract the effect of excess noise, for data post-processing. Machine
learning (ML) has been applied in various fields [22–24]. An advantage of the ML-based
method is that it consumes less time and resources, yet achieves remarkable results. In this
paper, we realized a fast prediction of the secret key rate of the DM-CVQKD, by using an
LSTM-based NN model [25], which was based on Bayes optimization for the data post-
processing at the receiver. Moreover, prediction of the secret key rate could be achieved for
the underwater channels.

The contribution of this work was to predicate the lower bound of the secret key
rate, by using an NN model, which involved the LSTM-based NN and the BP-based NN,
concerning the dimension-reduced algorithm. We demonstrated that the performance of
the LSTM-based NN model was better than that of the BP-based NN model for CVQKD
through an underwater channel. These models could speed up the derivation of the secret
key rate, compared to the direct numerical method, from which we could obtain a reliable
and compact bound of the secret key rate in infinite-dimensional Hilbert spaces.

This paper is organized as follows. In Section 2, we describe our DM-CVQKD through
an underwater channel. In addition, we describe how our NN-based scheme for perfor-
mance prediction of DM-CVQKD was designed. In Section 3, our security analysis with
numerical simulation is shown. In Section 4, a summary of the work is provided.

2. DM-CVQKD through an Underwater Channel
2.1. Description of DM-CVQKD Protocol

The underwater CVQKD system is shown in Figure 1a. Usually, the CVQKD protocol
can be described with a prepare-to-measure (PM) scheme, typically known as prepare and
measure, where Alice prepares for the DM signals, and sends them to Bob, who performs
the measurement operation, and then determines the final secret key by exchanging infor-
mation over the public channel. In what follows, we detail the steps of CVQKD with the
PM scheme:

1. Preparation: For each round, Alice randomly prepares for one of the four quantum
states

{∣∣∣αei(2k+1)π/4
〉

: k ∈ {1, 2, 3, 4}
}

with equal probability, and sends it to Bob, where
α is the amplitude of the quantum state;

2. Measurement: After receiving the signal state, Bob randomly selects a product
value from {q̂, p̂}, to perform homodyne detection, in order to obtain the measurement
result, where q̂ corresponds to the real part of the quantum state, and p̂ corresponds to the
imaginary part of the quantum state;

3. Publication and parameter estimation: Alice and Bob exchange information through
an authenticated public channel. Bob publishes his chosen summation values for each
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round through the public channel, and then both parties choose a part of the rounds for
parameter estimation, which part of the rounds Alice discloses the quantum states she
sends, and Bob discloses the measurements. Based on the public information, both parties
can derive the secret key rate under reverse reconciliation (RR). If a secret key rate is not
available, both parties terminate the agreement; otherwise, they proceed to the next step;

4. Reverse reconciliation: After the previous steps, the communicating parties use the
undisclosed rounds to extract the original key. The specific practice is that both communi-
cating parties follow the same rule for key mapping, and Alice extracts the key according
to Bob’s public summation value, which we call reverse reconciliation;

5. Error correction and privacy amplification: in the transmission process of quantum
states, the presence of excess noise ξ in the quantum channel makes it inevitable that there
are inconsistencies in the interrelated original keys obtained by the two communicating
parties. The error correction process is the use of error correction codes by both parties
to correct the incomplete agreement bare code, so as to obtain a set of identical binary
bits of data. The two communicating parties then have an identical set of binary bits.
Unfortunately, Eve, the eavesdropper, may eavesdrop on a set of data sequences that will
contain some information about the key; therefore, Alice and Bob choose the appropriate
method for private amplification, to generate the final key.

Figure 1. Scenario diagram of DM-CVQKD through an underwater channel: (a) Underwater envi-
ronment. PBS: Polarization Beam Splitter, BS: Beam Splitter, AM: Amplitude Modulator, PM: Phase
Modulator, PD: Photo Diode; (b) Bayesian optimization; (c) The trained neural network.

2.2. An NN Model for Data Post-Processing

Neural networks are capable of approximating a bounded continuous mapping in
a given region [26]. The network model obtained through data training can learn the
mapping relationship between input and output, leading to the achievable secret key rate
quickly without going through a time-consuming optimization process. The more data that
needs to be predicted, the higher the speedup effect is.

Without loss of generality, we suggest an LSTM-based NN model that has an input
layer, an output layer, and multiple hidden layers. In addition, this model comes with a
Bayes optimization module, as shown in Figure 1b [27,28], which automatically optimizes
the hyperparameters based on the training effect, so that we do not need to manually adjust
the hyperparameters to show the training effect on the performance of the system.
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The LSTM-based NN can solve the gradient explosion or disappearance problem of
simple recurrent neural networks [20], and it can update the network model when the
received data are added. The main idea of the LSTM is the use of a cell (Figure 1c), which
represents the state of a memory unit c̃, as shown in Figure 2.

Figure 2. The internal structure of a cell of the LSTM-based NN. The internal state Ct−1 of the
previous moment, the external state ht−1, and the network input xt of the current moment are used as
the input of the cell, and the current internal state Ct and external state ht are obtained as the output
of the cell by gate operations, i.e., forget gate, input gate, and output gate, respectively.

The data for our training model came from the simulation program of the downscaling
algorithm. The distance range [0, 6 m] was varied by a step size of 0.5 m, the depth range [0,
100 m] by a step size of 20 m, the amplitude range [0.6, 0.7] by a step size of 0.02, and the over-
noise range [0.001, 0.04] by a step size of 0.001. As the scheme was sensitive to over-noise,
the sampling step size for over-noise was small. After sampling by the dimensionality
reduction algorithm, we obtained the dataset. Performing the Bayes optimization, the
prediction results could be achieved after training the network with the above dataset.
When the prediction error was less than zero, i.e., when the predicted value was less than
the true value, we considered the prediction result to be secure. The training results for
the underwater channel are shown in Figure 3. When the error was less than or equal to
0, the predicted result was secure. The results show that most of the error values were
concentrated in the interval [−50%, −10%].

Figure 3. Training results of the LSTM-based NN: (a) Error histogram of prediction. The number of
samples vs relative error of the train dataset; (b) The training set predicted and expected values. The
red line is the predicted value, and the blue line is the expected value.
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3. Security Analysis
3.1. Derivation of the Secret Key Rate

The well-known formula for deriving the asymptotic key rate is derived from the
difference between the two information-theoretic quantities of private amplification (PA)
and error correction (EC) [16,17]. The secret key rate K was derived as follows:

K =

(
min
ρ∈S

f (ρ)
)
− ppassleakEC, (1)

where ρ was the density operator of the quantum states shared by Alice and Bob, S was
the set of all ρ satisfying the condition known as the feasible set, ppass was the screening
probability of each round retained to generate the original key, and leakEC denoted the
amount of information leaked in each round of the error correction step.

The first term in the key rate formulation was a convex optimization problem, with ρ
as the independent variable. The calculation of the second term could be obtained directly
from experimental data [21]. The density operator ρ was an unknown semi-positive definite
matrix, but the asymptotic case ρ followed some constraints of the following form:

Tr(Γiρ) = γi, (2)

where Γi was the ergodic operator, and γi was the expected value of the corresponding
ergodic operator. All ρ that satisfied the constraints were expressed as

f (ρ) = D(G(ρ)||Z(G(ρ))), (3)

where D(λ1||λ2) = Tr(λ1 log λ1)− Tr(λ1 log λ2) was a conditional entropy function, G was
a completely positive mapping relation, and Z was a completely positive trace-preserving
mapping relation. As both G and Z were linear mappings, and the conditional entropy
function was convex, f (ρ) was a convex function on the feasible set S. To extract the secret
key rate required finding a ρ that satisfied the constraint, such that f (ρ) was minimized.
The solution to this optimization problem was divided into two steps. The first step found
a density matrix ρ′ that was close or equal to the optimal density matrix ρ∗, by an iterative
algorithm, to obtain f (ρ′) as an upper bound on the key rate. The second step considered
the dual problem of the minimization problem, and as the optimal value of the dual
problem was less than or equal to the optimal value of the original problem, the optimal
value of the dual problem was used as the lower bound of the secret key rate. The closer ρ′

was to ρ∗, the closer these two bounds were, and when ρ′ = ρ∗, the upper bound coincided
with the lower bound.

Each photon received by Bob was different, and could be affected by Eve, so the
received photon was in an infinite dimensional Hilbert space, which meant that ρ was
infinite-dimensional. Numerical methods can only handle optimization problems where
the variables are finite-dimensional, so we had to find a way to make ρ reduce to finite
dimensionality. A photon number cutoff assumption was imposed, to achieve the dimen-
sionality reduction of CVQKD, and the basis of Bob’s infinite dimensional Hilbert space
was a photon number state {|n〉 : n ∈ N}, where N represented the natural number. This
assumption assumed that the number of photons received by Bob was finite, and denoted
as Nc. This assumption truncated the infinite-dimensional Hilbert space, and achieved
the dimensionality reduction. The secret key rate obtained was reasonable when a large
enough Nc was obtained. Improvement of the secret key rate was small when Nc was more
than 20, as shown in Figure 4.

The imposed photon number cutoff assumption did not constitute a strict security
proof; hence, we needed to find an exact security analysis method that eliminated the
assumption. In the following, we specify this dimensionality reduction method.
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Figure 4. The secret key rate as a function of the transmission distance for the given photon cutoff
numbers. The black dashed line is Nc = 12, the blue dashed line is Nc = 15, and the green line
is Nc = 20. The key rate float is about 0.55% for Nc from 12 to 15, and 0.2% for Nc from 15 to
20. For the increased Nc, the secret key rate is not obviously improved, but the computation time
increases significantly.

We used H∞ to represent the infinite-dimensional Hilbert space in which ρ resided;
D(H∞) to represent the normalized density operator onH∞; D̃(H∞) to represent the set of
semi-positive definite operators on D(H∞); S∞ to represent the feasible set on D̃(H∞); and
ρ̃ to represent the density operator on D̃(H∞). Then, the infinite-dimensional optimization
problem could be formulated as

min
ρ̃∈S∞

f (ρ̃). (4)

We needed to find a density operator ρ̃∞, to achieve the optimal value, by projecting
the infinite-dimensional space onto the finite-dimensional space, to obtain a reduced
dimensional representation ρ̃N of ρ̃∞. WithHN representing the finite-dimensional Hilbert
space onH∞, the semi-positive definite density operator onHN being denoted by D̃(HN),
and SN denoting the feasible set on D̃(HN), the following projection relations were satisfied:

ΠD̃(HN)Π ⊆ D̃(H∞), ΠS∞Π ⊆ SN , Πρ̃∞Π ⊆ ρ̃N , (5)

and the finite-dimensional optimization problem was reformulated as

min
ρ̃∈SN

f (ρ̃), (6)

where Π was a projection operator. Next, we needed to find ρ̃N that achieved the optimal
value of f (ρ̃). As shown by [18], the infinite-dimensional optimization problem was related
to the finite-dimensional optimization problem, in that

f
(

ρ̃N
)
− ∆(W) ≤ f (ρ̃∞), (7)

where ∆(W) was a non-negative correction term that was used to compensate for errors
arising from the photon number cutoff assumption, and W represented the weight of the
key rate bound outside the finite-dimensional subspace. The conditions also required that
the projection of f (ρ̃) on S∞ was nearly uniformly decreasing [18], satisfying Tr(ρ̃∞) ≤W.
Therefore, we needed to determine four components in Equation (7): finite-dimensional
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subspaceHN ; finite-dimensional feasible set SN ; weights W outside the subspace W; and
correction term ∆.

By this stage, we had obtained all the components of the infinite-dimensional opti-
mization problem; hence, the secret key rate under the infinite-dimensional space could be
derived as

K∞ =

(
min
ρ∈SN

f (ρ̃)
)
− leakEC − ∆(W). (8)

3.2. Effects of Excess Noise

In order to show the performance of the DM-CVQKD, we describe the characteristics
of the underwater channel. Then, we show the effects of excess noise on the secret key rate.

In what follows, we demonstrate the transmission rate in the underwater channel. The
calculation of the transmission rate of the underwater channel was complicated, involving
water type and chlorophyll content, as shown in Appendix A. The attenuation rate was
high in the underwater channel. We considered the Monte-Carlo model [19], where the
communication light wavelength is 520 nm, and the water type is pure seawater. The
transmission rate T of the underwater channel was related to the absorption coefficient
a and the scattering coefficient b, depending on transmission distance and depth. Then,
we had

T = e−cL, (9)

where c was a constant that involved the sum of a and b related to the depth.
Next, we considered the excess noise in the underwater channel. In Figures 5 and 6,

we show the effects of excess noise ξ on the secret key rate. We took a step size of 0.005,
and simulated in the interval [0.005, 0.04] for excess noise. The result shows that the secret
key rate decreased as the excess noise decreased gradually.

Figure 5. Effects of excess noise ξ on the secret key rate. The lines from top to bottom indicate
the excess noise ξ ∈ {0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04}. We set the amplitude α = 0.66,
post-selection parameter ∆ = 0, depth = 100 m, and reconciliation efficiency β = 0.95.

Moreover, the numerical simulations showed that the underwater DM-CVQKD system
was sensitive to excess noise, and that the transmission distance decreased as the excess
noise increased. When the excess noise reached 0.04, the maximum transmission distance
in the underwater channel was less than 0.5 m.
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3.3. Post-Selection

Alice and Bob were able to use post-selection for data reconciliation, filtering out
unqualified data, so as to improve reconciliation efficiency and tolerance to excess noise,
resulting in an increased secret key rate. When enabling the post-selection or not, we set
the given post-selection parameter ∆ to zero or greater than zero. As shown in Figure 6, we
considered numerical simulations for types of excess noises.

Figure 6. Effects of excess noise ξ on the secret key rate with the given post-selection. The solid line
indicates ∆ = 0, and the dashed line indicates ∆ > 0.

We found that post-selection in CVQKD reduced the error rate, by discarding the
results near zero: this was why, as the excess noise increased, erroneous results were more
likely to occur around the zero point [21]. The numerical simulations showed that the post-
selection operation improved the protocol key rate and the tolerance to noise. For the small
excess noises, such as ξ = 0.01 and ξ = 0.02, the post-selection-involved improvement
seemed small; when the excess noise reached ξ = 0.03, the post-selection was an obvious
improvement on the secret key rate; therefore, the post-selection was necessary when the
excess noise underwater became high.

3.4. Simulation Results

In Figure 7, we show the prediction of the secret key rate of the CVQKD system in an
underwater channel. The parameter settings in numerical simulations are shown in Table 1.

Table 1. Parameter Setting.

Symbols Value Description

α 0.6–0.7 Amplitude

q̂ – Orthogonal amplitude components

p̂ – Orthogonal phase component

Nc 20 Photon cutoff number

ξ 0–0.04 Excess noise

∆ 0.01 Post-selection parameter

β 0.95 Reconciliation efficiency
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Figure 7. Prediction results of the NN-based CVQKD. Solid lines represent the initial value with
photon cutoff method, the hollow dotted line represents LSTM-based NN, and the solid dotted line
represents BP-based NN. The pink line represents a depth of 70 m, and the red line represents a depth
of 90 m.

In order to demonstrate the advantage of the LSTM-based NN on performance im-
provement, we compared the prediction results of the LSTM-based NN and the BP-based
NN to the traditional CVQKD, without involving the NN model. In the numerical simula-
tions, we set excess noise ξ = 0.01, post-selection ∆ = 0, reconciliation efficiency β = 0.95,
and modulation amplitude α = 0.66, respectively. At the transmission distance of 0.5 m and
7 m, the prediction results of the BP-based NN and the LSTM-based NN improved by about
1.5% and 5.5%, respectively. According to the simulation results, both the BP-based NN
and the LSTM-based NN showed performance improvement of the secret key rate, whereas
the LSTM-based NN resulted in a higher secret key rate, compared to the BP-based NN.

4. Conclusions

We propose an NN approach to predicting the achievable secret key rate of the DM-
CVQKD system through an underwater channel. The secret key rate of the CVQKD system
can be improved when NN-based data post-processing is used for the receiver. In addition,
the prediction performance of the LSTM-based NN model performs better than that of the
BP-based NN model for the CVQKD. The numerical simulations show that the LSTM-based
NN model can improve prediction accuracy compared to the BP-based NN model. Our
approach paves the way for predicting the performance of the CVQKD system.
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Appendix A. The Seawater Chlorophyll Model

Many factors—such as seawater density, turbulence, and bubble surface—have effects
on light propagation in ocean quantum links.

Table A1. Variables of the ocean model.

Meaning of the Variates Parameter

l0c Absorption coefficient of chlorophyll a at wavelength λ 0.009 m2/mg
lw Loss of light propagation in pure water 0.0507 m−1

l0f Fulvic acid’s absorption coefficient 35.959 m2/mg
kf Fulvic acid’s exponential coefficient 0.0189 nm−1

λ Wavelength 532 nm
l0
h Humic acid’s absorption of coefficient 18.828 m2/mg

kh Humic acid’s exponential coefficient 0.01105 nm−1

ub The surface’s background chlorophyll content 0.0429 mg/m3

s Vertical gradient of concentration −0.000103 mg/m2

h Total chlorophyll a above the background levels 11.87 mg
dmax Depth of the deep chlorophyll maximum 115.4 m
uchl Maximum chlorophyll concentration at the chlorophyll maximum layer 0.708 mg/m3

m0
s Scattering coefficient of small particulate matter 1.1513(400/λ)1.7

m0
l Scattering coefficient of large particulate matter 0.3411(400/λ)0.3

mw Scattering coefficient of the pure water 0.005826(400/λ)4.322

d Depth of the ocean

The deterministic losses caused by ocean extinction have an effect on transmittance:

Text = e−zt, (A1)

where Text is extinction-induced transmittance, z denotes the transmission distance, and t
is the seawater extinction coefficient, which is related to the wavelength λ, and is defined by

T = Tabs + Tsca. (A2)

Here, tabs is the ocean absorption factor, which has the form

Tabs = l0c [uc(d)]
0.602 + lw + l0f uf(d)e

−kfλ + l0huh(d)e
−khλ. (A3)

The notation uc is the chlorophyll, and it is defined as

uc(d) = ub + ds +
h
√

2π

ς
exp

(
− (d− dmax)

2

2ς2

)
. (A4)

The standard deviation of the concentration of chlorophyll ς is given by

& =
h√

2π(uchl − ub − dmaxs)
. (A5)

The content of fulvic acid is defined as

uf(d) = 1.74098uc(d)e0.12327uc(d). (A6)

The concentration of humic acid has the following form:

uh(d) = 0.19334uc(d)e0.12343uc(d). (A7)
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The parameter tsca is the scattering factor, given by

tsca = m0
sus(d) + m0

l ul( d) + mw, (A8)

where us(d) represents the small particles’ concentration, given by

us(d) = 0.01739uc(d)e0.11631uc(d), (A9)

and ul(d) represents the large particles’ concentration, given by

ul(d) = 0.76284uc(d)e0.03092uc(d). (A10)

The meaning and parameter of these variables are summarized in Table A1.
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