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Abstract: Accurate traffic flow forecasting is very important for urban planning and traffic manage-
ment. However, this is a huge challenge due to the complex spatial–temporal relationships. Although
the existing methods have researched spatial–temporal relationships, they neglect the long periodic
aspects of traffic flow data, and thus cannot attain a satisfactory result. In this paper, we propose
a novel model Attention-Based Spatial–Temporal Convolution Gated Recurrent Unit (ASTCG) to
solve the traffic flow forecasting problem. ASTCG has two core components: the multi-input module
and the STA-ConvGru module. Based on the cyclical nature of traffic flow data, the data input to
the multi-input module are divided into three parts, near-neighbor data, daily-periodic data, and
weekly-periodic data, thus enabling the model to better capture the time dependence. The STA-
ConvGru module, formed by CNN, GRU, and attention mechanism, can capture both temporal and
spatial dependencies of traffic flow. We evaluate our proposed model using real-world datasets and
experiments show that the ASTCG model outperforms the state-of-the-art model.

Keywords: traffic flow forecasting; attention mechanism; multi-input; spatial–temporal data

1. Introduction

In the process of urbanization, traffic congestion poses an urgent issue that needs to
be addressed. Many countries are implementing intelligent transportation systems [1],
and real-time and accurate traffic flow prediction is a critical requirement for the estab-
lishment of such systems. With accurate traffic flow prediction, traffic management can
anticipate future traffic conditions based on historical data, allowing people to plan their
trips in advance and providing help for traffic guidance and route planning. However,
traffic flow is influenced not only by the passage of time, but also by the interconnectedness
of roads, forming a complex mesh structure [2,3]. Accurate traffic flow forecasting is a
challenging task.

Fortunately, with the development of industry, many sensors [4] and other information-
collecting devices are installed on traffic road networks. These devices can collect a large
amount of data for research. Early methods based on statistical analysis, such as historical
average (HA) [5], autoregressive integrated moving average (ARIMA) [6], Kalman filter
(KF) [7], and exponential smoothing, can be used for traffic flow forecasting. However,
they are limited in capturing the nonlinear dependence of time series and are unable to
cope well with sudden changes in traffic flow. With the advancement of deep learning,
deep learning models are used in many places, such as image processing, natural language
processing, power prediction [8–10], etc. They have also gained attention in traffic flow
prediction. Recurrent neural network (RNN) and its variants, such as long short-term
memory (LSTM) [11], gated recurrent unit (GRU) [12], are common methods for time
series prediction. While these models can handle nonlinear problems and perform well
on single time series, they often overlook the spatial structure characteristics of the traffic
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road network and fail to utilize spatial correlation, resulting in suboptimal prediction
performance. Some researchers have explored the use of convolutional neural networks
(CNNs) [13] to model traffic flow data spatially, but CNNs struggle to capture temporal
correlation, leading to limited results. To address both temporal and spatial correlation,
many researchers have combined RNN and CNN to formulate integrated models for
traffic flow prediction [14,15]. In recent years, attention mechanism has been proposed
and applied to traffic flow forecasting [16–18], showing improved prediction accuracy
compared to traditional methods, but there is still room for further improvement.

Figure 1 shows the traffic flow network map at 8:00 and 9:00, respectively. The darker
the color of the node, the higher the flow at that node. The traffic flow of nodes D, E, and
F will be affected by nodes A, B, and C at previous moments. In other words, the traffic
flow of each node is interrelated with other neighboring nodes [19]. When predicting the
traffic flow of one node, the traffic flows of other nodes can also be properly input into the
model. In addition, the traffic flow is also highly nonlinear and periodic [20], which makes
it more difficult to predict. The traffic flow of the traffic road network is very dynamic in
the temporal and spatial aspects, so it is a very challenging task to predict the traffic flow
data accurately.
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Figure 1. The spatial–temporal correlation of traffic flow.

In order to address the above challenges, we propose the Attention-Based Spatial–
Temporal Convolution Gated Recurrent Unit (ASTCG), which is employed to predict the
traffic flow. This model combines CNN, GRU, and attention mechanism to accurately
process traffic flow data. Our contributions of this paper are summarized as follows:

(1) Our proposed ASTCG model integrates CNN, GRU, and attention mechanism to
capture both temporal and spatial correlations. GRU is utilized for capturing temporal
correlation, while CNN is employed for capturing spatial correlation. ASTCG is also able
to effectively utilize long history data due to the inclusion of the attention mechanism.

(2) Utilizing the periodic characteristics of traffic flow data, the data input is partitioned
into three components in the model: near-neighbor data, daily-periodic data, and weekly-
periodic data.

(3) By employing the real dataset PEMS for evaluation, we showcase that our proposed
model outperforms the existing baseline models in terms of prediction accuracy.

The structure of this paper is as follows. Section 2 provides an overview of the research
and development of traffic flow prediction. Section 3 presents the definition of the traffic
flow prediction problem. In Section 4, we present the general framework and detailed
architecture of our proposed model. Section 5 presents the experimental results of our
model. Finally, Section 6 summarizes the entire paper.

2. Related Work

Statistical learning: Common statistical learning methods include KF, ARIMA, and
Bayesian methods [21], which can be applied to traffic flow forecasting. The KF model
assumes that the observed data are noisy and predicts future traffic flow based only
on the state of the previous time step. However, KF is a linear prediction model and
may have limitations in handling nonlinear and uncertain characteristics of traffic flow
data. Shahriari et al. [22] combined bootstrap and ARIMA to improve the prediction
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accuracy while maintaining the ARIMA theory, but the prediction accuracy is poor when
the flow changes suddenly. Thus, traditional statistical learning methods are limited by
the assumption of stationary process and linear combinations, and may be less effective in
predicting uncertain and complex traffic flow sequences, which may not meet the current
practical engineering needs.

Machine learning: More scholars have studied how machine learning methods can be
applied to the field of traffic flow forecasting than statistical learning methods. The tradi-
tional K-nearest neighbor (KNN) [23] and support vector machines [24] can model complex
data, but they require detailed feature engineering and do not achieve the ideal results,
so some scholars have improved them. Wang et al. [25] designed a KNN prediction algo-
rithm with asymmetric loss and an asymmetric loss index, and the experimental results
showed that when the asymmetric loss index decreased by more than 10%, the predicted
value was closer to the upper edge of the actual traffic volume. Luo et al. [26] proposed
a hybrid prediction method that combines discrete Fourier transform and support vector
regression. The experimental results demonstrated that this algorithm achieves higher
accuracy compared to traditional methods, making it an effective approach for holiday
traffic flow prediction. Castro-Neto et al. [27] proposed an online supported support vector
regression supervised statistical learning technique that can effectively and accurately pre-
dict short-term highway traffic flows for typical and atypical scenarios. Although machine
learning methods are effective in capturing nonlinear features in traffic flow time series,
they often require prior assumptions and extensive feature engineering to achieve excellent
experimental results.

Deep learning: Since deep learning has powerful autonomous learning ability and
nonlinear extraction capability, it has become an inevitable trend to apply deep learning
in traffic flow forecasting problems [28–31]. The backpropagation neural network (BP)
is one of the simplest neural network models. Chang et al. [32] utilized BP to forecast
the traffic flow of a road section in Beijing during peak hours. RNN and its variants,
LSTM and GRU [33], taking into account the correlation between multiple output data,
so that the information at the previous time can be passed to the following cells, giving
the neural network the function of memory, which is often used in the prediction of
time series. CNN can extract spatial dependencies by convolutional operations, thus
making full use of road network structure information for traffic flow forecasting [34,35].
Zheng et al. [36] combined CNN and LSTM to extract the spatial–temporal features of
traffic flow. Zhai et al. [37] designed a novel self-supervised spatial–temporal holistic
convolutional neural network to extract the temporal and spatial characteristics of traffic
sequences, and the model has fewer parameters and faster inference speed. Since the spatial
connection between multiple cross-sections in a traffic road network is an irregular data
structure, the graph construction in GCN makes it more suitable for the representation of
non-Euclidean spatial structure data, so some prediction methods construct a fixed graph
structure based on the relationship on the actual geographic location of multiple cross-
sections and construct prediction models on the fixed spatial structure graph to accomplish
the task of multisection traffic flow [38]. Zhao et al. [39] designed a traffic speed prediction
method based on temporal graphical convolutional networks, which unifies GCN and
GRU in the special spatial–temporal component of the model, thus enabling the model to
learn both non-Euclidean spatial features of the road network and temporal features of
the traffic flow. Chang et al. [40] developed a novel framework called structure-learning
convolution, which explicitly models structural information as convolution operations and
thus designs local and global modules to learn static and dynamically changing structural
information. Xu et al. [41] designed a novel hybrid adjacency matrix and combined it with a
temporal attention mechanism for travel time prediction. Wang et al. [42] designed a trend
space attention module whose main idea is to pass information between nodes with similar
attributes to solve the spatial heterogeneity problem. Zhang et al. [43] extracted the spatial–
temporal dependence of traffic flow by taking advantage of the graph attention mechanism
for modeling non-Euclidean structured data and the LSTM cell for modeling time series.
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Guo et al. [44] introduced a latent network for spatial–temporal feature extraction in the
prediction model to construct the dynamic road network graph adjacency matrix adaptively,
and the experimental results showed that the adaptively learned dynamic Laplacian matrix
has good ability to extract the spatial–temporal correlation of traffic data.

However, few scholars have considered how to make full use of the periodic features
of traffic flow to improve the prediction accuracy, and even though Song et al. [45] used
the periodic features of traffic flow data, its prediction effect is not made obvious by only
adding the module of processing time inside the model. In the past studies, researchers
have focused more on how to improve the internal structure of the model and ignored the
influence of data input [46,47], but the prediction results are highly related to the input
data of the model.

Motivated by the above research, we model traffic data using convolutional neural
networks, gated recurrent units, attention mechanisms, and multiple input strategies
considering the spatial–temporal dynamic correlation and periodicity of traffic flow data.

3. Preliminaries

The task of one-node traffic flow prediction involves predicting the number of vehicles
passing through a specific section at future time intervals using historical traffic flow
data from multiple sampling intervals. Since the one-node traffic flow is not only near-
neighborly in the time dimension, but also exhibits the characteristics of daily and weekly
cyclicity, as well as strong spatial correlations with neighboring sections, all of these nodes
can impact the traffic flow values of the node in question at future time intervals. Therefore,
incorporating traffic flow data from multiple neighboring nodes can lead to relatively
accurate predictions of traffic flow at a particular node.

As CNNs are commonly used for image data processing, feature extraction is achieved
by scanning the gridded data in the image. Image data typically consist of multiple
channels, with each channel containing small indivisible squares, each with its own unique
location and pixel information. As illustrated in Figure 2, the spatial–temporal image of
the traffic flow is constructed from the following three steps, based on the geographic
distribution relationship between the goal node and its associated nodes.

goal node adjacent node
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t Kx  

a
tx  3

a
t Kx  ( 1)

a
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 2
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Figure 2. Spatial–temporal information structure of traffic flow.

(1) The plan is divided into a grid based on the relative position of each traffic sensor
on the map, so that all the goal nodes and their associated nodes are divided into
corresponding small squares, with each small square containing a traffic node.

(2) The traffic flow data recorded by the sensors at these nodes are filled in as pixel values
in the small cells.

(3) This city sensor map is converted into a spatial–temporal image of traffic flow with
length N squares and width K squares, where the coordinates of the goal node are
(a, b) , where 1 < a < N, 1 < b < K, and the coordinates of the adjacent node are
(n, k), where n = 1, 2, · · · , N; k = 1, 2, · · · , K; n 6= a; k 6= b.
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Before introducing the one-node traffic flow prediction model, the input data, output
data, and prediction tasks of the prediction model are mathematically defined. Assuming
that there are N traffic nodes in the road network where the predicted goal node is located,
the traffic flow collected by the sensor at the node of n can be defined as follows:

Xn
t =

{
xn

t−(K−1), xn
t−(K−2), · · · , xn

t

}
(1)

where we define the traffic flow at time t and node n as xn
t , n = 1, 2 · · · , N. K represents

the length of the input sequence.
In order to more accurately capture the dynamic correlation of traffic flows, three

different temporal components, namely, near-neighbor data, daily-periodic data, and
weekly-periodic data, denoted as

{
Ir, Id, Iw

}
, are used as inputs to the model for feature

extraction. Therefore, the historical traffic flow data of the goal node and its neighboring
nodes form a spatial–temporal matrix Ir , which is mathematically defined as

Ir =


X1

t
X2

t
...

XN
t

 =


x1

t−(K−1) x1
t−(K−2) · · · x1

t

x2
t−(K−1) x2

t−(K−2) · · · x2
t

...
...

. . .
...

xN
t−(K−1) xN

t−(K−2) · · · xN
t

 (2)

The travel patterns of people exhibit regularity, and traffic flow often show periodic
fluctuations, such as morning and evening peaks on weekdays, that may exhibit similar
traffic patterns. Additionally, traffic flow on weekdays may show similarities with the
traffic flow of the previous weekday, and can be distinguished from nonworking days.
Hence, in order to capture the daily and weekly cycle of the cross-sectional traffic flow data,
two spatial–temporal matrices, Id and Iw, are constructed. The definitions of Id and Iw are
as follows:

Id =


X1

td

X2
td

...
XN

td

 =


x1

td−(K−1)
x1

td−(K−2)
· · · x1

td

x2
td−(K−1)

x2
td−(K−2)

· · · x2
td

...
...

. . .
...

xN
td−(K−1)

xN
td−(K−2)

· · · xN
td

 (3)

Iw =


X1

tw

X2
tw

...
XN

tw

 =


x1

tw−(K−1) x1
tw−(K−2) · · · x1

tw

x2
tw−(K−1) x2

tw−(K−2) · · · x2
tw

...
...

. . .
...

xN
tw−(K−1) xN

tw−(K−2) · · · xN
tw

 (4)

where td represents the moment at time t corresponding to the previous day, that is,
td = t− 288. tw represents the moment in the previous week that corresponds to time
t, that is, tw = t − 2016. This is because in the traffic flow dataset, the time interval of
recorded traffic flow data is 5 min, resulting in 288 traffic flow data points collected in one
day, and 2016 traffic flow data points collected in one week.

The output of the one-node traffic flow is defined as follows:

Out = Xm
t = {xm

t+1, xm
t+2, · · · , xm

t+P} (5)

where m represents the target cross-section in the road network, m = 1, 2, · · · , N ; x
represents the traffic flow of the node m.

Therefore, the one-node spatial–temporal traffic flow prediction task can be considered
as learning a mapping function F from a large amount of traffic flow data I =

{
Ir, Id, Iw

}
.

Using this mapping function and the traffic flow data of the previous K moments, the traffic
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flow values of the future P moments are predicted, and its mathematical expression can be
defined as follows: {

xm
t+1, xm

t+2, · · · , xm
t+P
}
= F

({
Ir, Id, Iw

})
(6)

4. Model Structure

Figure 3 illustrates the overall structure of the ASTCG model. The STA-ConvGRU
module integrates the fine-grained feature extraction capability of CNN, the efficient tem-
poral relationship modeling of GRU, and the attention mechanism for focus capturing.
The input sequence is that the spatial information of the goal node is processed through
CNN convolutional and pooling layers, which is passed to GRU for further processing.
The attention module quantifies the historical information in the traffic flow sequence, ad-
dressing the limitation of GRU in distinguishing important and unimportant information in
the sequence. Subsequently, near-neighbor data, daily-periodic data, and weekly-periodic
data are used as input to the STA-ConvGRU module, enabling finer-grained extraction
of spatial–temporal characteristics of the traffic flow at the goal node and reducing the
random influence of uncertainty on the overall traffic flow distribution. Finally, the outputs
of the three components are concatenated and transformed into feature vector data, and the
prediction results are obtained through two fully connected layers.

STA-ConvGRU

STA-ConvGRU

STA-ConvGRU


Input

rI

dI

wI

Full connected layer

Output

Figure 3. ASTCG architecture.

4.1. ConvGRU Module

The ConvGRU module consists of CNN and GRU, where the convolutional kernel
sliding operation of CNN captures the spatial correlation of traffic flow at a fine granularity,
and the special gating unit mechanism in GRU efficiently extracts the temporal dependence
of traffic flow. The combination of CNN and GRU in the ConvGRU module is shown in
Figure 4. The CNN contains two convolutional layers and one pooling layer, which is due
to the complex spatial characteristics of the traffic road network and the limited expression
capability of the single-layer convolutional kernel, so two layers of convolutional layer
1 and convolutional layer 2 are used to extract more comprehensive spatial correlation,
followed by filtering unnecessary information as well as reducing the dimensionality of
the input data through the pooling layer; finally, the output of the CNN pooling layer is
used as the input of GRU, and the output value of the module is obtained after two layers
of GRU.

The input of the ConvGRU module is represented as I = [X1
t , X2

t , · · · , XN
t ]T . In the

convolution layer 1 and convolution layer 2, a 1D convolution operation is selected to
process the input spatial–temporal traffic flow data, and the spatial influence of adjacent



Entropy 2023, 25, 938 7 of 17

nodes on the traffic flow of the goal node is extracted by sliding the convolution kernel over
the input data. The convolution layer 1 and convolution layer 2 are calculated as follows:

Y1 = σ(Wc1 ∗ I + bc1) (7)

Y2 = σ(Wc2 ∗Y1 + bc2) (8)

where Wc1, Wc2 are the weight parameters of the convolution kernel; bc1, bc2 are the devi-
ation parameters of the convolution kernel; ∗ represents the convolution operation; σ(·)
is the activation function; Y1, Y2 are the outputs of convolution layer 1 and convolution
layer 2.

C
onvolutional 

layer1

C
onvolutional 

layer2 GRU layer1 GRU layer2

P
ooling 
layer

Figure 4. ConvGRU module structure.

Pooling layers are useful to speed up the computation and prevent overfitting. This
is because the pooling layer can effectively reduce the size of the parameter matrix, thus
reducing the number of parameters in the final connection layer. During the pooling process,
a large amount of useless data are filtered out, thus ensuring better extraction capability
of the model when processing traffic flow data. After the pooling layer is processed,
the multidimensional data are converted to a 1D sequence by using the f latten() operation.

GRU is an improved model based on RNN, which is a type of self-mapping neural
network with strong computational power and long-term memory. GRU has two gating
structures, namely, the update gate zt and the reset gate rt. The update gate determines how
much information from the previous time step is incorporated to update the information of
the unit at the current time step. On the other hand, the reset gate determines the degree of
ignoring information from the previous time step. The calculation formulas for zt and rt
are as follows:

zt = σ(wz ∗ [ht−1, xt] + bz) (9)

rt = σ(wr ∗ [ht−1, xt] + br) (10)

where wz, wr are the weight matrices of the update gate and reset gate; xt is the input of the
current cell, and ht−1 is the state information of the cell at the previous moment.

The cell state information at each time step in GRU is passed on to the next time step.
ht represents the output value of the cell at the current time step, and its expression is
as follows:

ht = (1− zt) ∗ ht−1 + zt ∗ h′t (11)

h′t = tanh(wh ∗ [rt ∗ ht−1], xt) (12)

Compared to traditional RNN, GRU is capable of better learning time-dependent
features due to the presence of update and reset gates, which mitigate the issues of gradient
explosion and gradient disappearance that may arise when dealing with long sequences of
data. In this model, two layers of GRU are stacked to extract the time-dependent features
of traffic flow. The GRU units take the temporal data input for each time window and the
hidden state as input.

In our model, the output Cout = [Ct−(K−1), Ct−(K−2), · · · , Ct] of the CNN serves as the
input for the first layer of GRU units, and the hidden state value of the first layer of GRU
units is used as the input for the subsequent layer of GRU. The formula for each layer of
GRU units is as follows:

Zt = σ(Wz ∗ [Ht−1, Ft] + bz) (13)
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Rt = σ(Wr ∗ [Ht−1, Ft] + br) (14)

H′t = tanh(Wh ∗ [Rt ∗ Ht−1], Ft) (15)

Ht = (1− Zt) ∗ Ht−1 + Zt ∗ H′t (16)

where Ft represents the input of the GRU at time t; σ(·) and tanh(·) are the activation
function; Wz, Wh, Wr are the weight parameters; bz, br are the deviation parameters; Zt, Rt
represent the output of the update gate and the reset gate; Ht is the output of the GRU unit.

4.2. STA-ConvGRU Module

The historical traffic flow information at different moments has varying effects on the
prediction results. However, the GRU is unable to identify the key sequence information
in the traffic flow sequence, leading to all the information in the input sequence being
equally calculated. This can result in decreased model prediction accuracy and increased
computation time. To address this issue, we designed the STA-ConvGRU module, which
incorporates the attention mechanism to reduce attention to unimportant information. This
allows us to obtain potential information during traffic flow changes and quantify the
importance of historical traffic flow data at different locations and moments. Figure 5
depicts the structure of the STA-ConvGRU module, where the outputs of the CNN and the
ConvGRU module are combined as input to the temporal attention mechanism module.
The attention coefficients calculated by the module are then combined with the output of
the ConvGRU module to obtain the final output of the STA-ConvGRU module.

C
onvolutional 

layer1

C
onvolutional 

layer2

GRU layer1 GRU layer2

Attention block



Pooling 
layer

Figure 5. STA-ConvGRU module structure.

In the attention module, each element of the input traffic flow sequence is assigned a
corresponding attention allocation probability, which is calculated internally as

St = Wa3 tanh(Wa1 ∗ Cout + Wa2 ∗ H2,t) (17)

where Wa3, Wa2, Wa1 are the weight parameters; Cout is the output of the CNN; St =(
st−(K−1), st−(K−2), · · · , st

)
represents the importance of each historical moment of the

traffic flow sequence.
The attention coefficient is defined as

at−n =
exp(st−n)

n=K
∑

n=0
exp(st−n)

(18)

where at−n is the attention factor, which represents the degree of influence of each historical
traffic flow time step on future traffic flow, n = 0, 1, · · · , K. Therefore, the output of the
ConvGRU module at each time step is multiplied by the attention coefficient and summed
to obtain the output of the STA-ConvGRU module. The calculation formula for the output
of the STA-ConvGRU module is as follows:

Ha,t =
n=K

∑
n=0

at−nh2,t−n (19)
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5. Experiments
5.1. Experimental Setup
5.1.1. Experimental Data

The datasets used in this paper are PEMS04 and PEMS08, which are real-time traffic
flow datasets collected by Caltrans Performance Measurement System. The data are
collected every 30 s and then aggregated every 5 min. A brief description of these datasets
is listed in Table 1.

The PEMS04 dataset consists of feature data in three dimensions: traffic flow, average
speed, and average lane occupancy. It includes data from 307 nodes in the San Francisco
Bay Area and spans from 1 January 2018 to 28 February 2018.

The PEMS08 dataset comprises feature data for 170 nodes in Los Angeles County,
including traffic flow, average speed, and average lane occupancy. The dataset spans from
1 July 2016 to 31 August 2016.

In the experimental part, nodes 104 and 307 are chosen as the goal nodes from
the PEMS04 dataset. The dataset is divided into 6:2:2, with 35 days (1 January 2018
to 4 February 2018) for the training set, 12 days (5 February 2018 to 16 February 2018) for
the validation set, and 12 days (17 February 2018 to 28 February 2018) for the test set.
For the PEMS08 dataset, nodes 58 and 100 are selected as the goal nodes. The dataset is
divided into 38 days (1 July 2016 to 7 August 2016) for the training set, 12 days (8 August
2016 to 19 August 2016) for the validation set, and 12 days (20 August 2016 to 31 August
2016) for the test set.

Table 1. Datasets description.

Datasets PEMS04 PEMS08

Goal node number 104, 307 58, 100
Number of node 307 170
Train time range 1 January 2018–4 February 2018 1 July 2016–7 August 2016

Validation time range 5 February 2018–16 February 2018 8 August 2016–19 August 2016
Test time range 17 February 2018–28 February 2018 20 August 2016–31 August 2016

Data normalization is necessary due to the significant variability of traffic flow data at
different moments, which can influence model training and testing.

X =
X− Xmin

Xmax − Xmin
(20)

where Xmax, Xmin represent the maximum and minimum values in the traffic flow sequence.

5.1.2. Hyperparameter Settings

Our ASTCG model is implemented using TensorFlow 1.14 and is run on an Nvidia
GeForce RTX 2080Ti GPU. In the experiments, the convolution layer is configured with
15 convolutional kernel channels, each with a size of 7. The sliding window step size for
input traffic flow data is set to 1, and computational padding is applied based on the size of
the convolution kernels to ensure that the convolution output size matches the input size.
The GRU is configured with 24 output units, fully connected layer 1 and fully connected
layer 2 have 20 and 10 output units, respectively, and the output layer has 12 output units.
During model training, the model is trained in 70 batches with a data batch size of 128,
using the Adam optimizer for optimization. The Adam algorithm is an effective stochastic
optimization algorithm that combines first-order moment estimation of the gradient and
second-order moment estimates to update the parameters. The time interval of the dataset
is 5 min, and the historical time length K is set to 12 (representing one hour in the past),
while the prediction length P is set to 12 (representing one hour in the future).
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5.1.3. Evaluation Metrics

For all prediction models, we use mean absolute error (MAE), root mean square error
(RMSE), and mean absolute percentage error (MAPE) as our evaluation metrics to assess
the performance of the model, The three are calculated as follows.

Mean Absolute Error (MAE):

MAE =
1
N

(
N

∑
i=1
|(yi − ŷi)|

)
(21)

Root Mean Square Error (RMSE):

RMSE =

√√√√√ 1
N

 N

∑
i=1

(yi − ŷi)

2
 (22)

Mean Absolute Percentage Error (MAPE):

MAPE =
100%

N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (23)

5.1.4. Compared Methods

In the experimental part, HA, BP, GRU, LSTM, and Spatial–Temporal Graph Con-
volution Network (STGCN) and Temporal Graph Convolutional Network (T-GCN), are
used as the baseline models. The dataset division and hyperparameter settings for the
baseline models are kept consistent with the proposed model to ensure fair evaluation of
their performance. The details of the baseline models are shown below:

HA [5]: The HA model treats the traffic flow sequence as a seasonal process and
generates predictions by taking the weighted average of previous seasons.

BP [32]: BP is a multilayer feedforward network trained using the error backpropa-
gation algorithm. It captures the nonlinear mapping relationship within the traffic flow
sequence and dynamically adjusts the weights and thresholds of the network through back-
propagation, ensuring that the predicted values are consistently close to the true values.

LSTM [11]: Similar to the GRU, the LSTM also utilizes internal gating units to control
the flow of historical information, enabling effective management of historical traffic flow
data and achieving high prediction performance.

GRU [12]: The gating unit in GRU effectively captures the time dependence of traffic
flow while addressing the issues of gradient explosion and gradient disappearance that
can arise from long sequences.

STGCN [48]: It utilizes the ChebNet and 2D convolutional network to model spatial–
temporal graph data, offering fast training speed and low model complexity.

T-GCN [39]: T-GCN is a spatial–temporal data mining model that leverages the
combination of GCN and GRU to extract spatial–temporal features for accurate traffic
flow prediction.

5.2. Experimental Results

Table 2 presents the comparison of our proposed method with other baselines on
PEMS04 dataset, while Table 3 displays the comparison of our proposed method with other
baselines on PEMS08 dataset. The results clearly demonstrate that our proposed ASTCG
model surpasses all baseline models in terms of all evaluation metrics.

The prediction results of traditional time series forecasting methods are not satisfactory,
indicating their limited ability in dealing with complex spatial–temporal traffic flow data.
The poor performance of the HA model can be attributed to its simplistic approach of
taking the average value of traffic flow data from previous moments as the prediction for
the next moment, without considering the nonlinear temporal variations in traffic flow.
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While the BP model accounts for the nonlinearity and instability of traffic flow, it lacks
consideration for the time dependence of traffic flow. This limitation results in inferior
prediction performance compared to GRU and LSTM models, which have gating units
that effectively capture both short-term and long-term dependencies in time series data.
The STGCN and T-GCN models not only incorporate the temporal dependence of traffic
flow, but also incorporate a spatial extraction component to capture spatial features of
all nodes. This design effectively enhances the prediction performance of the models,
surpassing the prediction models LSTM and GRU, which only consider temporal features.
The MAE, RMSE, and MAPE of the STGCN model are 4.13%, 2.86%, and 2.98% lower than
that of the GRU model at node 307 of the PEMS04 dataset. The MAE, RMSE, and MAPE of
the STGCN model are decreased by 6.89%, 5.81%, and 6.18% compared to the GRU model
at node 100 of the PEMS08 dataset.

Our proposed ASTCG model addresses long time dependencies and complex spatial
structures by combining GRU, CNN, and self-attention mechanism. The data input is
divided into three parts, including near-neighbor data, daily-periodic data, and weekly-
periodic data, which are incorporated into the model. The ASTCG model achieved the best
prediction results among all baseline models, with MAE values reduced by 10.08% relative
to the T-GCN model, and RMSE values reduced by 9.83% relative to the STGCN model
on the prediction task at node 307 of the PEMS04 dataset. On the prediction task at node
100 of the PEMS08 dataset, the MAE value is reduced by 7.60% and the RMSE value is
reduced by 3.40% relative to the T-GCN model, which indicates that the ASTCG model can
effectively enhance the extraction of spatial–temporal features of traffic flow.

Table 2. Comparison with different baselines on PEMS04.

Model
Node 307 of the PEMS04 Node 104 of the PEMS04

MAE RMSE MAPE MAE RMSE MAPE

HA 19.73 26.32 18.04% 20.32 26.18 18.41%
BP 18.64 25.07 13.39% 19.14 25.73 15.23%

LSTM 16.81 22.94 11.78% 17.40 23.87 15.21%
GRU 16.94 22.72 11.76% 17.39 23.75 13.91%

STGCN 16.24 22.07 11.41% 14.94 20.43 12.02%
T-GCN 16.36 21.96 11.34% 16.48 22.45 12.50%
ASTCG 14.71 19.90 10.84% 14.58 19.80 11.20%

Table 3. Comparison with different baselines on PEMS08.

Model
Node 100 of the PEMS08 Node 58 of the PEMS08

MAE RMSE MAPE MAE RMSE MAPE

HA 16.7 21.45 8.45% 16.21 21.32 9.12%
BP 15.13 19.71 8.08% 15.44 20.48 8.94%

LSTM 14.26 18.66 7.37% 15.14 20.10 8.77%
GRU 14.95 19.62 7.44% 15.12 20.11 8.81%

STGCN 13.92 18.48 6.98% 13.78 18.33 7.83%
T-GCN 14.21 18.93 7.22% 14.29 19.02 7.95%
ASTCG 13.13 17.85 6.47% 13.47 18.01 7.42%

Figures 6 and 7 present the MAE, RMSE, and MAPE evaluation metric values for
different models on the PEMS04 dataset and the PEMS08 dataset for various time-step
prediction tasks. The ASTCG model consistently achieves the best prediction performance
across all prediction time steps, as indicated by the lower values of the evaluation metrics.
This demonstrates the advantage of the ASTCG model in long-term traffic flow prediction.
It is observed that the prediction performance of all baseline models deteriorates with
increasing prediction intervals, which is expected as longer prediction time steps provide
less useful data for the prediction model to learn from. The ASTCG model exhibits a
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similar decay rate compared to the STGCN and T-GCN models in the first four time steps.
However, as the time step increases, the decay rate of the ASTCG model is lower than
the other two models, indicating its superior ability in extracting temporal features. This
implies that the ASTCG model can still extract useful information from historical data
even as the prediction time step increases, highlighting the effectiveness of the attention
mechanism in quantifying temporal correlations in traffic flow sequences.

Figure 6. Evaluation metrics of different models on the PEMS04 dataset.

Figure 7. Evaluation metrics of different models on the PEMS08 dataset.

To effectively showcase the prediction performance of the ASTCG model, we visualize
the traffic flows of STGCN, T-GCN, and ASTCG for one day and one week at node 104 on
the PEMS04 dataset and node 58 on the PEMS08 dataset. Figures 8 and 9 depict that the
real traffic flow is more accurately followed and the prediction accuracy is higher with the
ASTCG model compared to the STGCN and T-GCN.
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Fig. 8 Traffic flow visualization of three spatial-temporal prediction models on the PEMS04 dataset 
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Figure 8. Traffic flow visualization of three spatial–temporal prediction models on the PEMS04
dataset. (a) One-day traffic flow visualization at node 104; (b) One-week traffic flow visualization at
node 104.  
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Fig. 9 Traffic flow visualization of three spatial-temporal prediction models on the PEMS08 dataset 
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Figure 9. Traffic flow visualization of three spatial–temporal prediction models on the PEMS08
dataset. (a) One-day traffic flow visualization at node 58; (b) One-week traffic flow visualization at
node 58.

5.3. Ablation Experiments

The ASTCG model comprises three main components, including a convolutional
recurrent network component, an attention mechanism, and multiple input modules for
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near-neighbor data, daily-periodic data, and weekly-periodic data. The model is evaluated
for traffic flow prediction tasks at various time intervals, such as 15 min, 30 min, and 60 min,
at node 307 of the PEMS04 dataset, and node 100 of the PEMS08 dataset. The experimental
results are presented in Table 4, and the specific details of the three variants of the model
are as follows:

(a) ConvGRU: This model seamlessly combines a convolutional neural network with
a recurrent neural network to capture the spatial–temporal dependencies of traffic
flow data.

(b) STA-ConvGRU: This model enhances ConvGRU by incorporating an attention module
that quantifies the importance of historical time steps for improved prediction accuracy.

(c) MI-ConvGRU: This model extends ConvGRU by incorporating a multi-input com-
ponent for temporal data, which captures temporal dependence of traffic flow from
multiple aspects by incorporating near-neighbor data, daily-periodic data, and weekly-
periodic data as inputs.

The experimental results show that the prediction performance of all four models
declines as the length of the prediction time step increases on both datasets. This is
mainly attributed to the reduced knowledge that the models can glean from historical
traffic flow data when predicting larger time steps, resulting in decreased prediction
accuracy. Additionally, it can be observed that the STA-ConvGRU and MI-ConvGRU
models outperform the ConvGRU model in terms of prediction performance. This is
reasonable, as the STA-ConvGRU and MI-ConvGRU models incorporate different temporal
dependency extraction components, which enable them to capture richer time-related
information. This finding further validates the effectiveness of the proposed multi-input
component and attention mechanism component. Among the four models, the ASTCG
model exhibits the best prediction performance. For instance, in the 60 min prediction task
at node 100 of the PEMS08 dataset, the MAE value of ASTCG is reduced by 2.72% compared
to MI-ConvGRU, and the MAPE value is reduced by 2.80% compared to STA-ConvGRU.
This indicates that the inclusion of the feature extraction component in the model effectively
enhances the prediction accuracy. Moreover, the ASTCG model demonstrates accurate
predictions of traffic flow at four different nodes in the two datasets, showcasing its excellent
generalization ability.

Table 4. Evaluation metric values of ASTCG and three variants of the model at different time steps.

Model Horizon
Node 307 of the PEMS04 Node 100 of the PEMS08

MAE RMSE MAPE MAE RMSE MAPE

ConvGRU

5 min 12.89 17.81 9.23% 12.02 16.57 6.09%
15 min 13.12 17.91 9.36% 12.14 16.75 6.12%
30 min 13.46 18.33 9.48% 12.33 16.95 6.25%
60 min 14.22 19.18 10.84% 13.13 17.86 6.74%

STA-ConvGRU

5 min 12.91 17.68 8.99% 11.28 14.71 5.87%
15 min 12.97 17.78 9.21% 11.42 14.92 5.89%
30 min 13.36 18.02 9.43% 11.55 15.12 5.98%
60 min 14.11 19.01 10.8% 12.28 16.01 6.43%

MI-ConvGRU

5 min 12.98 17.77 9.09% 11.38 14.86 5.92%
15 min 13.14 18.02 9.21% 11.45 14.98 5.95%
30 min 13.54 18.23 9.35% 11.80 15.43 6.11%
60 min 14.69 20.10 10.54% 12.47 16.23 6.55%

ASTCG

5 min 12.72 17.44 8.91% 11.03 14.71 5.63%
15 min 12.82 17.58 9.04% 11.09 14.75 5.68%
30 min 13.12 17.91 9.46% 11.31 14.98 5.85%
60 min 13.59 18.47 9.66% 12.13 15.89 6.25%
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To visually compare the prediction performance of the four models, Figures 10 and 11
display the prediction evaluation metrics at node 307 of the PEMS04 dataset and node
100 of the PEMS08 dataset. It is evident from the visualizations that ASTCG consistently
achieves the best prediction results for all four evaluation metrics at different prediction
time steps, showcasing the superior performance of this model.
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Figure 10. Prediction performance of the four models at node 307 of the PEMS04 dataset.
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Figure 11. Prediction performance of the four models at node 100 of the PEMS08 dataset.

6. Conclusions

In this paper, we propose a new spatial–temporal attention-based model, Attention-
Based Spatial–Temporal Convolution Gated Recurrent Unit (ASTCG), applied to traffic
flow forecasting. The model combines a convolution neural network, a gated recurrent unit,
and a spatial–temporal attention mechanism to capture the spatial–temporal correlation
of traffic flow. Furthermore, our model leverages the cyclic nature of traffic flow data by
incorporating near-neighbor data, daily-periodic data, and weekly-periodic data, which
enhances the prediction accuracy. Our proposed model is tested on two real datasets and
outperforms all baseline methods. However, it should be noted that traffic flow prediction
is influenced by various factors, such as weather, holidays, and social events. In future
research, it would be beneficial to consider these factors to further improve the effectiveness
of the model. We want the research work in this paper to reach cooperation with related
enterprises or traffic management departments so that it can provide data support for route
planning and traffic guidance, and help people to travel on a daily basis.
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