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Abstract: Due to its wide application across many disciplines, how to make an efficient ranking
for nodes in graph data has become an urgent topic. It is well-known that most classical methods
only consider the local structure information of nodes, but ignore the global structure information of
graph data. In order to further explore the influence of structure information on node importance,
this paper designs a structure entropy-based node importance ranking method. Firstly, the target
node and its associated edges are removed from the initial graph data. Next, the structure entropy of
graph data can be constructed by considering the local and global structure information at the same
time, in which case all nodes can be ranked. The effectiveness of the proposed method was tested
by comparing it with five benchmark methods. The experimental results show that the structure
entropy-based node importance ranking method performs well on eight real-world datasets.

Keywords: graph data; node importance ranking; structure entropy

1. Introduction

As everyone knows, the key nodes usually play a decisive role during the process of
graph data mining. In order to accurately identify the so-named key nodes in graph data,
a priority problem is to construct an appropriate score function for ranking nodes [1–4].
Due to its prevalence in the field of disease detection [5,6], information transmission [7,8]
and rumor blocking [9,10], how to rank nodes in graph data has been widely studied by
researchers of various vocations.

In general, there are many traditional node importance ranking methods that only
considered the local structure information of nodes to construct the score function [11–13].
For example, Lu et al. [14] calculated the importance of nodes by means of the degree
centrality method. Chen et al. [15] constructed a multi-level neighbor information index to
measure the importance of nodes, in which case only the degree information of first-order
and second-order neighbors are considered. In order to distinguish the contribution of
different neighbors, Katz [16] assigned different weights to them. The neighbors that can be
reached by the short route are assigned the larger weight. At the same time, the neighbors
that can be reached by the long route are assigned the small weight [17].

Up to now, many improved methods are proposed to deal with the problem of node
importance ranking for graph data [18–20]. For instance, Freeman [21] constructed the
betweenness centrality method, which described the importance of a node as the number
of the shortest paths through it. In the closeness centrality method [22], the importance
score of each node can be determined through the impact ability of the target node on
other nodes. Based on the hypothesis that the node located at the core position has a
strong influence, the K-shell decomposition method [23] is proposed. Yang et al. [24]
proposed a comprehensive evaluation method based on multi-attribute decision making,
which took many factors that affect the importance of nodes into account. What is more,
the graph learning framework is also applied to evaluate the importance of nodes, such as
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in reference [25], the first graph neural network-based model is proposed to approximate
betweenness and closeness centrality. Furthermore, Liu et al. [26] proposed a novel model
based on self-supervised learning and graph convolution model to rank nodes, which
formulated node importance ranking problem as a learning ranking problem.

Besides what has been discussed above, the well-known information entropy that
has been proposed by Shannon [27] is also regarded as a powerful tool to measure the
importance of nodes in a whole new perspective [28–30]. For instance, Zareie et al. [31]
constructed the score function for each node, which considered the influence of neighbors
on the target node with the help of information entropy. Guo et al. [32] proposed the
EnRenew method by using the voting mechanism. In this method, information entropy
is regarded as the voting ability of neighbors. By taking the effect of the spreading rate
on information entropy into account, a propagation feature of the node-based ranking
approach is introduced in reference [33]. Yu et al. [34] characterized the node importance
as the node propagation entropy, which was the combination of degree and clustering
coefficients.

Based on the above analysis, it can be found easily that in both the information
entropy-based ranking methods and traditional ranking methods, only the local structure
information is used to construct score functions. However, in fact, the global structure
information, i.e., the connectivity of whole graph data, usually has a huge influence on
the final ranking sequence [35–37]. In order to overcome the limitation or make full use
of information from graph data, we propose a structural entropy-based node importance
ranking method by considering the global structure information of graph data. We first
calculate the amount of information contained in each connected component, which is
denoted as the local structural entropy. Furthermore, the global structure entropy is
constructed by distinguishing the different contributions of each connected component.
Moreover, the effectiveness of the proposed method was tested on eight real-world datasets.
The contribution of this paper can be listed as follows.

- The structure entropy-based node importance ranking method for graph data is
proposed in terms of node removal.

- The local structural entropy is calculated by considering the degree of information of
nodes and information entropy.

- The global structure entropy is constructed in terms of the connectivity of graph data.

The remainder of this paper is organized as follows. Section 2 reviews some basic
concepts, which are graph data and benchmark methods for node importance ranking.
Section 3 introduces the proposed method, i.e., the structural entropy-based node impor-
tance ranking method. Section 4 is composed of three parts, which are the experimental
platform, datasets description and evaluation criteria. Section 5 shows the experimental
results and contrastive analysis between the proposed method and five benchmark meth-
ods on eight real-world datasets. Section 6 is the summary of this paper and gives future
research directions.

2. Preliminaries

In this section, some basic concepts are introduced, including the graph data and some
benchmark methods for node importance ranking [38–41].

2.1. Graph Data

Generally speaking, the so-called graph data can be expressed as a tuple G = (V, E),
where

- V = {vi|i = 1, 2, · · · , n} is the set of nodes and n represents the number of nodes.
- E =

{
(vi, vj)|vi, vj ∈ V

}
is the set of edges and m = |E| represents the number of

edges.

In this paper, we mainly discuss the undirected and unweighted graph data G. That is
to say, (vi, vj) = (vj, vi) for any vi, vj ∈ V. Given that vi, vj ∈ V, (vi, vj) ∈ E if and only if
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there exists one edge that takes nodes vi and vj as its endpoint. For this situation, we use
aij = 1 to describe the fact that vi and vj are adjacent. Similarly, aij = 0 denotes that vi and
vj are not adjacent. With this representation, the adjacency of a given graph data G with n
nodes is the following matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

. (1)

2.2. Benchmark Methods

The key problem of node importance ranking is how to construct the score function. It
is well-known that most classical methods apply local structure information of nodes to
construct score functions. Some benchmark methods that can be used to rank the nodes are
introduced in what follows.

2.2.1. Degree Centrality Method

The degree centrality method (DC) determines the importance of node vi by the
following equation

DC(vi) = di, (2)

where di =
n
∑

j=1
aij is the degree of node vi.

2.2.2. Closeness Centrality Method

The closeness centrality method (CC) defines the importance of node vi is

CC(vi) =
1

∑
i 6=j

d(i, j)
, (3)

where d(i, j) is the length of the shortest path from node vi to vj, or vj to vi.

2.2.3. Improved K-Shell Decomposition Method

The classical K-shell decomposition method (KS) is a node removal-based method. A
different Ks value that is regarded as the corresponding importance score is assigned to
different nodes. In the first place, nodes with di ≤ 1 are removed from the initial graph data
G, and the same time value of Ks = 1 is assigned to such nodes. After that, for the newly
generated graph data, nodes with di ≤ 2, 3, · · · , will be removed successively, in which
case one will obtain the sequence Ks = 2, 3, · · · . For the improved K-shell decomposition
method (IKS), it only removes nodes with the lowest degree each iteration. That is to
say, the sequence of removed nodes is not based on the increasing sequence of degrees.
For example, when all nodes with di = 2 are removed, the node with di = 1 may appear in
the newly generated graph data. These nodes with di = 1 will be removed next and obtain
a higher IKs value.

2.2.4. The Weight of Edges-Based Method

The weight of edges-based method (WR) determines the importance of node vi by the
following equation

WR(vi) = ∑
vj∈N(vi)

didj, (4)

where N(vi) =
{

vj|(vi, vj) ∈ E
}

is the set of neighbors of node vi.
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2.2.5. The Gravity Model Based Method

Inspired by the thought of the classical gravity model, the gravity model-based method
(GM) quantifies the importance of nodes by combining Ks value and shortest path infor-
mation of nodes. The concrete calculation formula is

GM(vi) = ∑
vj∈Ψ(vi)

Ks(vi)Ks(vj)

d(i, j)2 , (5)

where Ψ(vi) is the set of nodes that defined by equation Ψ(vi) =
{

vj | d(i, j) ≤ 3
}

.

3. The Proposed Method

It is well-known that most of the classical node importance ranking methods only
consider the local structure information of nodes, but ignore the global structure infor-
mation of graph data. For this, we combine the local and global structure information to
construct the score function for all nodes. Based on the assumption that removing a more
important node is likely to cause more structural variation of graph data, the score function
is constructed from the perspective of node removal. Furthermore, the local and global
structure information are considered comprehensively to construct the structure entropy of
graph data and in which case all nodes can be ranked.

3.1. Node Removal

The graph data G = (V, E) are defined as a connected graph if there is a route from
vi to vj, or vj to vi for any nodes vi, vj ∈ G. Otherwise, it is a disconnected graph. For a
disconnected graph, each connected part is called a connected component.

Taking Figure 1, for example, there are 12 nodes and 14 edges. One can find that
the nodes v3 and v5 have the same degree. They will be assigned the same importance
score according to the DC method. However, in fact, the importance of these two nodes is
completely different.

Figure 1. The connected graph with 12 nodes and 14 edges.

As shown in Figures 2 and 3, the graph data are divided into three connected compo-
nents when node v5 is removed. However, the removal of node v3 does not lead to great
changes for the structure of graph data, and the remaining graph data is still connected.
Therefore, we can make the assertation that node v5 would play a more important role than
that of node v3 in the aspect of structure information.

Figure 2. The graph data after removing node v5.
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Figure 3. The graph data after removing node v3.

3.2. Local Structure Entropy

Removing the important node may lead to the fact that the graph data will be divided
into more than one connected component. In order to quantify the global structure informa-
tion of graph data reasonably, calculating the amount of information about each connected
component is a priority problem. Hereinto, we first construct the local structure entropy
for each connected component with the help of information entropy.

The information entropy is usually used to measure the amount of information about
an event. For the random variable X = (x1, x2, · · · , xn), given that its probability distribu-
tion is P = (p1, p2, · · · , pn), then the information entropy of X is

E(X) = −
n

∑
i=1

pilog2 pi. (6)

Following Equation (6), one can find that the more likely an event is to happen, the less
information it contains, and vice versa. Once some nodes are removed, the graph data
will be changed into more than one connected component with a high probability. This
will lead to information decreasing of the corresponding connected component. That
is to say, the appearance of connected components is a frequent event and it contains
less structure information. This is consistent with the property of information entropy.
Therefore, the amount of structure information contained in each connected component
can be quantified by information entropy, and it can be defined as local structural entropy.
In what follows, we give a detailed description of local structural entropy.

Given that G = (V, E) is graph data with n nodes and m edges. The initial graph data
are divided into s connected components after removing the target node from G, denoted
as C1, C2, · · · , Cs. Each connected component contains |Ci| nodes, for i = 1, 2, · · · , s. Then,
the probability distribution P(Ci), for i = 1, 2, · · · , s, can be expressed as

P(Ci) = (p(v1), p(v2), · · · , p(v|Ci |)), (7)

where

p(vt) =



∑
vj∈N(vt)

dj

∑
vx∈Ci

d2
x

, |Ci| > 1

1, |Ci| = 1

(8)

for t = 1, 2, · · · , |Ci|. Obviously, this probability distribution satisfies the constraint that the
sum of probability is equal to 1 for each connected component, i.e., ∑

vt∈Ci

p(vt) = 1.

According to Equation (6), the local structure entropy with respect to the connected
component Ci, for i = 1, 2, · · · , s, can be defined as

LE(Ci) = − ∑
vj∈Ci

p(vj)log2 p(vj). (9)

It can be easily found that Equation (9) has the following properties.



Entropy 2023, 25, 941 6 of 23

Property 1. Given that G is graph data and Ci is the ith connected component of G by removing
vi from G. Then, one has that LE(Ci) ≥ 0.

Proof. If |Ci| = 1, taking vt ∈ Ci for example, then p(vt) = 1. To this

LE(Ci) = − ∑
vj∈Ci

p(vj)log2 p(vj)

= p(vt)log2 p(vt)

= 0.

(10)

If |Ci| > 1, one has that p(vj)log2 p(vj) < 0 for any vj ∈ Ci, then

LE(Ci) = − ∑
vj∈Ci

p(vj)log2 p(vj)

> 0.
(11)

This completes the proof.

Property 2. Given that G is a graph data and Ci is the ith connected component of G by removing
vi from G. Then, the value of LE(Ci) is not relevant to the position of p(vt) in P(Ci), for vt ∈ Ci.

Proof. For the connected component Ci, the initial probability distribution is P(Ci) =
(p(v1), p(v2), · · · , p(v|Ci |)). If p(v1) and p(v2) change the position, the probability distribu-
tion changes into P(Ci) = (p(v2), p(v1), · · · , p(v|Ci |)).

With the help of Equation (9), the following result

LE(Ci) = − ∑
vj∈Ci

p(vj)log2 p(vj)

= −(p(v1)log2 p(v1) + p(v2)log2 p(v2))− ∑
vj∈Ci ,vj 6=v1,v2

p(vj)log2 p(vj)

= −(p(v2)log2 p(v2) + p(v1)log2 p(v1))− ∑
vj∈Ci ,vj 6=v1,v2

p(vj)log2 p(vj)

= LE(Ci)

(12)

comes naturally.
This completes the proof.

Property 3. Given that Ci and Cj, respectively, are the ith and jth connected components of G by
removing node vi from G. Then, their overall structure entropy can be expressed as the sum of local
structure entropy, i.e., LE(CiCj) = LE(Ci) + LE(Cj).

Proof. According to the Equations (7) and (8), the probability distributions of Ci and Cj is

P(Ci) = (p(v1), p(v2), · · · , p(v|Ci |)) (13)

and
P(Cj) = (p(v

′
1), p(v

′
2), · · · , p(v

′
|Cj |)), (14)

where ∑
vt∈Ci

p(vt) = 1, for t = 1, 2, · · · , |Ci| and ∑
v′x∈Cj

p(v
′
x) = 1, for x = 1, 2, · · · , |Cj|.

For independent connected components Ci and Cj, their joint probability distribution
can be expressed as

P(CiCj) = (p(v1)p(v
′
1), p(v1)p(v

′
2), · · · , p(v1)p(v

′
|Cj |), p(v2)p(v

′
1), · · · , p(v|Ci |)p(v

′
|Cj |)),
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where ∑
vt∈Ci

∑
v′x∈Cj

p(vt)p(v
′
x) = 1, for t = 1, 2, · · · , |Ci| and x = 1, 2, · · · , |Cj|.

With the help of Equation (9), one can have that

LE(CiCj) = − ∑
vt∈Ci

∑
v′x∈Cj

p(vt)p(v
′
x)log2(p(vt)p(v

′
x))

= − ∑
vt∈Ci

∑
v′x∈Cj

p(vt)p(v
′
x)log2 p(vt)− ∑

vt∈Ci

∑
v′x∈Cj

p(vt)p(v
′
x)log2 p(v

′
x)

= − ∑
v′x∈Cj

p(v
′
x) ∑

vt∈Ci

p(vt)log2 p(vt)− ∑
vt∈Ci

p(vt) ∑
v′x∈Cj

p(v
′
x)log2 p(v

′
x)

= LE(Ci) + LE(Cj).

(15)

This completes the proof.

3.3. Global Structure Entropy

The key problem in this section is to quantify the information contained in the whole
graph data. According to Property 3, one can find that the overall structure entropy of G
can be expressed as the sum of local structure entropy about each connected component.
In order to distinguish the contribution of different connected components, in what follows,
we take the number of edges as the weight value of each local structure entropy.

Given that G is graph data and taking node vi ∈ V as an example, the global structure
entropy of G is quantified by combining the number of edges and local structure entropy,
which can be defined as

SE(vi) =
s

∑
j=1
|Ej|LE(Cj), (16)

where |Ej| is the number of edges in each connected component, for j = 1, 2, · · · , s.
The information contained in graph data G will decrease if the more important node

vi is removed. That is to say, the global structure entropy will get the smaller value of
SE(vi). Therefore, the global structure entropy can be regarded as a cost function. In
other words, the smaller the value of SE(vi), the more important the node vi. For this, one
can obtain a possible sequence, such as vi1 < vi2 < · · · < vin, where (i1, i2, · · · , in) is a
certain permutation of (1, 2, · · · , n). For example, vi1 < vi2 if and only if SE(vi1) ≤ SE(vi2),
and vi1 ≺ vi2 if and only if SE(vi1) > SE(vi2).

Example 1. To make it easy to understand how to calculate the global structure entropy of each
node, in what follows, we apply a simple graph data G shown in Figure 1 to describe the whole
process in detail.

Taking node v5 for example, the initial graph data is divided into three connected
components after removing node v5 from G, which are C1, C2 and C3. With the help of
Equations (7) and (8), the probability distribution of connected components can be deter-
mined, which are

P(C1) = (
6

26
,

7
26

,
7
26

,
6

26
)

P(C2) = (
4

12
,

4
12

,
4

12
)

and
P(C3) = (

3
12

,
3
12

,
3
12

).

Then, the local structure entropy of each connected component could be obtained by
Equation (9), which are

LE(C1) = 1.9958
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LE(C2) = 1.5849

and
LE(C3) = 2.0000.

With Equation (16), the global structure entropy is

SE(v5) =
3

∑
j=1
|Ej|LE(Cj)

= 20.7337.

(17)

The calculation of other nodes is the same as that of v5. Here, we list the top six nodes
in Table 1.

Table 1. The global structure entropy of top six nodes.

Order 1 2 3 4 5 6

Node v5 v4 v10 v6 v2 v3
SE(vi) 20.7337 28.5322 29.7450 32.1098 36.9700 36.9700

As can be seen from Table 1, one has that SE(v5) < SE(v3), then their importance can
be ranked as v5 � v3. It is worth mentioning that this is consistent with the analysis results
in Section 3.1.

3.4. Algorithm Description

Bearing what was discussed in mind, we give the detailed process of the structure
entropy-based node importance ranking method for graph data G in Algorithm 1. For con-
venience, here we apply the abbreviation SE to represent the proposed method.

Algorithm 1: The SE method.
input : The undirected and unweighted graph data G = (V, E).
output : The ranking sequence vi1 < vi2 < · · · < vin.

1 begin
2 for i = 1 : n do
3 V ← V\{vi};
4 E← E\

{
(vi, vj)|vj ∈ N(vi)

}
;

5 for k = 1 : s do
6 Compute local structure entropy LE(Ck) by Equation (9);
7 end
8 Compute global structure entropy SE(vi) by Equation (16);
9 end

10 for vi, vj ∈ V do
11 if SE(vi) ≤ SE(vj)

12 vi < vj;
13 else
14 vi ≺ vj;
15 end
16 end
17 return vi1 < vi2 < · · · < vin. /* vij ∈ V, for j = 1, 2, · · · , n */
18 end
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4. Experimental Construction

In this section, we introduce the experimental platform, experimental datasets and
evaluation criteria.

4.1. Experimental Platform

The algorithm development platform is MATLAB R2018a. The computer configuration
used for the experiment is the following: Intel(R)Core(TM)i5-8250U CPU, 8 GB installed
memory and 64-bit Windows 10 operating system.

4.2. Datasets Description

From the website http://konect.cc/networks/ (accessed on 10 April 2023), we down-
loaded the eight real-world datasets for experimental analysis. The detailed information
on these datasets is given below.

- Contiguous USA (CONT): The network of shared border between 48 contiguous
states.

- Les Miserables (LESM): The network of co-appearances of characters in the novel
“Les Miserables”.

- Polbooks (POLB): The network of books about US politics published in 2004.
- Adjnoun (ADJN): The network of co-words between adjectives and nouns commonly

used in the novel “David Copperfield”.
- Football (FOOT): The network of US football games between division IA colleges.
- Netscience (NETS): The collaborative network of scientists who have published papers

in the field of network science.
- Email (EMAI): The interactive network of emails between members in University of

Rovira.
- Hamsterster households (HAMS): The network of family relationships between mem-

bers using the same website.

Table 2 shows the topological statistical information of the above eight real-world
datasets, where < d > is the average degree, dmax is the maximum degree and cc is the

average clustering coefficient of datasets (cc = 1
n

n
∑

i=1
ci, where ci is the local clustering

coefficient of node vi and ci =

∑
vj∈N(vi)

dj

di(di−1) ).

Table 2. The topological statistical information of eight real-world networks.

Dataset n m < d > dmax cc

CONT 49 107 4.3673 8 0.4061
LESM 77 254 6.5974 36 0.4989
POLB 105 441 8.4000 25 0.4875
ADJN 112 425 7.5893 49 0.1898
FOOT 115 613 10.6609 12 0.4032
NETS 379 914 4.8232 34 0.7981
EMAI 1133 10,903 9.6230 71 0.2550
HAMS 1576 4032 5.1168 147 0.1312

As shown in Table 2, the eight real-world datasets used for the experimental analysis
have the following different properties. The number of nodes in CONT and LESM datasets
are both less than 100, which is mainly used to verify the effectiveness of the proposed
method on small-scale datasets. Although POLB, ADJN and FOOT datasets have similar
scale, < d > and dmax of the FOOT dataset are very close. This indicates the fact that there
are a large number of nodes with the same degree in the FOOT dataset. Since the NETS
dataset has the largest cc in all datasets, the distribution of nodes is dense. The EMAI
and HAMS belong to the larger-scale datasets. Hereinto, the EMAI is the dataset with the

http://konect.cc/networks/
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highest number of edges. The HAMS dataset has the highest number of nodes and the
smallest average clustering coefficient in all datasets. In fact, the biggest difference between
the HAMS and other datasets is that it contains 655 isolated nodes. The extensibility of
ranking methods can be reflected in this kind of special dataset.

4.3. Evaluation Criteria

Here, we introduce four evaluation criteria to verify the validity of the proposed
method. The more detailed information can be found in the literature [42–45].

4.3.1. Monotonicity-Based Evaluation Criterion

It is well-known that the fewer nodes that obtain the same importance score, the better
the corresponding ranking method. Here, the discriminability of the proposed method can
be evaluated by using the monotonicity relation function. Its mathematical formula is

M(R) =

1−
∑

r∈Γ
nr(nr − 1)2

n(n− 1)


2

, (18)

where R is the final ranking sequence, Γ is the index set that represents different orders
in the ranking sequence R, r ∈ Γ and nr represents the number of nodes that have been
listed in the same order. For example, if the ranking sequence R is v1 � v2 ≈ v3 � v4, then
Γ = {1, 2, 3} and n1 = n3 = 1 and n2 = 2. Obviously, if all nodes have the same order
in the ranking sequence R, then the value of M(R) is 0. If each node can obtain a unique
order, the value of M(R) is 1 and the ranking sequence R is completely monotonic.

4.3.2. Complementary Cumulative Distribution Function Based Evaluation Criterion

In addition to monotonicity, the complementary cumulative distribution function
(CCDF) is utilized to further evaluate the discriminability of the proposed method. Its
mathematical expression is

CCDF(r) =
n−

r
∑

i=1
ni

n
. (19)

Obviously, with the increasing of r, if more nodes are assigned to the same order, then the
value of the function will decrease rapidly, until to 0.

4.3.3. Connected Component Based Evaluation Criterion

Generally, the robustness of the ranking method can be quantified by the deliberate
attack strategy. Firstly, some nodes are removed from graph data G according to the
ranking sequence R, which can decrease the connectivity of G. After that, the robustness
of the ranking method is evaluated from two perspectives, i.e., the number of connected
components and the proportion of the maximum connected component. The former can be
expressed as ξ, and the definition of latter is

τ =
Ms

n
, (20)

where
Ms = max{|C1|, |C2|, · · · , |Cs|} (21)

represents the number of nodes that are contained in the maximum connected component.
Obviously, one can find that the larger value of ξ and the smaller value of τ, the stronger
the robustness of the corresponding ranking method.
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4.3.4. Susceptible-Infected-Recovered Epidemic Model-Based Evaluation Criterion

The accuracy of different ranking methods can be verified by using the Susceptible-
Infected-Recovered epidemic model (SIR). Nodes in SIR are classified into infected state,
susceptible state, and recovered state. In the whole process of infection, the initial infected
node can affect its neighbors with the infected probability β, and enter into a recovered
state with the recovery probability γ. Nodes that are already in the recovery state will
not participate in the subsequent infection process. To increase accuracy, the experiment
will repeat hundreds of times and the average number of infected nodes is taken as the
propagation ability of the seed node, denoted as F(R). Its calculation formula is defined as

F(R) =
nI

Nite
, (22)

where nI is the number of nodes infected by seeds and Nite is the number of repeated experiments.

5. Results and Analysis

In this section, the performance of the proposed method SE is demonstrated on eight
real-world datasets. In order to show the results more clearly, all datasets are classified into
three classes in the aspect of the number of nodes, i.e., the datasets CONT and LESM with
n ≤ 100, the datasets POLB, ADJN, FOOT and NETS with 100 < n ≤ 1000, the datasets
EMAI and HAMS with n > 1000.

5.1. Monotonicity Analysis

In this part, we analyze the effectiveness of SE by comparing the monotonicity of
ranking sequence R obtained by SE with other benchmark methods. Table 3 shows the
value of monotonicity under DC, CC, IKS, WR, GM and SE methods. One can find that the
SE method can obtain the maximum monotonicity value on all datasets. Obviously, this
advantage is independent of the number of nodes.

Table 3. The M value of six ranking methods. The best results are highlighted in bold.

Dataset M (DC) M (CC) M (IKS) M (WR) M (GM) M (SE)

CONT 0.6973 0.9780 0.7942 0.9546 0.9966 1.0000
LESM 0.8147 0.9414 0.8134 0.9547 0.9581 0.9581
POLB 0.8252 0.9846 0.8382 0.9967 0.9996 1.0000
ADJN 0.8661 0.9837 0.8745 0.9961 0.9994 0.9997
FOOT 0.3636 0.9488 0.9419 0.9281 0.9985 1.0000
NETS 0.7642 0.9928 0.7607 0.9839 0.9949 0.9953
EMAI 0.8874 0.9988 0.8981 0.9977 0.9999 0.9999
HAMS 0.6263 0.6834 0.6292 0.6829 0.6839 0.6839

5.1.1. On CONT and LESM Datasets

From Table 3, one can find that for the CONT dataset, all methods except DC and IKS,
the monotonicity is greater than 0.9000. The main reason is that the two methods, i.e., DC
and IKS methods, can be influenced easily by the degree of nodes. It is worth mentioning
that the SE method is less affected by the degree of information about nodes. Therefore, it
is superior to DC and IKS methods in monotonicity.

On the LESM dataset, it should be pointed out that both SE and GM methods can
achieve the maximum value of monotonicity at the same time. From Table 2, one can find
that the LESM dataset has a higher cc value in datasets with a similar number of nodes.
For datasets with dense distribution of nodes, the method that the structure information of
nodes is considered during the ranking procedure can identify the importance of nodes
more efficiently, such as SE and GM methods. This also confirms that the SE method has
great merit on small-scale datasets.
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5.1.2. On POLB, ADJN, FOOT and NETS Datasets

Since the POLB, ADJN and FOOT datasets have similar scales, most methods achieve
similar monotonicity. In this case, the SE method still shows obvious advantages. One can
observe that the SE method not only obtains the highest monotonicity value on all datasets
but also assigns the unique order to each node on POLB and FOOT datasets. Table 2
shows that < d > and dmax of the FOOT dataset are very close. This indicates the fact
that there are a large number of nodes with the same degree in the FOOT dataset. Since
the DC method have no ability to identify the importance of these nodes, it achieves the
worst monotonicity. On the contrary, the SE method can obtain a completely monotonous
ranking sequence. What is more, the difference in monotonicity value between SE and DC
methods is as high as 0.6464. For this, we can guess that the SE method would show better
performance on large-scale graph data.

On the NETS dataset, the CC and GM methods obtain similar monotonicity values,
but IKS is still the worst-performing method. Since the NETS dataset has the largest cc in
all datasets, the distribution of nodes is dense. Obviously, the IKS method has the worst
performance on this dataset. The main reason is that the IKS method mainly considers the
location information of nodes largely, and usually treats nodes with adjacent locations as
equally important. On the contrary, the SE method is not affected by the location of nodes
and can still obtain the maximum value of monotonicity.

5.1.3. On EMAI and HAMS Datasets

For datasets with a large number of nodes, such as the EMAI and HAMS datasets,
one can find that the GM method shows the same advantage as the SE method and the
performance of CC and WR methods also increases. As shown in Table 2, the HAMS dataset
has the highest number of nodes and the smallest clustering coefficient in all datasets,
which indicates that the nodes in the HAMS dataset are more dispersed. In fact, the biggest
difference between the HAMS and other datasets is that it contains 655 isolated nodes. Due
to this special structure, the importance of most nodes cannot be identified on the HAMS
dataset. However, the SE method still obtains the maximum value of monotonicity. This
further verifies the effectiveness of the SE method on datasets with special structure.

5.2. Node Distribution Analysis

As shown in Figures 4–6, the CCDF curves express the node distribution of the ranking
sequence obtained by different methods. Here, we mainly focus on two perspectives.
On the one hand, the descending slope of curves can indicate the discriminability of the
corresponding method. The method with the smoother descending slope can distribute the
fewer nodes in the same order. On the other hand, we focus on the value of the horizontal
axis when the value of the vertical axis is equal to 0, which can represent the total order
number that can be generated by the corresponding method. The larger the order number,
the better the discriminability of the corresponding method.

From the results, it can be found that the SE method can obtain the smoother de-
scending slope and the maximum order number on most datasets. That is to say, the SE
method should distribute the fewer nodes to the same order and more clearly identify the
importance of different nodes compared with benchmark methods.

5.2.1. On CONT and LESM Datasets

Figure 4 is the curves of CCDF on CONT and LESM datasets. Obviously, the SE
method obtains the smoothest descending slope and descends keeping in a straight line as
shown in Figure 4a. What is more, the total order number obtained by the SE method is 49,
which is equivalent to the node number of CONT dataset. In other words, only one node
is located at the corresponding location of the ranking sequence. Nicely, this is consistent
with that of Table 3.

From Figure 4b, it can be easily found that both GM and SE methods obtain the
maximum order number 52 at the same time. However, that of DC and IKS methods is



Entropy 2023, 25, 941 13 of 23

18, which means that there are 59 nodes whose importance cannot be identified. Such
defects are more evident on larger-scale datasets and this can be confirmed by the following
experiments. In addition, although there is no method that can completely identify the
importance of all nodes, the SE method shows greater advantage when the order number
is between 10 and 20.

(a)

(b)

Figure 4. The curves of CCDF on (a) CONT and (b) LESM datasets.

5.2.2. On POLB, ADJN, FOOT and NETS Datasets

Figure 5 is the curves of CCDF on POLB, ADJN, FOOT and NETS datasets. As can be
seen, the advantage of the SE method is obvious. On the one hand, the SE method achieves
the maximum order number on all datasets. This reflects the fact that the SE method can
distribute fewer nodes to the same order compared with other benchmark methods. On the
other hand, the SE method obtains the smoothest descending slope in all of the comparison
methods. Especially on the POLB and FOOT datasets, SE is the only method that can
descend keeping in a straight line. For this, we can guess that the SE method would show
better performance on large-scale datasets.

On the whole, the performance of DC and IKS methods is relatively poor. The order
number obtained by DC and IKS methods is only 10% to 20% of the total number of nodes.
This means that nearly 80% to 90% of nodes’ importance cannot be identified. Frankly
speaking, they cannot be regarded as good ranking methods.
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(a)

(b)

(c)

(d)

Figure 5. The curves of CCDF on (a) POLB; (b) ADJN; (c) FOOT; and (d) NETS datasets.
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5.2.3. On EMAI and HAMS Datasets

Figure 6 is the curves of CCDF for two large-scale datasets, i.e., the EMAI and HAMS
datasets. As can be seen, the performance of all methods can be divided into three categories
roughly, i.e., well-performing SE and GM methods, moderately-performing CC and WR
methods, and poorly-performing DC and IKS methods. Especially in Figure 6b, it should
be pointed out that the curves of CCDF obtained by all methods have a process of vertical
decline. The main reason for this phenomenon is that it is difficult to identify the importance
of isolated nodes. Here, the importance score of an isolated node is set to the minimum
in all methods. Although the importance of isolated nodes is not significant, this special
structure can affect the importance scores of other nodes. From Figure 6b, it can be easily
seen that the SE method still obtains the smoothest descending slope in all comparison
methods. What is more, the biggest difference in total order numbers between SE and other
methods can exceed 700. This further validates the effectiveness of SE method proposed in
this paper.

(a)

(b)

Figure 6. The curves of CCDF on (a) EMAI and (b) HAMS datasets.

5.3. Robustness Analysis

In this subsection, we evaluate the robustness of the SE method by comparing the
curves of ξ and τ of SE method with that of other benchmark methods.

- The left side of Figures 7–10 is the curves of ξ, which shows the number changes of
connected components. The horizontal axis of subfigures represents the proportion of
removed nodes and the vertical axis represents the number of connected components
after removing nodes from the dataset.

- The right side of Figures 7–10 is the curves of τ, which shows the variation of the
maximum connected component. The horizontal axis of subfigures represents the
proportion of removed nodes and the vertical axis represents the value of τ calculated
by Equation (20).
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The larger value of ξ and the smaller value of τ, the stronger the robustness of the
corresponding ranking method. From the result, it can be found that the ξ curves of
SE method obtain the faster uptrend and the τ curves of SE method obtain the faster
downtrend in most datasets as the proportion of removed nodes increases.

5.3.1. On CONT and LESM Datasets

Figure 7 is the curves of ξ and τ on CONT and LESM datasets. As can be seen from
Figure 7a, when the proportion of removed nodes changes from 10% to 90%, the SE method
can always obtain the maximum value of ξ. Obviously, the SE method has the most
obvious upward trend compared with other methods. In Figure 7b, when the proportion of
removed nodes is only 10%, the τ value of all methods is equal to 0.9184 except SE method.
In fact, the value of τ obtained by SE method only is 0.7959, which is 0.1225 lower than
other methods. This advantage is more pronounced after the proportion of removed nodes
reaches 30%.

(a) (b)

(c) (d)

Figure 7. The curves of ξ and τ on (a,b) CONT and (c,d) LESM datasets.

On the LESM dataset, as shown in Figure 7c,d, the differences between the six methods
are obvious. Especially when the proportion of removed nodes is 20%, the value of ξ
corresponding to DC, CC, IKS, WR, GM and SE methods is 32, 36, 27, 33, 30 and 43,
respectively. Obviously, the SE method is superior to other methods. What is more,
the value of τ corresponding to the above methods is 0.3247, 0.1688, 0.5193, 0.2338, 0.4545
and 0.1039, respectively. One can find that the difference between the SE and IKS method
is as high as 0.4154. That is to say, the maximum connected component of the IKS method
contains 40 nodes, while that of the SE method contains only 8 nodes. This fully confirms
that SE method has better robustness in small-scale datasets.

5.3.2. On POLB, ADJN, FOOT and NETS Datasets

Figure 8 is the curves of ξ and τ on POLB and ADJN datasets. With the increase in
dataset scale, the robustness of the CC method decreases significantly, but the advantage of
the DC method becomes more obvious. As shown in Figure 8a,c, both DC and SE methods
obtain the same value of ξ in most cases. The main reason is that the DC method regards
the nodes with larger degrees as the more important nodes, and these nodes can affect
the number of connected components to a great extent. On the whole, the robustness of
the IKS method is relatively poor. From Figure 8b,d, it can be found that the curves of τ
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corresponding to the SE method can maintain the fastest downtrend when the proportion
of removed nodes starts from 30%.

(a) (b)

(c) (d)

Figure 8. The curves of ξ and τ on (a,b) POLB and (c,d) ADJN datasets.

Figure 9 is the curves of ξ and τ on FOOT and NETS datasets. One can observe that
all methods obtain similar ranking sequences on FOOT dataset. As shown in Figure 9a,b,
six ranking methods show the same robustness until the proportion of removed nodes is as
high as 50%. However, in fact, when the proportion of removed nodes is greater than 50%,
the SE method obtains the largest value of ξ, and the CC method obtains the smallest value
of τ.

(a) (b)

(c) (d)

Figure 9. The curves of ξ and τ on (a,b) FOOT and (c,d) NETS datasets.

It is a pity that the CC method does not show better robustness on datasets with more
nodes, such as the NETS dataset. From Figure 9c, it can be found that the value of ξ obtained
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by the CC method is much lower than that of other methods, and the maximum difference
between CC and SE methods reaches as high as 90. Similarly, as shown in Figure 9d,
the value of τ corresponding to the CC method is much higher than other methods, and
the maximum difference between CC and SE methods is as high as 0.2031. For this, we can
guess that the SE method would show more excellent robustness on large-scale dataset.

5.3.3. On EMAI and HAMS Datasets

Figure 10 is the curves of ξ and τ on EMAI and HAMS datasets. As shown in
Figure 10a,b, the SE and DC methods can maintain absolute superiority compared with
other benchmark methods. Table 2 shows that the EMAI dataset has the largest value of
m and < d > is as high as 9.6230. For this kind of tightly connected large-scale dataset,
the CC and IKS methods perform poorly, and WE and GM methods are always in the
middle position. The advantages of DC and SE methods are not easy to distinguish. It
should be pointed out that all methods are close to the minimum value of τ when the
proportion of removed nodes is greater than 40%. However, in fact, when the proportion
of removed nodes is equal to 40%, the SE method is significantly better than other meth-
ods. This fully confirms that the SE method has better robustness compared with other
benchmark methods.

(a) (b)

(c) (d)

Figure 10. The curves of ξ and τ on (a,b) EMAI and (c,d) HAMS datasets.

By observing Figure 10c,d, the value of ξ and τ will not change after the proportion
of removed nodes is greater than 60%. The reason is that the HAMS dataset contains
655 isolated nodes, which is more than 40% of the total number of nodes. However, in fact,
the SE method can obtain the minimum value of τ when the proportion of removed nodes
is between 10% and 50%. This further verifies that the SE method is also more robust for
datasets with special structures.

5.4. Accuracy Analysis

In this part, we mainly analyze the accuracy of the SE method to identify key nodes
in terms of the SIR model. Herein, we select the top 2, 4, 6, 8 and 10 nodes listed in the
front of the ranking sequence as seeds for datasets with n ≤ 1000. For datasets with more
than 1000 nodes, we select top 20, 40, 60, 80 and 100 nodes as seeds. In terms of the SIR
model, one can find that the disease cannot spread if the infected probability β is too small.
The main reason is that the seeds have only a small probability to affect their neighbors.
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Conversely, when the infected probability is too high, all nodes will become infected state.
This is meaningless for accuracy analysis. Therefore, we mainly consider the propagation
ability of seeds at the threshold of infected probability [46], i.e., β = 1/(< d > −1) and
γ = 1.

Figures 11–13 show the propagation ability of seeds obtained by six ranking methods
on eight real-world datasets. From the results, one can find that the SE method can obtain a
more accurate ranking sequence.

5.4.1. On CONT and LESM Datasets

Figure 11 is the propagation ability of key nodes obtained by different methods on
two small-scale datasets. Obviously, the SE method shows a more pronounced upward
trend. That is to say, the top 10 key nodes obtained by the SE method have much higher
propagation ability compared with other benchmark methods. Especially for the CONT
dataset, the maximum propagation ability of SE method is 0.6361, which is 0.1495 higher
than that of IKS method. Similarly, the maximum propagation ability of the SE method is
0.4963 on the LESM dataset, which is 0.0751 higher than that of the IKS method. Certainly,
the IKS method performs poorly in most experiments. It can be seen from the previous
experiments that the IKS method is not clear to identify the importance of different nodes.
As a result, these nodes obtain the lowest propagation ability.

(a) (b)

Figure 11. The propagation ability of seeds on (a) CONT and (b) LESM datasets.

Figure 11a shows the fact that the DC method is obviously superior to the WR method
on the CONT dataset. However, the propagation ability curves of DC and WR methods
completely coincide on LESM dataset, as shown in Figure 11b. This is mainly because
the top 10 nodes obtained by these two methods are the same. As can be seen from the
foregoing discussion, both DC and WR methods consider the degree information of nodes.
If the dataset contains many nodes with the same degree, the accuracy of DC and WR
methods will decrease significantly. On the contrary, the DC and WR methods can obtain
more accurate ranking sequences for datasets with significantly different degrees of nodes,
such as the LESM dataset. However, in fact, the SE method takes the local and global
structure information into account, and the accuracy of it is obviously better than that of
DC and WR methods.

5.4.2. On POLB, ADJN, FOOT and NETS Datasets

Figure 12 is the propagation ability of key nodes obtained by different methods on
POLB, ADJN, FOOT and NETS datasets. On POLB dataset, the propagation ability curves
of DC, WR, GM and SE methods all have an obvious upward trend, while the IKS is still
the worst-performing method as shown in Figure 12a.

By observing Figure 12b,c, it can be found that the distribution of propagation ability
curves is relatively dense. The main reason is that most of the methods obtain the same
key nodes. For example, all methods treat nodes 18 and 3 as the top 2 key nodes except
IKS method on ADJN dataset. Therefore, most methods achieve similar propagation ability
curves. In this case, it should be pointed out that the SE method still has a slight advantage.
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(a) (b)

(c) (d)

Figure 12. The propagation ability of seeds on (a) POLB; (b) ADJN; (c) FOOT; and (d) NETS datasets.

This advantage of the SE method is more significant on the NETS dataset. As can
be seen from Figure 12d, it obtains the maximum propagation ability among all of the
benchmark methods. Especially when the number of seeds is 8, the propagation ability of
the SE method is 0.2087 higher than that of the GM method and 0.2065 higher than that
of the IKS method. This means that the key nodes obtained by the SE method can infect
136 nodes, which is 79 higher than that of the GM method and 78 higher than that of the
IKS method. Therefore, we can conclude that the ranking sequence obtained by the SE
method is more accurate compared with other benchmark methods.

5.4.3. On EMAI and HAMS Datasets

Figure 13 is the curves of propagation ability on EMAI and HAMS datasets. As the
scale of the dataset increases, the number of seeds we selected also increases to 100. From
Figure 13a, one can find that the SE method can maintain the obvious upward trend. One
can find that the SE method outperforms the other benchmark methods after the number
of seeds exceeds 20. Since the special structure of the HAMS dataset, the variation range of
propagation ability is small. For this, the SE method still has a slight advantage compared
with other methods as shown in Figure 13b. This further confirms that the SE method has
higher ranking accuracy compared with other benchmark methods.

(a) (b)

Figure 13. The propagation ability of seeds on (a) EMAI and (b) HAMS datasets.



Entropy 2023, 25, 941 21 of 23

5.5. Computational Complexity Analysis

Given that G = (V, E) is a graph data with n nodes and m edges, and the proposed
SE method includes two stages in the process of constructing the score function for nodes.
Firstly, the computational complexity of calculating the local structure entropy is O(sn),
where s is the number of connected components in G. Secondly, the computational complex-
ity of calculating the global structure entropy is O(n). Therefore, the total computational
complexity of SE method is O(sn + n) = O(n(s + 1)).

Table 4 lists the computational complexity of the proposed SE method and other
benchmark methods. One can find that the computational complexity of the CC method is
O(nm), and that of the GM method is O(n2) [47]. Due to s being the number of connected
components after removing the target node, the value of s is far smaller than m and n.
That is to say, the computational complexity of the SE method is much lower than that
of the CC and GM methods. Although DC and IKS methods have the lowest computa-
tional complexity, their performance is far worse than that of other methods in previous
experiments. In general, although the computational complexity of the SE method is in the
middle position among all comparison methods, it can obtain better ranking results.

Table 4. The computational complexity of six ranking methods.

Method DC CC IKS WR GM SE

Complexity O(n) O(nm) O(n) O(m + n < d >) O(n2) O(n(s + 1))

6. Conclusions

In order to further explore the influence of structure information on node importance,
this paper has designed a structure entropy-based node importance ranking method. The
score function of node importance is constructed from the perspective of node removal,
which transformed the importance of nodes into the global structure entropy of graph data.
After removing the target node, the local structural entropy of the connected component is
calculated by using the degree information of nodes. Furthermore, the global structure en-
tropy of graph data is constructed in terms of the number of connected components. A large
number of experiments demonstrated that the proposed method is more advantageous in
aspects of monotonicity, node distribution and ranking accuracy.

Although the proposed method has better performance on most datasets, it is not
hard to see that this paper only discussed the undirected and unweighted graph data with
less than 2000 nodes due to the limitation of the experimental platform. In our following
studies, we will seek more resources to verify the performance of the proposed method on
larger-scale graph data and other types of graph data.

Author Contributions: Conceptualization, S.L. and H.G.; Writing—original draft, S.L. and H.G.;
Methodology, S.L. and H.G.; Supervision, S.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (No.61966039),
the Xingdian Talent Support Program for Young Talents (No.XDYC-QNRC-2022-0518) and the
Scientific Research Fund Project of Education Department of Yunnan Province (No.2023Y0565).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are hugely grateful to the possible anonymous reviewers for their construc-
tive comments with respect to the original manuscript. At the same time, we acknowledge all the
network data used in this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2023, 25, 941 22 of 23

References
1. Omar, Y.M.; Plapper, P. A survey of information entropy metrics for complex networks. Entropy 2020, 22, 1417. [CrossRef]

[PubMed]
2. Liu, J.; Li, X.; Dong, J. A survey on network node ranking algorithms: Representative methods, extensions, and applications. Sci.

China Technol. Sci. 2021, 64, 451–461. [CrossRef]
3. Wang, Z.; Du, C.; Fan, J.; Xing, Y. Ranking influential nodes in social networks based on node position and neighborhood.

Neurocomputing 2017, 260, 466–477. [CrossRef]
4. Fei, L.; Deng, Y. A new method to identify influential nodes based on relative entropy. Chaos Solitons Fractals 2017, 104, 257–267.

[CrossRef]
5. PastorSatorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys.

2015, 87, 925. [CrossRef]
6. Wang, W.; Tang, M.; Stanley, H.E.; Braunstein, L.A. Unification of theoretical approaches for epidemic spreading on complex

networks. Rep. Prog. Phys. 2017, 80, 036603. [CrossRef]
7. Cui, A.; Wang, W.; Tang, M.; Fu, Y.; Liang, X.; Do, Y. Efficient allocation of heterogeneous response times in information spreading

process. Chaos Interdiscip. J. Nonlinear Sci. 2014, 24, 033113. [CrossRef]
8. Davis, J.T.; Perra, N.; Zhang, Q.; Moreno, Y.; Vespignani, A. Phase transitions in information spreading on structured populations.

Nat. Phys. 2020, 16, 590–596. [CrossRef]
9. Javier, B.H.; Yamir, M. Absence of influential spreaders in rumor dynamics. Phys. Rev. E 2012, 85, 026116.
10. Yao, X.; Gu, Y.; Gu, C.; Huang, H. Fast controlling of rumors with limited cost in social networks. Comput. Commun. 2022,

182, 41–51. [CrossRef]
11. Solá, L.; Romance, M.; Criado, R.; Flores, J.; García del Amo, A.; Boccaletti, S. Eigenvector centrality of nodes in multiplex

networks. Chaos: Interdiscip. J. Nonlinear Sci. 2013, 23, 033131. [CrossRef]
12. Wen, T.; Deng, Y. Identification of influencers in complex networks by local information dimensionality. Inf. Sci. 2020, 512,

549–562. [CrossRef]
13. Zareie, A.; Sheikhahmadi, A.; Jalili, M. Influential node ranking in social networks based on neighborhood diversity. Future

Gener. Comput. Syst. 2019, 94, 120–129. [CrossRef]
14. Lu, P.; Zhang, Z.; Guo, Y.; Chen, Y. A novel centrality measure for identifying influential nodes based on minimum weighted

degree decomposition. Int. J. Mod. Phys. B 2021, 35, 2150251. [CrossRef]
15. Chen, D.; Sun, H.; Tang, Q.; Tian, S.; Xie, M. Identifying influential spreaders in complex networks by propagation probability

dynamics. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 033120. [CrossRef]
16. Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43. [CrossRef]
17. Li, J.; Yin, C.; Wang, H.; Wang, J.; Zhao, N. Mining Algorithm of Relatively Important Nodes Based on Edge Importance Greedy

Strategy. Appl. Sci. 2022, 12, 6099. [CrossRef]
18. Wang, M.; Li, W.; Guo, Y.; Peng, X.; Li, Y. Identifying influential spreaders in complex networks based on improved k-shell

method. Phys. A Stat. Mech. Its Appl. 2020, 554, 124229. [CrossRef]
19. Yang, Y.; Hu, M.; Huang, T. Influential nodes identification in complex networks based on global and local information. Chin.

Phys. B 2020, 29, 088903. [CrossRef]
20. Zareie, A.; Sheikhahmadi, A. A hierarchical approach for influential node ranking in complex social networks. Expert Syst. Appl.

2018, 93, 200–211. [CrossRef]
21. Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [CrossRef]
22. Goldstein, R.; Vitevitch, M.S. The influence of closeness centrality on lexical processing. Front. Psychol. 2017, 8, 1683. [CrossRef]

[PubMed]
23. Yang, X.; Xiao, F. An improved gravity model to identify influential nodes in complex networks based on k-shell method.

Knowl.-Based Syst. 2021, 227, 107198. [CrossRef]
24. Yang, P.; Liu, X.; Xu, G. A dynamic weighted TOPSIS method for identifying influential nodes in complex networks. Mod. Phys.

Lett. B 2018, 32, 1850216. [CrossRef]
25. Maurya, S.K.; Liu, X.; Murata, T. Graph neural networks for fast node ranking approximation. ACM Trans. Knowl. Discov. Data

2021, 15, 78. [CrossRef]
26. Liu, C.; Cao, T.; Zhou, L. Learning to rank complex network node based on the self-supervised graph convolution model.

Knowl.-Based Syst. 2022, 251, 109220. [CrossRef]
27. Gray, R.M. Entropy and Information Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.
28. Ma, L.; Ma, C.; Zhang, H.; Wang, B. Identifying influential spreaders in complex networks based on gravity formula. Phys. A Stat.

Mech. Its Appl. 2016, 451, 205–212. [CrossRef]
29. Bernadette, B.M.; Christophe, M. Entropy and monotonicity in artificial intelligence. Int. J. Approx. Reason. 2020, 124, 111–122.
30. Fan, W.; Liu, Z.; Hu, P. Identifying node importance based on information entropy in complex networks. Phys. Scr. 2013,

88, 065201.
31. Zareie, A.; Sheikhahmadi, A.; Fatemi, A. Influential nodes ranking in complex networks: An entropy-based approach. Chaos

Solitons Fractals 2017, 104, 485–494. [CrossRef]

http://doi.org/10.3390/e22121417
http://www.ncbi.nlm.nih.gov/pubmed/33333930
http://dx.doi.org/10.1007/s11431-020-1683-2
http://dx.doi.org/10.1016/j.neucom.2017.04.064
http://dx.doi.org/10.1016/j.chaos.2017.08.010
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1088/1361-6633/aa5398
http://dx.doi.org/10.1063/1.4890612
http://dx.doi.org/10.1038/s41567-020-0810-3
http://dx.doi.org/10.1016/j.comcom.2021.10.041
http://dx.doi.org/10.1063/1.4818544
http://dx.doi.org/10.1016/j.ins.2019.10.003
http://dx.doi.org/10.1016/j.future.2018.11.023
http://dx.doi.org/10.1142/S0217979221502519
http://dx.doi.org/10.1063/1.5055069
http://dx.doi.org/10.1007/BF02289026
http://dx.doi.org/10.3390/app12126099
http://dx.doi.org/10.1016/j.physa.2020.124229
http://dx.doi.org/10.1088/1674-1056/ab969f
http://dx.doi.org/10.1016/j.eswa.2017.10.018
http://dx.doi.org/10.2307/3033543
http://dx.doi.org/10.3389/fpsyg.2017.01683
http://www.ncbi.nlm.nih.gov/pubmed/29018396
http://dx.doi.org/10.1016/j.knosys.2021.107198
http://dx.doi.org/10.1142/S0217984918502160
http://dx.doi.org/10.1145/3446217
http://dx.doi.org/10.1016/j.knosys.2022.109220
http://dx.doi.org/10.1016/j.physa.2015.12.162
http://dx.doi.org/10.1016/j.chaos.2017.09.010


Entropy 2023, 25, 941 23 of 23

32. Guo, C.; Yang, L.; Chen, X.; Chen, D.; Gao, H.; Ma, J. Influential nodes identification in complex networks via information entropy.
Entropy 2020, 22, 242. [CrossRef]

33. Zhong, L.; Bai, Y.; Tian, Y.; Luo, C.; Huang, J.; Pan, W. Information entropy based on propagation feature of node for identifying
the influential nodes. Complexity 2021, 2021, 5554322. [CrossRef]

34. Yu, Y.; Zhou, B.; Chen, L.; Gao, T.; Liu, J. Identifying Important Nodes in Complex Networks Based on Node Propagation Entropy.
Entropy 2022, 24, 275. [CrossRef]

35. Zhang, Q.; Li, M.; Deng, Y. A new structure entropy of complex networks based on nonextensive statistical mechanics. Int. J.
Mod. Phys. C 2016, 27, 1650118. [CrossRef]

36. Lei, M.; Cheong, K.H. Node influence ranking in complex networks: A local structure entropy approach. Chaos Solitons Fractals
2022, 160, 112136. [CrossRef]

37. Ai, X. Node importance ranking of complex networks with entropy variation. Entropy 2017, 19, 303. [CrossRef]
38. Liu, Y.; Liu, S.; Yu, F.; Yang, X. Link prediction algorithm based on the initial information contribution of nodes. Inf. Sci. 2022,

608, 1591–1616. [CrossRef]
39. He, W.; Liu, S.; Xu, W.; Yu, F.; Li, W.; Li, F. On rough set based fuzzy clustering for graph data. Int. J. Mach. Learn. Cybern. 2022,

13, 3463–3490. [CrossRef]
40. Fu, Y.H.; Huang, C.Y.; Sun, C.T. Using global diversity and local topology features to identify influential network spreaders. Phys.

A Stat. Mech. Its Appl. 2015, 433, 344–355. [CrossRef]
41. Lu, P.; Zhang, Z. Critical nodes identification in complex networks via similarity coefficient. Mod. Phys. Lett. B 2022, 36, 2150620.

[CrossRef]
42. Li, Y.; Cai, W.; Li, Y.; Du, X. Key node ranking in complex networks: A novel entropy and mutual information-based approach.

Entropy 2019, 22, 52. [CrossRef]
43. Chen, X.; Zhou, J.; Liao, Z.; Liu, S.; Zhang, Y. A novel method to rank influential nodes in complex networks based on tsallis

entropy. Entropy 2020, 22, 848. [CrossRef]
44. Li, P.; Wang, S.; Chen, G.; Bao, C.; Yan, G. Identifying Key Nodes in Complex Networks Based on Local Structural Entropy and

Clustering Coefficient. Math. Probl. Eng. 2022, 2022, 8928765. [CrossRef]
45. Kudryashov, N.A.; Chmykhov, M.A.; Vigdorowitsch, M. Analytical features of the SIR model and their applications to COVID-19.

Appl. Math. Model. 2021, 90, 466–473. [CrossRef]
46. Sheng, J.; Zhu, J.; Wang, Y.; Wang, B.; Hou, Z. Identifying influential nodes of complex networks based on trust-value. Algorithms

2020, 13, 280. [CrossRef]
47. Ullah, A.; Wang, B.; Sheng, J.; Long, J.; Khan, N.; Sun, Z. Identification of nodes influence based on global structure model in

complex networks. Sci. Rep. 2021, 11, 6173. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/e22020242
http://dx.doi.org/10.1155/2021/5554322
http://dx.doi.org/10.3390/e24020275
http://dx.doi.org/10.1142/S0129183116501187
http://dx.doi.org/10.1016/j.chaos.2022.112136
http://dx.doi.org/10.3390/e19070303
http://dx.doi.org/10.1016/j.ins.2022.07.030
http://dx.doi.org/10.1007/s13042-022-01607-6
http://dx.doi.org/10.1016/j.physa.2015.03.042
http://dx.doi.org/10.1142/S021798492150620X
http://dx.doi.org/10.3390/e22010052
http://dx.doi.org/10.3390/e22080848
http://dx.doi.org/10.1155/2022/8928765
http://dx.doi.org/10.1016/j.apm.2020.08.057
http://dx.doi.org/10.3390/a13110280
http://dx.doi.org/10.1038/s41598-021-84684-x

	Introduction
	Preliminaries
	Graph Data
	Benchmark Methods
	Degree Centrality Method
	Closeness Centrality Method
	Improved K-Shell Decomposition Method
	The Weight of Edges-Based Method
	The Gravity Model Based Method


	The Proposed Method
	Node Removal
	Local Structure Entropy
	Global Structure Entropy
	Algorithm Description

	Experimental Construction
	Experimental Platform
	Datasets Description
	Evaluation Criteria
	Monotonicity-Based Evaluation Criterion
	Complementary Cumulative Distribution Function Based Evaluation Criterion
	Connected Component Based Evaluation Criterion
	Susceptible-Infected-Recovered Epidemic Model-Based Evaluation Criterion


	Results and Analysis
	Monotonicity Analysis
	On CONT and LESM Datasets
	On POLB, ADJN, FOOT and NETS Datasets
	On EMAI and HAMS Datasets

	Node Distribution Analysis
	On CONT and LESM Datasets
	On POLB, ADJN, FOOT and NETS Datasets
	On EMAI and HAMS Datasets

	Robustness Analysis
	On CONT and LESM Datasets
	On POLB, ADJN, FOOT and NETS Datasets
	On EMAI and HAMS Datasets

	Accuracy Analysis
	On CONT and LESM Datasets
	On POLB, ADJN, FOOT and NETS Datasets
	On EMAI and HAMS Datasets

	Computational Complexity Analysis

	Conclusions 
	References

