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Abstract: In this work, we explore the formalism of the irreversible thermodynamics of open systems
and the possibility of gravitationally generated particle production in modified gravity. More
specifically, we consider the scalar—tensor representation of f(R,T) gravity, in which the matter
energy—-momentum tensor is not conserved due to a nonminimal curvature-matter coupling. In the
context of the irreversible thermodynamics of open systems, this non-conservation of the energy-
momentum tensor can be interpreted as an irreversible flow of energy from the gravitational sector
to the matter sector, which, in general, could result in particle creation. We obtain and discuss the
expressions for the particle creation rate, the creation pressure, and the entropy and temperature
evolutions. Applied together with the modified field equations of scalar—tensor f(R, T) gravity, the
thermodynamics of open systems lead to a generalization of the ACDM cosmological paradigm,
in which the particle creation rate and pressure are considered effectively as components of the
cosmological fluid energy-momentum tensor. Thus, generally, modified theories of gravity in
which these two quantities do not vanish provide a macroscopic phenomenological description of
particle production in the cosmological fluid filling the Universe and also lead to the possibility of
cosmological models that start from empty conditions and gradually build up matter and entropy.

Keywords: geometrothermodynamics; irreversible thermodynamics; modified gravity

1. Introduction

The study of irreversible matter creation in the context of cosmology started with
the pioneering work by Prigogine and his collaborators in the late 1980s [1-3]. In these
works, an alternative cosmology is presented in which the description of large-scale particle
and entropy production is based on the reinterpretation of the matter energy-momentum
tensor by adding a matter creation term in the adiabatic conservation laws present in the
ACDM model. The addition of this matter creation term makes it possible for cosmological
matter to be created from an energy flow coming from the gravitational fields. In the
following years, Calvdo, Lima, and Waga generalized Prigogine’s results by introducing
a covariant formulation for the thermodynamic quantities, in particular, the entropy and
particle four-flux vectors [4]. Currently, the irreversible thermodynamics of open systems is
a broadly studied field due to its usefulness in several applications, one of them being the
study of irreversible particle creation in cosmologies with an underlying theory of gravity
that contains (at least) a nonminimal geometry—matter coupling, namely, in the context of
curvature-matter [5-12], torsion—matter [13-15], and non-metricity—matter couplings [16].
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However, when using the formalism of thermodynamics of open systems in this
context, an obvious question arises: is the Universe an open system? This is a legitimate
query since irreversible matter creation processes can only take place in open systems. The
Universe is typically considered to be an isolated system because, as far as it is known, it
does not receive any kind of energy from outside, for instance, another Universe. Therefore,
we must be extremely careful in explaining why it is possible to treat the Universe as an
open system. First of all, a general open system consists of a bulk, which is the system’s core,
and its surroundings, with a boundary tracing the line between the two. At first sight, one
possible way to consider the Universe as an open system would be to assume the Universe
itself as the bulk, with its eventual physical limits as the boundary and its surroundings
as something outside of it. However, for the reasons stated previously, it would be highly
speculative if we do that treatment. Instead, in a co-moving frame of reference, we consider
the observable Universe as the bulk, limited by a boundary, which is usually considered
to be the apparent horizon (for example, see [17,18]) because the thermodynamic laws in
accelerated expanding Universes are satisfied in it [19], and the unobservable Universe as
the surroundings. Thus, the creation of cosmological matter via gravitationally induced
particle production processes takes place in the bulk, which exchanges gravitational energy
with the surroundings. Hence, the “Universe” one refers to when using the formalism of
irreversible thermodynamics of open systems is the observable Universe. The last point
that needs to be stated is related to the terminology of open systems: generally, one refers
to the bulk as the open system to further simplify communication. We shall also adopt
this approach.

In this work, we explore the formalism of irreversible thermodynamics of open sys-
tems, and, by using it in the cosmological context, we investigate the possibility of gravita-
tionally generated particle production in modified gravity. More specifically, we consider
the equivalent scalar—tensor representation of f(R,T) gravity [5], where R is the Ricci
scalar and T is the trace of the energy—-momentum tensor and in which the latter is not
conserved due to a nonminimal curvature-matter coupling. By taking into account the
formalism of irreversible thermodynamics of open systems, this non-conservation of the
energy—-momentum tensor can be interpreted as an irreversible flow of energy from the
gravitational sector to the matter sector, which, in general, could result in particle creation.
Here, we present and discuss the expressions for the particle creation rate, the creation
pressure, and the entropy and temperature evolutions. Applied together with the modified
field equations of scalar—tensor f(R, T) gravity, the thermodynamics of open systems lead
to a generalization of the standard ACDM cosmological paradigm, in which the particle
creation rate and pressure are considered effectively as components of the cosmological
fluid energy—-momentum tensor [20].

This paper is organized as follows. In Section 2, we present the thermodynamics
of matter production in the context of open systems and provide a phenomenological
description for particle production effects at a macroscopical level. In Section 3, we apply of
the formalism of thermodynamics of irreversible matter creation to cosmology and obtain
the entropy and temperature temporal evolutions. In Section 4, we explore gravitation-
ally induced particle production within the scope of the nonminimal curvature-matter
couplings, in particular in f(R, T) gravity, where the covariant divergence of the matter
energy-momentum tensor does not vanish. In Section 5, we present and interpret the
phenomenology of the cosmological field equations of the scalar-tensor representation of
f(R, T) gravity describing the creation of matter in the formalism of irreversible thermody-
namics of open systems. Finally, in Section 6, we discuss our results and conclude.

2. Thermodynamic Interpretation of Matter Creation

Having clarified the possible issue of open systems in the Introduction, let us consider
a system of this nature with volume V containing N particles, with an energy density p and
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a thermodynamic pressure p. For such a system, the first law of thermodynamics, written
in its most general form, is given by

d(pV) =dQ — pdV + Zd(nV), 1)

where dQ is the heat received by the system during a time dt, i = p + p is the enthalpy per
unit volume, and n = N/V is the particle number density. Unlike isolated or closed systems,
where the number of particles remains constant, the thermodynamic conservation of energy
in open systems contains a term that expresses the matter creation/annihilation processes
that can occur within the system. Furthermore, the second law of thermodynamics imposes
the following constraint on the total entropy S of any physical system:

dS = d.S +d;S > 0, ?)

where d.S is the entropy flow and d;S is the entropy creation. These two terms have differ-
ent physical meanings as they express two distinct contributions to entropy production:
while the first can be seen as the contribution of how the system is arranged, which, in
other words, means it measures the change in the system’s homogeneity, the latter is the
entropy originating from particle creation processes that occur within the open system.
To find expressions for these two quantities, we start by writing the total differential of
the entropy:

TdS =d(pV) + pdV — ud(nV), (©)]

where 7 is the temperature, y is the chemical potential, and s = §/V is the entropy density.
These thermodynamic quantities are defined to be positive. By using Equation (1) and the
thermodynamic relation

un=h—"Ts, 4)
it is possible to write Equation (3) in a more useful manner:
TdS =dQ + T%d(nv). )
Since Equation (2) implies that
TdS = Td.S + T4d;S, ©)

we conclude that the entropy flow and the entropy creation are given by the following
expressions, respectively:

_do
-2

From standard cosmology, it is well-known that a homogeneous Universe does not receive
energy in the form of heat due to all physical quantities being independent of spatial
position—in particular, there are no temperature gradients. In addition, under standard
cosmology, the Universe is considered to be an isolated system. As a consequence, the
second law of thermodynamics is reduced to

_do _
===

which indicates that a homogeneous Universe addressed as an isolated system does not
change its entropy.

Now, let us see what happens within the scope of open systems. Since entropy flow
can be seen as a measure of the variation in the system’s homogeneity, if we consider a
permanently homogeneous system, there is no change in the homogeneity of the system,
which means that its configuration does not change from the thermodynamics perspective.

d.S d;S = %d(nv). @)

ds 0, 8)
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Therefore, we conclude that the entropy flow vanishes in such a system. As before, one
could also argue that a homogeneous system does not receive heat, dQ = 0, which implies,
by the left equality of Equation (7), that d.S = 0. Hence, in homogeneous systems, we
expect adiabatic processes to occur, and matter creation is the only source of entropy
production. In other words, the creation of matter is the only process that can lead to an
increase in the entropy of a homogeneous system, as expressed by the following condition:

ds = d;S = %d(nV) >0. )

In the cosmological context, this leads to the possibility of having an energy flow from
the gravitational sources that produce matter, while the inverse process, that of matter
producing gravitational sources, is thermodynamically forbidden. This result is very
powerful because not only does it break the equivalence between space-time curvature
and matter that takes place, for instance, in GR and in f(R) gravity due to the matter
energy—-momentum tensor being conserved (implying there are no matter creation sources),
but it also distinguishes itself from standard cosmology, where dS = 0.

We now apply the formalism of irreversible matter creation of thermodynamics of
open systems to cosmology. Let us consider a flat homogeneous and isotropic universe
with volume V containing N particles, an energy density p and thermodynamic pressure p,
which is well-described by the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric
(in Cartesian coordinates):

ds? = —d? + a2(t) (dx2 +dy? + dz2), (10)

where a(t) is the scale factor. As we have seen before, homogeneous systems do not receive
heat. Therefore, in such a system, Equation (1) becomes

d(pV) + pdV — %d(nV) =0. (11)

Moreover, by expressing the volume V in terms of the scale factor V = a3(t), the
thermodynamic conservation equation, Equation (11), can be written in terms of (total)
time derivatives of the physical quantities as

%(pa?’) + p%ag = HTP% (na3). (12)

Applying the time derivatives, one can rewrite (12) in an equivalent form

6+3H(p+p) = HTP (it + 3Hn), (13)

where H = a/a is the Hubble function and the overdot denotes the time derivative. Hence,
Equation (13) tells us that in this cosmological system, the “heat” received is only due to
the variation in the particle number density n. The time variation of the particle number
density in a homogeneous and isotropic geometry is obtained as [7]

n+3Hn =1In, (14)

with T being the particle creation rate, defined as T = N/N. Substituting Equation (14)
into Equation (13), we obtain the energy conservation equation in an alternative form

p+3H(p+p)=(o+pT. (15)
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For adiabatic transformations describing irreversible particle creation in an open
thermodynamic system, the first law of thermodynamics can be rewritten as an effective
energy conservation equation [1]

d d
a (Pﬂs) + (P + Pc)aﬂB =0, (16)

where p, is the creation pressure, a supplementary pressure considered in open systems
due to irreversible matter creation processes. As the name suggests, this quantity provides
a phenomenological description for particle production effects (at a macroscopical level).
Expressing the equation above in an equivalent manner

d 3 ds;_ dj
5 (p0®) +pga® = —pega® (17)

and comparing it with Equation (12), we can write an expression for the creation pressure

ptp d(na3)/dt
Pe= " Tdad/dr 18)
which, after some simplifications, takes the following form:
__ptp
pe=—EFr. (19)

Therefore, to determine the creation pressure, it is sufficient to know the particle creation rate.

The formalism of irreversible matter creation of thermodynamics of open systems
applied in cosmology can describe the creation of matter in a homogeneous and isotropic
universe as long as the particle creation rate and, consequently, the creation pressure are
not zero. For example, as a result of the conservation of the energy—momentum tensor, both
GR and f(R) gravity [21] are incapable of explaining such particle production because,
in these theories, one obtains p 4+ 3H(p + p) = 0, which indicates that both the creation
rate and creation pressure vanish. Thus, modified theories of gravity in which these two
quantities do not vanish can provide a phenomenological description of particle creation in
the cosmological fluid filling the Universe.

3. Entropy and Temperature Evolution

Another interesting result concerning the application of the formalism of thermo-
dynamics of irreversible matter creation to cosmology is the possibility of obtaining the
temporal evolutions of both entropy and temperature. Therefore, it is possible to have a
cosmology in which the Universe gradually accumulates entropy as particles are created at
a certain temperature. Furthermore, it is also possible to derive the entropy production rate
by introducing the entropy flux four-vector, a covariant generalization of the entropy scalar.
The entropic force cosmological models, which are models that postulate forces of entropic
nature to explain the accelerated phases of the Universe, also use this formalism. However,
it has been shown that most entropic force cosmological models are indistinguishable from
a standard ACDM scenario [22], which makes them avoidable.

Our objective in the first part of this section is to explore the entropy evolution in
a homogeneous and isotropic Universe. To do that, one must recall the secnd law of
thermodynamics in the context of open systems, Equation (2). It has been said that the
condition of homogeneity imposed implies the vanishing of the entropy flow term, i.e.,
d.S = 0. In other words, the only contribution to entropy production is the entropy
creation term, so that Equation (2) reduces to Equation (9). Moreover, following our
previous assumptions that the Universe is both homogeneous and isotropic, by taking
the total time derivative of Equation (9) and using the expression for the entropy creation
present in Equation (7), the co-moving volume written in terms of the scale factor V = a3(t),
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the definition of entropy density (s = S/V), and Equation (14), one can obtain the following
expression for the entropy’s temporal evolution:

= _Sr>
5 =T =0, (20)

which has the following solution:

t

S(t) = Spexp [/0 F(t’)dt'], (21)

where Sy = §(0) is the constant initial entropy. Therefore, in a homogeneous and isotropic
geometry, in the formalism of irreversible matter creation, what causes the time variation
of the entropy is the particle creation rate.

The entropy flux four-vector S¥ was introduced in [4] and it is defined as

St = nout, (22)

where o = §/N is the entropy per particle (or characteristic entropy). Since S* must obey
the second law of thermodynamics, we have the following condition:

V.St >0, (23)

which is the second law of thermodynamics written in a covariant formulation. Thus, to
obtain the entropy production rate due to matter creation processes, we determine the
covariant derivative of the entropy flux four-vector

VSt = (Vyun)ou! +n(Vuo)ut +noV,ut, (24)
which, by using V,u# = 3H and u*V, = d/dt, assumes the following form:
VSt = (n+3Hn)o +no. (25)

To further simplify the expression above, we take the time derivative of the Gibbs rela-
tion [4]

nTo=p—

P : Py (26)

and use it in combination with the expression for the chemical potential

L s @)
n n n

I,[ =
alongside Equations (13) and (14). With that, we obtain a compact form for the covariant
derivative of the entropy flux four-vector

V,S* =T > 0. (28)

It is also possible to explore the similarities between Equations (20) and (28). Both the
entropy temporal evolution and the entropy production rate depend on the particle creation
rate, evidencing the fundamental role played by this quantity in the description of a
homogeneous and isotropic universe in which matter creation processes occur. The only
difference between the two is that the entropy production rate depends on the entropy
density (as expected since we have a flux) while the entropy temporal evolution depends
on the entropy itself.

Similarly to entropy, under the formalism of the thermodynamics of open systems, it
is possible to obtain an expression for temperature as a function of time for a given theory
of gravity. A thermodynamic system is fundamentally described by the particle number
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density n and the temperature 7. Thus, in a thermodynamic equilibrium situation, the
energy density p and the pressure p are determined from the equilibrium equations of state:

p=pnT),  p=pnT). (29)

Then, the differential of the energy density and the differential of the pressure are, respectively:

_ (9 dp
dp = (an>Tdn + (M’)ndT’ (30)

op op
dp=1{5-) d — ] d 1
P (811)7 n—i—(aT)n T, (31)
where the subscripts 7 and 7 on the partial derivatives indicate that 7 and n are fixed,
respectively. Substituting Equation (30) in Equation (15), we obtain

(%)ﬂ* (;‘;)n7+3(P+P)H= (p+p)T. (32)

To express the energy conservation equation above in a more convenient manner, first,
we use the Gibbs relation [4] to write the differential of the characteristic entropy ¢ as

1 p+p

dgzﬁ =T

dn. (33)

By looking at Equation (33), one could say that ¢ is a function of p and n. However, since p
itself is a function of n and 7 (Equation (29)), ¢ is thus, fundamentally, a function of n and
T . By this reasoning, the true differential of the characteristic entropy is

Jdo Jdo

To obtain an explicit expression for this differential, one substitutes Equation (30) into
Equation (33), which yields

| L(%) Letr 1 (%
do=[ (%) v )ans L(2) ar @

The entropy S is an exact differential, and so is the characteristic entropy o; therefore,
we have the following condition:

Jd (do d (do
)]G, °
Then, one can obtain the following thermodynamic relation:
o\ _ptp_ T (9
(871)7—_ n n <8T 0 57)

which is plugged into the energy conservation Equation (32), and with the help of
Equations (13) and (15), we achieve an expression for the temperature evolution

n
= =G n (38)
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where ¢; = /(dp/dp),, is the speed of sound. Using Equation (14), we write the tempera-
ture evolution in terms of the particle creation rate as follows:
; = (' - 3H), (39)
which provides the following solution:
Nd
T(t) = Toexp{cg [ i) —3H(t/)]dt’}, (40)
J0

where 7y = 7 (0) is the constant initial temperature.

Due to the presence of the Hubble function H in Equation (40), we find that the
temperature evolution of the newly created particles depends on the expansion of the
Universe, which is expected. In conclusion, this formalism allows that modified theories of
gravity with a non-zero creation rate lead to the possibility of cosmological models that
start from empty conditions and progressively build up matter and entropy.

4. f(R, T) Gravity

In the previous sections, we verified that the formalism of irreversible matter creation
of thermodynamics of open systems applied in cosmology can describe the creation of
matter in a homogeneous and isotropic universe. Here, we examine the physical conse-
quences of having an explicit nonminimal curvature-matter coupling in a modified theory
of gravity, where the covariant divergence of the matter energy—momentum tensor does
not vanish. Thus, one could explore gravitationally induced particle production within the
scope of these nonminimal curvature-matter couplings, in particular in f(R, T) gravity [7].
This modified theory of gravity was formulated in 2011 [5] and since then has been vastly
studied in the usual geometrical representation [23-26]. Indeed, this theory might to useful
to solve some of the problems left unanswered by GR, such as the entropy production
problem precisely because of the non-conservation of the matter energy—-momentum tensor.
Furthermore, the presentation of an equivalent scalar—tensor theory [27] has triggered an
intensive investigation in that framework [28-32], which makes it very appealing to study
at the moment.

We start this section by presenting the modified field equations of the geometrical
representation of f(R, T) gravity and its corresponding conservation equation. Then, we
consider its scalar—tensor representation, which will be adopted throughout our work
due to two reasons. The first one is because, as said above, this theory in its geometrical
representation has received much attention since its formulation (while the scalar-tensor
representation has not been as deeply explored). The second reason is that it allows for a
dynamic system approach, which helps reduce the order of the metric in the field equations
and, as such, may introduce some simplicity.

4.1. Geometrical Representation

Here, we consider f(R,T) gravity in its geometrical representation. In this repre-
sentation, the gravitational dynamics are ruled by geometric quantities embedded in
Riemannian geometry. In the metric formalism, the one we are considering, it is the metric
tensor that mediates the gravitational interaction. As usual, we consider that space-time
is a four-dimensional Lorentzian manifold M equipped with a (Lorentzian) metric gy,
on which one defines a set of coordinates {x#}. We assume that the Lagrangian has the
following form:

L= 21? FRT) + Lon (g0 F), (41)

where f(R, T) is an arbitrary function of the Ricci scalar, R, and of the trace of the matter
energy-momentum tensor, T = ¢g""T},,. We assume that the matter Lagrangian Ly, is only
dependent on the metric tensor components, and on a set of non-gravitational matter fields
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¥. Moreover, we consider G = 1, so that k2 = 8. The corresponding action of f(R, T)
gravity in its geometrical representation has the expression

1
5= 2x2 /M \/jgf(R' T)d4x + //\/l \/jg'cm (gﬂv/T)d4X. (42)

By looking at Equation (42), or equivalently at Equation (41), we verify that the
matter Lagrangian £, and the f(R, T) function are explicitly separated. Therefore, in
f(R, T) gravity, the possible nonminimal curvature-matter couplings are not originated by
terms that depend on L. Of course, this contrasts with f(R, L) gravity [33], in which
the nonminimal curvature-matter couplings must explicitly depend on L, because it
is the only matter-related quantity present in the Lagrangian (and action) of the theory.
Then, at first sight, such couplings can only arise in f(R, T) gravity due to cross-terms
between R, a curvature-related quantity, and T, a matter-related quantity. Nonetheless,
this theory is particularly subtle. For instance, it has been suggested that a function
f(R,T) = f1(R) + f2(T) could give a complete separation between the gravitational and the
matter sectors, i.e., geometry (gravity) and matter being minimally coupled [34]. However,
in [35], the authors claim that physical misinterpretations were made, and, therefore, even
in that case, it is not possible to have gravity and matter minimally coupled. This forces one
to reflect further on the role played by the trace T of the matter energy-momentum tensor
in this theory. We argue that T is by itself a nonminimal curvature-matter coupling because
it is obtained through the contraction between the metric tensor, which is purely related to
the geometry of space-time, and the matter energy-momentum tensor, which describes
matter. Nevertheless, this issue will be clarified further when we discuss gravitationally
induced particle production in this theory. For now, let us continue presenting the theory.

The variation in the action (42) with respect to the metric tensor, which is the only
fundamental field in this representation, leads to (see [5] for details)

1 1
05 = @ /./\/l \/jg{fR(R/ T)Ryv - Egyvf(R/ T) =+ (gw/D - vyvv)fR(Rf T)
~ Ty + fr(R, T) (T + O) | 0gM 'y, @43)

where V, is the covariant derivative and [J = V"V, is the D’Alembert operator. The
matter energy—momentum tensor is defined as

2 6(V=8Lm) m
V=8 ag *)

We have denoted the partial derivative of the function f with respect to R and T, respec-
tively, as

Ty = —

frr) =D oy = LT

The action principle implies, for an arbitrary variation in the metric tensor 6g"¥, that
the quantity inside the brackets in Equation (43) must be zero. Therefore, we obtain the
modified f(R, T) gravity field equations

(R, T)Ryy — %g,ﬂ, FRT) + (800 = Vu Vi) fr (R, T) = T — fr(R, T) (T + Op), (45)

with the auxiliary tensor ®,,, defined as

0Ty
sghv’

@yv = g“ﬁ (46)
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wherein the assumption Ly = L ( Suvs Y) leads to
= 2Ty + L 2t 2 Lm 47
Oy = —2Tyy + L& — 28 giag P’ (47)
As such, it is possible to write the matter energy—-momentum tensor as
oL
Ty = guvlm — 22— (48)

dghv”

Henceforth, we will drop the dependence of the f(R, T) function on R and T to simplify the
notation. By taking the divergence of Equation (45), we obtain the conservation equation

1
(% = fr) VT = (T + O VP fr + frV" O + oV Ry = 58 VIf. (49)

As we can see, the covariant divergence of the matter energy—momentum tensor does not
vanish necessarily. Again, we interpret this result as an exchange of energy and momentum
between geometry and matter. Next we consider the scalar-tensor representation of the
f(R, T) gravity theory, which will be used until the end of this work.

4.2. Scalar-Tensor Representation

In modified theories of gravity featuring extra scalar degrees of freedom in comparison
to GR, one can deduce a dynamically equivalent scalar-tensor representation. As such,
we are going to generalize the transition from the geometrical representation to the scalar—
tensor representation.

Let us consider the general case of a modified theory of gravity with N geometrical
scalar degrees of freedom, whose action takes the following form

1
S=53 /M V—gf(x1, ... xn)dx + /M V=8Lm (g, ¥)d s, (50)

where f(x1,...,xy) is a function of those N geometrical scalar degrees of freedom, x;. In
order to work in the scalar—tensor representation, we introduce N auxiliary fields ¢;, where
each auxiliary field is associated with one geometrical scalar degree of freedom, such that
we can rewrite the action (50) in the form

s= 5 V=8 +%af(—)»d4+/ V—8Lm (g, ¥)d*x, (51)
—@/M 8| f(@1,---, 9N) Loap ™ 9)i|dix+ [/ =8Lm (g, ¥)d',

with (x — ¢); = x; — ¢;. The next step is to define the true scalar fields of the theory, i.e.,
the ones which will be considered as mediators of the gravitational interaction alongside
the metric tensor, in the following way

_ of
¢i = E)Ty (52)

With this consideration, it is now possible to write the action in terms of nonminimal
couplings between the scalar fields and its corresponding geometrical degrees of freedom

1 N
S = Pl /M V-8 [2 Pixi — V(g1 ..., on) | d*x + /M ,/—gﬁm(gw,‘I’)d‘lx, (53)
i—1

where V (@1, ..., ¢n) is the scalar interaction potential defined as

N
Vigr,...,oNn) = ; @ipi(@i) — flP1(@1), - -, pn(oN)]- (54)
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Note that this “recipe” is only valid when the action of the theory does not contain a
coupling term between the matter Lagrangian and some function. In that case, one must
introduce at least one more potential, as it was seen in linear f(R, L) gravity [33,36].

It is important to reinforce that although the geometrical and scalar—tensor representa-
tions of a given theory seem to be radically different from each other, they are equivalent, as
both describe the same physics. To prove the equivalence between the two representations,
we consider the particular case of f(R, T) gravity, not only because it is the underlying
theory of our main work but also due to mathematical simplifications. In the f (R, T) case,
we have N = 2 geometrical scalar degrees of freedom, the Ricci scalar, and the trace of the
energy-momentum tensor

X1 =R, x =T, (55)

and consequently, N = 2 auxiliary fields, which we define as
h=a, P = B. (56)

Thus, we write the f (R, T) gravity action in a particular form of action (51), i.e., in
terms of the two auxiliary fields « and

S =2 [ VB @E) + Au(R=0)+ (T = P+ [ =gLm(gm ¥)d*, 67)

where the subscripts @ and 8 denote partial derivatives with respect to these variables. By
varying the action with respect to & and 8, we obtain, respectively, the equations of motion
for each auxiliary field

fua(R—a) + foup(T —B) =0, (58)
fpa(R—a) + fgp(T — B) = 0. (59)
We can also express Equations (58) and (59) in a matrix form Ax = 0 as
R0
(f g fpg) \T— P O €0)

Matrix equations of this form are known to yield a unique solution if and only if det A # 0,
which implies the following

fuafpp # fap- (61)

In such a case, the unique solution is R = « and T = B. By inserting these results back into

Equation (57), one can verify that this equation reduces to the form of action (42), proving

the equivalence between the two representations, and the scalar—tensor representation is
well-defined.

Having proved this equivalence, from now on, we will work with the particular case

of the general action (53) for f(R, T) gravity. We define the two dynamical scalar fields as

3 P}
90154058—1];, qozztpza—’;, (62)

and hence we write the final expression for the f(R, T) action in the scalar-tensor represen-
tation as

1
S= 0 [, VBORHIT Ve pldx+ [/ glm(gu Vit ()
with the scalar interaction potential defined as

Vg, 9) = gale) + B(Y) — fl(a(e), B())] (64)

Similarly to what happens in the equivalent scalar—tensor representation of f(R) gravity,
the scalar field ¢ is analogous to a Brans-Dicke scalar field with parameter wpp = 0.
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In addition to this scalar field ¢, the second scalar degree of freedom of f(R, T) gravity,
associated with the arbitrary dependence of the action in T, is also represented by a scalar
field, ¢, and together with ¢ have an interaction potential V (¢, ).

The action (63) depends on three fundamental fields, the metric g, and the two scalar
fields ¢ and ¢. Varying this action with respect to the metric g, yields the field equation

1
PRy — ng(q)R + 9T = V) + (g0 -V, V) = KZTW — ¢(Tyy + Opuy). (65)

Note that this equation is in all respects the same as (45) but with the partial derivatives
of the function f now expressed as scalar fields, as shown in Equation (62), and using the
definition (64) with « = R and g = T. Additionally, by taking the variation in Equation (63)
with respect to the scalar fields ¢ and @, we obtain the equation of motion for ¢ and
1, respectively

Vo =R, V=T, (66)

where the subscripts in V,, and Vy, denote the derivatives of the scalar interaction po-
tential V (¢, ) with respect to the fields ¢ and ¢, respectively. By taking the covariant
divergence of Equation (65), we find the conservation equation for f(R, T) gravity in the
scalar—tensor representation

(KZ - l/’) VI, = (Tyv + @Hv) Vi + VO, — %&w [RVFe + V(T - V). (67)

This equation could also be obtained directly from Equation (49) by using the geometrical
result V# (RHV — % gWR) = 0 and the definitions (62) and (64) witha = Rand = T.

5. Cosmological Equations

The Universe at large scales seems to be homogeneous and isotropic, i.e., following
the cosmological principle, and spatially flat. Thus, we consider a Universe described by
the flat FLRW metric, which models a Universe with such properties. In the usual spherical
coordinates (t,7,6, ¢), it takes the form

ds? = —df? + a3(t) [drz + 12 (d92 + sin? 9d¢2)}, (68)

where a(t) is the scale factor. We also assume that matter is described by a perfect fluid and
thus its energy-momentum tensor is given by

Ty = (0 + p)upttv + pguv, (69)

where p is the energy density, p is the pressure, and u* is the four-velocity, which satisfies the
normalization condition u,u* = —1. Assuming the matter Lagrangian tobe L, = p [36,37]
and using Equation (47), we find an explicit expression for the tensor ©,,,,

Oy = —2Tyv + p&uv - (70)
Due to homogeneity, all physical quantities must only depend on the time coordinate
t,ie,p =p(t), p =pt), ¢ = ¢(t), and p = (t). With these assumptions taken into

account, one obtains two independent field equations from Equation (65), namely, the
modified Friedmann equation and the modified Raychaudhuri equation, which take the

following forms:
. -\ 2
VOO TR
o) rols) =Fesle-ar) vav -

e 2i | a? 1
(p+2go(a> +qo<a+az) = —87rp+%(p—3p)+iv, (72)
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respectively, where the overdots denote time derivatives. Combining these two equations,
one can obtain new expressions for the equations of motion for the scalar fields ¢ and ¢

i a?
Vq,:R:6<a+az>, (73)
V=T =3p—p. (74)

Under the previous assumptions, we determine the cosmological energy conservation
equation by fixing v = 0 in Equation (67), which yields

, a 3| (a a* 1 /1 1 1
P+3(P+P)(a>—&T{(P<a+az_6v¢>—¢(2P—6P+6V¢>

(75)
a 1, 1,
—w{a(pﬂ?) + 50— 6;9} }

The system of Equations (71)—(75) forms a system of five equations from which only
four are linearly independent. To prove this feature, one can take the time derivative of
Equation (71); use Equations (73) and (74) to eliminate the partial derivatives V,, and Vy;
use the conservation equation in Equation (75) to eliminate the time derivative ¢; and use
the Raychaudhuri equation in Equation (72) to eliminate the second time derivative i, thus
recovering the original equation. Thus, one of these equations can be discarded from the
system without loss of generality. Given the complicated nature of Equation (72), we chose
to discard this equation and consider only Equations (71) and (73)—(75).

By including the Hubble function H = 4/a, the set of cosmological equations of
scalar—tensor f(R, T) gravity assume the following form

3y 1 1V ¢
3H2—87Tp+( - — )+—3H, (76)
¢ 29 P3P 2¢ ¢
. 1v ¢ ¢
24312 — —s87P 4+ ¥ p_3 +-——L _2HT, (77)
0 Zgo(p p) 29 o 0
V(P:6(H+2H2)’ Vy =3p—p, (78)

P+3H(P+P)—;{—§(P—§+‘§p> —tp{H(p+p)+;<p—;p)”. (79)

It should be noted that, unlike GR or any modified theory of gravity in which the
matter energy-momentum tensor is conserved, the scalar-tensor f(R, T) gravity admits
a conservation equation in which the right-hand side of Equation (79) does not vanish
identically. By recalling Equation (15), such a result implies a particle creation rate I' # 0
and hence the presence of particle production. Substituting V;, and Vjy by their expressions,
Equations (73) and (74), respectively, we obtain the explicit expression for the particle
creation rate in scalar—tensor f(R, T) gravity

I d lp—p
I'= 8n+¢<dtlnlp+2p+p)' (80)

Additionally, by combining Equation (19) with Equation (80), we find that the creation
pressure in this theory assumes the following expression:

_ptp ¢ (d 1p—p
Fe= 3H 87I+1,L7<dt1m’b+2p+p ‘ (81)
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As mentioned above, the creation pressure p, is the (effective) quantity phenomeno-
logically describing the creation of matter in the formalism of irreversible thermodynamics
of open systems. As can be seen from Equation (81), p. has a dependence on one of the
two fundamental scalar fields of scalar-tensor f(R, T) gravity, namely, 1. Since this field
mediates the gravitational interaction (alongside g, and ¢) but also plays an active role
in the particle production through p., we conclude that this production is of gravitational
nature. In addition, one should also question why the creation rate and pressure depend
only on one of the two scalars. In action (63), we see that the scalar field ¥ is nonminimally
coupled with the trace of the energy-momentum tensor T. Given that ¥ is a gravitational
field and T is associated with matter, then we have a direct interaction between gravity
and matter. This interaction allows the exchange of energy and momentum between the
two sectors, with ¢ being the source of matter creation. On the contrary, the scalar ¢ is
irrelevant in the process of particle production because it is not nonminimally coupled with
a matter-related quantity, only with the Ricci scalar R, which is just a geometrical quantity.
In conclusion, the scalar 1 is the degree of freedom that triggers particle production in
scalar—tensor f(R,T) gravity. Moreover, both Equations (80) and (81) can be taken as
correct because they are consistent with [6], in which these two quantities were obtained
in the usual geometrical representation. Consequently, our results prove once again the
equivalence between these two representations of f(R, T) gravity.

With the particle creation rate determined, we can now use the general results found in
the previous sections regarding the entropy evolution and the temperature evolution to com-
pute these expressions in scalar—tensor f(R, T) gravity. Thus, by substituting Equation (80)
in Equation (21), we obtain the explicit expression for the co-moving entropy evolution

d pP—p
<dt,1n¢+2p+ >dt} (82)

S(t)—Soexp{— ) BTy

while, by substituting Equation (80) in Equation (28), we obtain the entropy production
rate

_ Y lp—p
VSt = — 8n+¢( g+ p)szo. (83)

In addition, by using Equation (80) together with Equation (40), we find that the tempera-
ture time evolution is given by

_ 2 ! IP 1p—ﬁ !
T(t)_Toexp{cs/(][Sn+¢(dt, ny+ zw)—sH}dt}. (84)

Furthermore, in order to gain an understanding of how much the Universe deceler-
ates/accelerates throughout its (cosmological) evolution, an indicator is needed. In this
sense, it is convenient to introduce the deceleration parameter g, which is defined as

_d1 H

Using the cosmological field Equations (76) and (77), we obtain the expression for the
deceleration parameter g in scalar-tensor f(R, T) gravity
3[4;1% ~ -3 - L+ 4+ HE

8rl + 29o(p 3p) + —3H‘P

(86)

_1.
=3

6. Conclusions

In this work, we have explored the formalism of irreversible thermodynamics of open
systems and provided a brief overview of the use of this formalism in the cosmological
context. By treating a homogeneous and isotropic Universe as an open system, we have seen
that the only contribution to entropy production is due to entropy creation, in turn related
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to particle creation/annihilation processes that occur within the Universe. In addition, the
thermodynamic conservation equation of an open system contains an extra term that takes
into account the change in the number of particles in the system. Such a term allows us to
write this equation in terms of a creation rate but also in terms of a creation pressure within
this formalism, with the first being defined as the rate between the time derivative of the
number of particles and the number of particles and the second describing the emergence
of gravitationally induced macroscopical matter created in space-time. In this respect, we
have seen that it is possible to obtain an explicit expression for the creation pressure if one
has an explicit expression for the particle creation rate.

Furthermore, we have derived general expressions for the entropy and temperature
evolutions by resorting to the second law of thermodynamics and by considering the
number density and the temperature as the fundamental thermodynamic quantities that
fully describe the open thermodynamic system. We have seen that both evolutions depend
on the particle creation rate, which highlights the impact that the creation of matter has on
entropy production, with the temperature evolution also depending on the expansion of
the Universe according to the presence of the Hubble function. Therefore, the use of the
irreversible thermodynamics of open systems in the cosmological domain could help us
explain the rise in entropy that occurs during the creation of matter, as long as we consider a
modified theory of gravity in which the matter energy-momentum tensor is not conserved,
i.e., a theory that possesses interaction term(s) between the gravitational fields and matter.

In this context, considering theories that contain an interaction term between the grav-
itational fields and the non-gravitational matter fields, either using an explicit nonminimal
curvature-matter coupling in the geometrical representation or a nonminimal coupling
between a fundamental scalar field and matter in the scalar-tensor representation, we
verify that the matter energy-momentum tensor is not conserved. If we interpret this result
as the fact that the fundamental gravitational fields are sources of matter creation, then it is
legitimate to resort to the formalism of irreversible matter creation and treat the Universe as
an open system. By doing so, we verified that both the particle creation rate and the creation
pressure do not vanish identically in the case of scalar-tensor f(R, T) gravity. Indeed, it
seems that there is an evident and profound connection between the non-conservation of
the energy—-momentum tensor of matter and these two quantities.

Apart from the matter density, thermodynamic pressure, and the Hubble function,
we have seen that both the creation rate and the creation pressure only depend on one of
the two fundamental scalar fields of the theory, the scalar 1, defined as ¢ = df/dT. Since
this scalar field is one of the three fields that mediate the gravitational interaction in scalar—
tensor f(R, T) gravity, we conclude that particle creation is being gravitationally induced.
Moreover, it is also possible to analyze this result in the more “natural” geometrical
representation by using the definition of ¢. Hence, it is the partial derivative of f(R, T)
with respect to the trace of the matter energy—-momentum tensor T that plays the role
that the scalar field i played in the scalar—tensor representation. Thus, both creation rate
and creation pressure are zero if the f(R,T) function does not depend on T, and as a
consequence, the Ricci scalar R does not contribute to particle creation.

Thus, it is sufficient to have a function that depends only on T due to the fact that this
quantity constitutes itself a nonminimal curvature-matter coupling, as it results from a
coupling between the metric tensor g;,,, which is the only fundamental gravitational field of
the theory in the geometrical representation, and the matter energy-momentum tensor T),,.
Therefore, it is this degree of freedom by itself that is responsible for the non-conservation of
T,v. Then, we can point out that in the geometrical representation of f(R, T) gravity, it is the
metric g;,y, which participates in the nonminimal curvature-matter coupling encapsulated
by T, that induces particle production gravitationally. To conclude, we point out that an
extensive discussion regarding the physical nature of the particles that could be created via
gravitationally induced creation processes has been carried out in [7].
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